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Assignment #6 Solutions 
 

 
1. Stochastic root-finding for drug design. (Drug-design problems motivated a lot of early work on 

root-finding algorithms. This homework problem is a highly simplified example.) 
(a) See the class website for Python code that will solve the problem. Of course, we are actually 

looking for the root of the shifted function     E[g( X ,θ)−20] . Our code exploits numpy arrays to 
speed things up, but old-fashioned looping through arrays can be used instead. Our pilot run of 
100 samples indicated that we needed roughly    n = 2400  samples for our final estimation. We 
then obtained a final point estimate of     θn ≈ 0.8502 . 

(b) Again, see the website for Python code. As per the hint, minimizing the function 

    E[g( X ,θ)]= E[e−θX + (θX / 2)]   corresponds to finding a root of the expected derivative. I.e., 

by the hint, we have 
    
∂
∂θ

E[g( X ,θ)]= E g '( X ,θ)]⎡
⎣⎢

⎤
⎦⎥ , where 

    
g '(x,θ) =

∂
∂θ

g(x,θ) =−xe−θx +
x
2

. 

Thus, solving 
    
∂
∂θ

E[g( X ,θ)]= 0   is equivalent to solving 
    
E g '( X ,θ)]⎡
⎣⎢

⎤
⎦⎥= 0 . This latter problem 

is a root-finding problem of the same type as in Part (a), except using a different function. Our 
pilot run of 100 samples indicated that we needed roughly    n =170  samples for our final 
estimation. We then obtained a final point estimate of     θn ≈ 0.2085 . The estimated minimal 

discomfort level corresponding to   θn  is    gn
opt ≈ 0.8623 , which is indeed is slightly less than the 

true answer    g
opt ≈ 0.8634 . So we think that we can do better than we actually can! Even worse, 

in constrained optimization problems, where we only consider values of  θ  that lie in a specified 
feasible set   Θ , it is often the case that, if we use too few samples n, not only does   gn

opt  look 

better that the unknown true solution   g
opt , but the estimated solution   θn , which is feasible with 

respect to the approximate sample-based optimization problem (that we solve to get our point 
estimate), is not feasible with respect to the actual problem. This erroneous sense of optimism is 
sometimes called the “optimizer’s curse”. 

(c) Following the hint, we have that 
    
gn

opt = minθ
1
n

g( Xi ,θ)i=1

n∑ ≤
1
n

g( Xi ,θ*)
i=1

n∑  for any   θ* . 

Taking expectations on both sides, we have 

    
E[gn

opt ]≤ E 1
n

g( Xi ,θ*)
i=1

n∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

1
n

E[g( Xi ,θ*)]
i=1

n∑ = E[g( X ,θ*)] . Since   θ*  is arbitrary, it 

follows that     E[gn
opt ]≤minθ* E[g( X ,θ*)]= g opt . 

  
2. As suggested, write 2

1 2 3 4 5Corr[ , ] ( , , , , )U V g µ µ µ µ µ= , where  
2

5 1 2
1 2 3 4 5 2 2

3 1 4 2

( )
( , , , , )

( )( )
x x x

g x x x x x
x x x x

−
=

− −
  

(a) Taylor-series method. The point estimate is 

( )2 2, , , ,

(14.4,29.7,282.2,1115.9,540) 0.72097

n n n n n ng U V U V UV

g

α =

= =
 

 To compute a confidence interval, follow the hint and observe that 
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∂g
∂x1

(x1,…,x5) = 2a(acx1q
−2 − x2q

−1)

∂g
∂x2

(x1,…,x5) = 2a(abx2q
−2 − x1q

−1)

∂g
∂x3

(x1,…,x5) = −a2c
q2

∂g
∂x4

(x1,…,x5) = −a2b
q2

∂g
∂x5

(x1,…,x5) = 2a
q

,

 

 
 Where 2 2

5 1 2 3 1 4 2( ), ( ), ( ),  and .a x x x b x x c x x q bc= − = − = − =  So  

   ( )2 2, , , ,  for 1,2,3,4,5.i n n n n n
i

gd U V U V UV i
x
∂= =
∂

 

   

1

2

3

4

5

-0.10384
-0.00170
-0.00963
-0.00308
0.01284

d
d
d
d
d

=
=
=
=
=

 

 And  

 ( ) ( ) ( ) ( ) ( )
2

102 2 2 2 2
1 2 3 4 51

1
9
0.3308

n i n i n i n i n i i ni
s d U U d V V d U U d V V d U V UV

=
⎡ ⎤= − + − + − + − + −⎢ ⎥⎣ ⎦

=

∑  

 
 95% confidence interval is  

   
1/2 1/2(1.96)(0.3308) (1.96)(0.3308)0.721 ,0.721 [0.364,1.077]

10 10
⎡ ⎤

− + =⎢ ⎥
⎣ ⎦

 

 Since the correlation coefficient is always 1≤ , we can take the CI to be [0.364,1.000]. 
 

(b) Jackknife method. (Almost the same answer as Part(a); using a spreadsheet makes the calculations 
go a lot faster.) Set 
 

 

   

α n = g Un ,Vn ,Un
2 ,Vn

2 ,UVn( ) = 0.72097 from part (a)

Un(i) = 1
n−1

U j
j=1
j≠i

n

∑ ,Un
2(i) = 1

n−1
U j

2 ,
j=1
j≠i

n

∑ Vn(i) = 1
n−1

Vj
j=1
j≠i

n

∑ ,

Vn
2(i) = 1

n−1
Vj

2 ,
j=1
j≠i

n

∑ UVn(i) = 1
n−1

U jVj
j=1
j≠i

n

∑

α n
i = g Un(i),Vn(i),Un

2(i),Vn
2(i),UVn(i)( ) i = 1,2,…,10

 

     α n
1 = 0.726568,…,α n

10 = 0.69062  
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    α n(i) = nα n − (n−1)α n

i = 10 ⋅(0.72097)− 9α n
i  

   

   

α n(1) = 0.670587,…,α n(10) = 0.99412

α n
J = 1

10
α n(1)+!+α n(10)( ) = 0.70088     (point estimator)

 

  
   
Vn

J = 1
9

α n(1)−α n
J( )2

+!+ α n(10)−α n
J( )2( ) = 0.434552  

   
 
 95% asymptotic confidence interval is  

   
1/2 1/21.96( ) 1.96( )

, [0.292,1.109] so the answer is [0.292,1.000]
J J

J Jn n
n n

V V
n n

α α
⎡ ⎤

− + =⎢ ⎥
⎣ ⎦

 

 
 
3. Multiple performance measures. 

(a) Following the hint, let 
1 if the th CI brackets the th performance measure
0 otherwise.j

j j
I ⎧

= ⎨
⎩

 

Also let N  be the number of confidence intervals that do not contain their corresponding 

performance measure. Then
1 1
(1 )k k

j jj j
N I k I

= =
= − = −∑ ∑  and 

 
1 1 1 1

[ ] [ ] ( 1) (1 )k k k k
j j jj j j j

E N E k I k E I k P I k kα α
= = = =

⎡ ⎤= − = − = − = = − − =⎣ ⎦∑ ∑ ∑ ∑ . 

(b) Let A  denote the event that all of the CIs bracket their respective performance measures. Again 
following the hint, we have, by Bonferroni’s inequality, 

   P( A) = P( A1 ∩ A2 ∩!∩ Ak ) ≥1− P( A1
c )− P( A2

c )−!− P( Ak
c ) = 1− kα *  

So set * / kα α= to ensure that ( ) 1P A α≥ − . This procedure works reasonably well as long as k
is relatively small. Note that we do not need to assume either normality or independence of the 
point estimators for the k  measures. On the other hand, the bound may be “crude” in the sense 
that the true value of ( )P A  might be much larger than 1 α− ; this means that our confidence 
intervals are wider than necessary. 

 
4. Discounted reward. This problem shows that a number of interesting performance measures can be 

handled within the regenerative estimation framework discussed in class 
 

(a) Following the hint, we have 

   

( ) ( )

( ) ( )

( )

1
1 1

1

1
1 1

1

1
1

( )

0

( )

0

0

( ) ( )

( ) ( )

( ) ,

T T u Tu

T

T T u Tu

T

T Tu

r E e q X u du E e e q X u du

E e q X u du E e E e q X u du

E e q X u du E e r

β ββ

β ββ

ββ

∞− − −−

∞− − −−

−−

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤= + ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫

 

  Where the 2nd equality follows from the independence-from-the-past property of a 
regeneration point and the 3rd equality follows from identical-distribution property. 
Solving for r, we get 



CS 590M   Page 4 of  4 
Simulation   April 2, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

   
( ) ( )1 1

1 1

0 0
( ) ( )

1 1

T Tu u

T T

E e q X u du E e q X u du
r

E e E e

β β

β β

− −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= =

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

∫ ∫
 

  Thus, we take 
   ( )1

1

0
( ) and 1 .

T TuX e q X u du Y e ββ −−= = −∫  
 
(b) For the ith cycle, take 

   ( )1 1

1

( ) ( )( ) and 1 .i
i i i

i

T u T T T
i iT
X e q X u du Y eβ β− −

−

− − − −= = −∫  

 
 

 
 
 


