Assignment \#6 Solutions

1. Stochastic root-finding for drug design. (Drug-design problems motivated a lot of early work on root-finding algorithms. This homework problem is a highly simplified example.)
(a) See the class website for Python code that will solve the problem. Of course, we are actually looking for the root of the shifted function $E[g(X, \theta)-20]$. Our code exploits numpy arrays to speed things up, but old-fashioned looping through arrays can be used instead. Our pilot run of 100 samples indicated that we needed roughly $n=2400$ samples for our final estimation. We then obtained a final point estimate of $\theta_{n} \approx 0.8502$.
(b) Again, see the website for Python code. As per the hint, minimizing the function
$E[g(X, \theta)]=E\left[e^{-\theta X}+(\theta X / 2)\right]$ corresponds to finding a root of the expected derivative. I.e., by the hint, we have $\frac{\partial}{\partial \theta} E[g(X, \theta)]=E\left[g^{\prime}(X, \theta)\right]$, where $g^{\prime}(x, \theta)=\frac{\partial}{\partial \theta} g(x, \theta)=-x e^{-\theta x}+\frac{x}{2}$. Thus, solving $\frac{\partial}{\partial \theta} E[g(X, \theta)]=0$ is equivalent to solving $\left.E\left[g^{\prime}(X, \theta)\right]\right]=0$. This latter problem is a root-finding problem of the same type as in Part (a), except using a different function. Our pilot run of 100 samples indicated that we needed roughly $n=170$ samples for our final estimation. We then obtained a final point estimate of $\theta_{n} \approx 0.2085$. The estimated minimal discomfort level corresponding to θ_{n} is $g_{n}^{\text {opt }} \approx 0.8623$, which is indeed is slightly less than the true answer $g^{\text {opt }} \approx 0.8634$. So we think that we can do better than we actually can! Even worse, in constrained optimization problems, where we only consider values of θ that lie in a specified feasible set Θ, it is often the case that, if we use too few samples n, not only does $g_{n}^{\text {opt }}$ look better that the unknown true solution $g^{\text {opt }}$, but the estimated solution θ_{n}, which is feasible with respect to the approximate sample-based optimization problem (that we solve to get our point estimate), is not feasible with respect to the actual problem. This erroneous sense of optimism is sometimes called the "optimizer's curse".
(c) Following the hint, we have that $g_{n}^{\text {opt }}=\min _{\theta} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta\right) \leq \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta^{*}\right)$ for any θ^{*}.

Taking expectations on both sides, we have
$E\left[g_{n}^{\text {opt }}\right] \leq E\left[\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta^{*}\right)\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[g\left(X_{i}, \theta^{*}\right)\right]=E\left[g\left(X, \theta^{*}\right)\right]$. Since θ^{*} is arbitrary, it
follows that $E\left[g_{n}^{\text {opt }}\right] \leq \min _{\theta^{*}} E\left[g\left(X, \theta^{*}\right)\right]=g^{\text {opt }}$.
2. As suggested, write $\operatorname{Corr}[U, V]^{2}=g\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}\right)$, where

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{\left(x_{5}-x_{1} x_{2}\right)^{2}}{\left(x_{3}-x_{1}^{2}\right)\left(x_{4}-x_{2}^{2}\right)}
$$

(a) Taylor-series method. The point estimate is

$$
\begin{aligned}
\alpha_{n} & =g\left(\bar{U}_{n}, \overline{V_{n}}, \overline{U_{n}^{2}}, \overline{V_{n}^{2}}, \overline{U V_{n}}\right) \\
& =g(14.4,29.7,282.2,1115.9,540)=0.72097
\end{aligned}
$$

To compute a confidence interval, follow the hint and observe that

$$
\begin{aligned}
& \frac{\partial g}{\partial x_{1}}\left(x_{1}, \ldots, x_{5}\right)=2 a\left(a c x_{1} q^{-2}-x_{2} q^{-1}\right) \\
& \frac{\partial g}{\partial x_{2}}\left(x_{1}, \ldots, x_{5}\right)=2 a\left(a b x_{2} q^{-2}-x_{1} q^{-1}\right) \\
& \frac{\partial g}{\partial x_{3}}\left(x_{1}, \ldots, x_{5}\right)=\frac{-a^{2} c}{q^{2}} \\
& \frac{\partial g}{\partial x_{4}}\left(x_{1}, \ldots, x_{5}\right)=\frac{-a^{2} b}{q^{2}} \\
& \frac{\partial g}{\partial x_{5}}\left(x_{1}, \ldots, x_{5}\right)=\frac{2 a}{q},
\end{aligned}
$$

Where $a=\left(x_{5}-x_{1} x_{2}\right), b=\left(x_{3}-x_{1}^{2}\right), c=\left(x_{4}-x_{2}^{2}\right)$, and $q=b c$. So

$$
\begin{aligned}
& d_{i}=\frac{\partial g}{\partial x_{i}}\left(\bar{U}_{n}, \bar{V}_{n}, \overline{U_{n}^{2}}, \overline{V_{n}^{2}}, \overline{U V_{n}}\right) \text { for } i=1,2,3,4,5 . \\
& d_{1}=-0.10384 \\
& d_{2}=-0.00170 \\
& d_{3}=-0.00963 \\
& d_{4}=-0.00308 \\
& d_{5}=0.01284
\end{aligned}
$$

And

$$
\begin{aligned}
s_{n}^{2} & =\frac{1}{9} \sum_{i=1}^{10}\left[d_{1}\left(U_{i}-\bar{U}_{n}\right)+d_{2}\left(V_{i}-\bar{V}_{n}\right)+d_{3}\left(U_{i}^{2}-\overline{U_{n}^{2}}\right)+d_{4}\left(V_{i}^{2}-\overline{V_{n}^{2}}\right)+d_{5}\left(U_{i} V_{i}-\overline{U V_{n}}\right)\right]^{2} \\
& =0.3308
\end{aligned}
$$

95\% confidence interval is

$$
\left[0.721-\frac{(1.96)(0.3308)^{1 / 2}}{\sqrt{10}}, 0.721+\frac{(1.96)(0.3308)^{1 / 2}}{\sqrt{10}}\right]=[0.364,1.077]
$$

Since the correlation coefficient is always ≤ 1, we can take the CI to be [0.364,1.000].
(b) Jackknife method. (Almost the same answer as Part(a); using a spreadsheet makes the calculations go a lot faster.) Set

$$
\begin{aligned}
& \alpha_{n}=g\left(\bar{U}_{n}, \bar{V}_{n}, \overline{U_{n}^{2}}, \overline{V_{n}^{2}}, \overline{U V_{n}}\right)=0.72097 \text { from part (a) } \\
& \bar{U}_{n}(i)=\frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} U_{j}, \overline{U_{n}^{2}}(i)=\frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} U_{j}^{2}, \bar{V}_{n}(i)=\frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} V_{j}, \\
& \overline{V_{n}^{2}}(i)=\frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n}, \overline{U V_{n}}(i)=\frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} U_{j} V_{j} \\
& \alpha_{n}^{i}=g\left(\bar{U}_{n}(i), \overline{V_{n}}(i), \overline{U_{n}^{2}}(i), \overline{V_{n}^{2}}(i), \overline{U V_{n}}(i)\right) \quad i=1,2, \ldots, 10 \\
& \alpha_{n}^{1}=0.726568, \ldots, \alpha_{n}^{10}=0.69062
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{n}(i)=n \alpha_{n}-(n-1) \alpha_{n}^{i}=10 \cdot(0.72097)-9 \alpha_{n}^{i} \\
& \alpha_{n}(1)=0.670587, \ldots, \alpha_{n}(10)=0.99412 \\
& \alpha_{n}^{J}=\frac{1}{10}\left(\alpha_{n}(1)+\cdots+\alpha_{n}(10)\right)=0.70088 \quad \text { (point estimator) } \\
& V_{n}^{J}=\frac{1}{9}\left(\left(\alpha_{n}(1)-\alpha_{n}^{J}\right)^{2}+\cdots+\left(\alpha_{n}(10)-\alpha_{n}^{J}\right)^{2}\right)=0.434552
\end{aligned}
$$

95% asymptotic confidence interval is

$$
\left[\alpha_{n}^{J}-\frac{1.96\left(V_{n}^{J}\right)^{1 / 2}}{\sqrt{n}}, \alpha_{n}^{J}+\frac{1.96\left(V_{n}^{J}\right)^{1 / 2}}{\sqrt{n}}\right]=[0.292,1.109] \text { so the answer is }[0.292,1.000]
$$

3. Multiple performance measures.
(a) Following the hint, let
$I_{j}= \begin{cases}1 & \text { if the } j \text { th CI brackets the } j \text { th performance measure } \\ 0 & \text { otherwise } .\end{cases}$
Also let N be the number of confidence intervals that do not contain their corresponding performance measure. Then $N=\sum_{j=1}^{k}\left(1-I_{j}\right)=k-\sum_{j=1}^{k} I_{j}$ and

$$
E[N]=E\left[k-\sum_{j=1}^{k} I_{j}\right]=k-\sum_{j=1}^{k} E\left[I_{j}\right]=k-\sum_{j=1}^{k} P\left(I_{j}=1\right)=k-\sum_{j=1}^{k}(1-\alpha)=k \alpha
$$

(b) Let A denote the event that all of the CIs bracket their respective performance measures. Again following the hint, we have, by Bonferroni's inequality,

$$
P(A)=P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right) \geq 1-P\left(A_{1}^{c}\right)-P\left(A_{2}^{c}\right)-\cdots-P\left(A_{k}^{c}\right)=1-k \alpha^{*}
$$

So set $\alpha^{*}=\alpha / k$ to ensure that $P(A) \geq 1-\alpha$. This procedure works reasonably well as long as k is relatively small. Note that we do not need to assume either normality or independence of the point estimators for the k measures. On the other hand, the bound may be "crude" in the sense that the true value of $P(A)$ might be much larger than $1-\alpha$; this means that our confidence intervals are wider than necessary.
4. Discounted reward. This problem shows that a number of interesting performance measures can be handled within the regenerative estimation framework discussed in class
(a) Following the hint, we have

$$
\begin{aligned}
r & =E\left[\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u\right]+E\left[e^{-\beta T_{1}} \int_{T_{1}}^{\infty} e^{-\beta\left(u-T_{1}\right)} q(X(u)) d u\right] \\
& =E\left[\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u\right]+E\left[e^{-\beta T_{1}}\right] E\left[\int_{T_{1}}^{\infty} e^{-\beta\left(u-T_{1}\right)} q(X(u)) d u\right] \\
& =E\left[\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u\right]+E\left[e^{-\beta T_{1}}\right] r,
\end{aligned}
$$

Where the $2^{\text {nd }}$ equality follows from the independence-from-the-past property of a regeneration point and the $3^{\text {rd }}$ equality follows from identical-distribution property. Solving for r, we get

$$
r=\frac{E\left[\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u\right]}{1-E\left[e^{-\beta T_{1}}\right]}=\frac{E\left[\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u\right]}{E\left[1-e^{-\beta T_{1}}\right]}
$$

Thus, we take

$$
X=\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u \quad \text { and } \quad Y=1-e^{-\beta T_{1}} .
$$

(b) For the i th cycle, take

$$
X_{i}=\int_{T_{i-1}}^{T_{i}} e^{-\beta\left(u-T_{i-1}\right)} q(X(u)) d u \quad \text { and } \quad Y_{i}=1-e^{-\beta\left(T_{i}-T_{i-1}\right)} .
$$

