Page 1 of 6 February 27, 2020 Spring Semester 2020

Assignment #4 Solutions

- 1. Truncated distributions are useful if we think we know the general form of an input distribution, but we have some additional information that further restricts the range of possible values.
 - (a) As stated in the text, the cdf is:

$$F^{*}(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{F(x) - F(a)}{F(b) - F(a)} & \text{if } a \le x < b \\ 1 & \text{if } x \ge b \end{cases}$$

For the algorithm in Section 8.2.1,

$$P\{X \le x\} = P\{F^{-1}(V) \le x\} = P\{V \le F(x)\}$$

= $P\{F(a) + (F(b) - F(a))U \le F(x)\}$
= $P\{U \le \frac{F(x) - F(a)}{F(b) - F(a)}\}$
= $F^*(x)$

(b) For the algorithm of problem 8.3(b),

$$P\{X \le x\} = P\{F^{-1}(U) \le x | F(a) \le U \le F(b)\}$$

= $P\{U \le F(x) | F(a) \le U \le F(b)\}$
= $\frac{P\{U \le F(x), F(a) \le U \le F(b)\}}{P\{F(a) \le U \le F(b)\}}$
= $\frac{P\{U \le F(x), F(a) \le U \le F(b)\}}{F(b) - F(a)}$
= $F^*(x)$,

since

$$P\left\{U \le F(x), F(a) \le U \le F(b)\right\}$$
$$= \begin{cases} 0 & \text{if } x < a \\ P\left\{F(a) \le U \le F(x)\right\} & \text{if } a \le x < b \\ F(b) - F(a) & \text{if } x \ge b. \end{cases}$$

The first algorithm (pure inversion) has the advantage that only one iteration is required, whereas the second algorithm may require multiple iterations, especially if F(b) - F(a) is small.

CS 590M Simulation Peter J. Haas

(c) Using the inversion method, we have the following algorithm:

Algorithm
1. Generate
$$U \sim U[0,1]$$

2. Return

$$X = \begin{cases} a & \text{if } U < F(a) \\ F^{-1}(U) & \text{if } F(a) \le U < F(b) \\ b & \text{if } U \ge F(b) \end{cases}$$

Equivalently, we can re-express the algorithm as follows.

Algorithm

- 1. Generate U: U[0,1] and set $Y = F^{-1}(U)$ (equivalently, generate Y from F)
- 2. Return

$$X = \begin{cases} a & \text{if } Y < a \\ Y & \text{if } a \le Y < b \\ b & \text{if } Y \ge b \end{cases}$$

More concisely, in Step 2 we return $X = \min(b, \max(Y, a))$.

- 2. Geometric random variates.
 - (a) Using the hint, fix $i \ge 0$ and observe that

$$P(X = i) = P\left(i \le \frac{\ln U}{\ln(1-p)} < i+1\right)$$

= $P(i \ln(1-p) \ge \ln U > (i+1)\ln(1-p))$
= $P\left(\ln(1-p)^i \ge \ln U > \ln(1-p)^{i+1}\right)$
= $P\left((1-p)^i \ge U > (1-p)^{i+1}\right)$
= $(1-p)^i - (1-p)^{i+1}$
= $(1-p)^i (1-(1-p))$
= $(1-p)^i p$

To see that this algorithm corresponds to the inversion method, first note that for any non-integer real number y, we have $y = \lfloor y \rfloor + \varepsilon$ for some real number $\varepsilon \in (0,1)$, so that $y-1 = \lfloor y \rfloor + \varepsilon - 1 = \lfloor y \rfloor - \delta$ for some $\delta \in (0,1)$. Thus the smallest integer greater than or equal to y-1 is $\lfloor y \rfloor$. As per the extra credit problem, we have, for $x \ge 0$,

$$F(x) = P(X \le x) = P(X \le \lfloor x \rfloor)$$

= $\sum_{j=0}^{\lfloor x \rfloor} p(1-p)^j = p \sum_{j=0}^{\lfloor x \rfloor} (1-p)^j = p \frac{1-(1-p)^{\lfloor x \rfloor+1}}{1-(1-p)}$
= $1-(1-p)^{\lfloor x \rfloor+1}$,

where the second equality follows from the fact that *X* only takes on integer values, and the fifth equality follows from the standard identity $\sum_{j=0}^{k} x^k = (1-x^{k+1})/(1-x)$. Using the definition of the generalized inverse (needed because of the $\lfloor x \rfloor$ term), we have

$$F^{-1}(u) = \min\{x : F(x) \ge u\}$$

= $\min\{x : 1 - (1 - p)^{\lfloor x \rfloor + 1} \ge u\}$
= $\min\{x : 1 - u \ge (1 - p)^{\lfloor x \rfloor + 1}\}$
= $\min\{x : \ln(1 - u) \ge (\lfloor x \rfloor + 1)\ln(1 - p)\}$
= $\min\{x : \lfloor x \rfloor \ge \frac{\ln(1 - u)}{\ln(1 - p)} - 1\}$
= $\min\{m : m \text{ is an integer and } m \ge \frac{\ln(1 - u)}{\ln(1 - p)} - 1\}$
= $\left|\frac{\ln(1 - u)}{\ln(1 - p)}\right|,$

provided that the final ratio of logarithms is non-integer. Here the last equality follows from the previous calculation. The algorithm therefore is, in fact, the inversion method, since $\ln(1-U)/\ln(1-p)$ is non-integer with probability 1 for a uniform random number U.

- (b) Because the uniforms in the given algorithm are mutually independent, steps 2 and 3 constitute a sequence of Bernoulli trials with success probability $P(U \le p) = p$. The variable *i* is incremented at, and only at, each "failure", so that *X* simply counts the number of trials until the first success. As discussed in class, X therefore has a geometric distribution.
- 3. The density looks as follows

(a) **Inversion**: $F(x) = 0.5(x^3 + 1)$ for $-1 \le x \le 1$, so inversion yields the formula $X = (2U - 1)^{1/3}$. (Note that, in general, there will be two complex cube roots and one real-valued cube root. We obviously want to take the real-valued cube root.) (b) **Composition**: Write $f(x) = 0.5 \cdot 1_{1-10}(x) \cdot 3x^2 + 0.5 \cdot 1_{101}(x) \cdot 3x^2$, so that

 $F(x) = 0.5 \cdot 1_{(-1,0)}(x) \cdot (x^3 + 1) + 0.5 \cdot 1_{(0,1)}(x)x^3$. We can use inversion for each part. The algorithm is

- 1. Generate U_1, U_2 iid U[0,1].
- 2. If $U_1 \le 0.5$, then return $(U_2 1)^{1/3}$ [equivalently, $(-U_2)^{1/3}$], else return $U_2^{1/3}$.
- (c) Acceptance/rejection: take g as a uniform distribution on [-1,1], i.e., $g(x) = 0.5 \cdot 1_{[-1,1]}(x)$, and take $c = \sup f(x) / g(x) = 3$. The algorithm is
 - 1. Generate U_1, U_2 iid U[0,1].
 - 2. Set $Y = 2U_1 1$
 - 3. If $U_2 \leq Y^2$, then return X = Y, else go to Step 1.

Inversion and composition each require a cube-root evaluation, and inversion requires one less uniform random number, so inversion is better than composition. The A/R algorithm avoids the cube root operation, but requires c = 3 pairs (U_1, U_2) , i.e., 6 uniforms random numbers, on average, so whether A/R is better or worse than inversion depends on the relative cost of cube root versus pseudorandom number generation.

4. First note that $H(t) = t^a$. Given that $T_{n-1} = y$, the cdf of T_n is $F(x) = 1 - e^{-(H(x) - H(y))}$ for $x \ge y$, so $F^{-1}(u) = H^{-1}(H(y) - \ln(1-u)) = (H(y) - \ln(1-u))^{1/a} = (y^a - \ln(1-u))^{1/a}$

since $H^{-1}(t) = t^{1/a}$. We can replace 1 - u with u in the usual way to obtain:

Algorithm

- 1. Set $T_0 = 0$ and n = 1
- 2. Generate U: U[0,1]
- 3. Set $T_n = (T_{n-1}^a \ln(U))^{1/a}$
- 4. Set $n \leftarrow n+1$ and go to Step 2
- 6. Ratio-of-Uniforms method.
 - (a) Following the suggestion, we have $pf(x) = e^{-x^2/2}$ and $\sqrt{pf(x)} = e^{-x^2/4}$. Clearly,

 $u^* = \max_x \sqrt{pf(x)} = \max_x pf(x) = 1$ (i.e., when x = 0). To compute v_* and v^* , observe that

$$\frac{d}{dx}x\sqrt{pf(x)} = \frac{d}{dx}xe^{-x^2/4} = e^{-x^2/4}\left(1 - \frac{x^2}{2}\right)$$

Setting the derivative equal to 0, we see that the maximum and minimum values are achieved at $x^* = \pm \sqrt{2}$, and the values themselves are $x^* \sqrt{pf(x^*)} = \pm \sqrt{2/e}$. Hence $v_* = -\sqrt{2/e}$ and $v^* = \sqrt{2/e}$.

(b) Following the hint, we have $u = \sqrt{pf(v/u)} = e^{-v^2/4u^2}$ and, solving for v, we get $v = \pm 2u\sqrt{-\ln u}$. So the plot of the region $S = \{(u,v) : u \le \sqrt{pf(v/u)}\}$ and the bounding rectangle (in red) is as follows:

- (c) Putting the above results together, the final algorithm is as follows:
 - 1. Generate independent uniform numbers U_1 and U_2
 - 2. Set $U = U_1$ and $V = \sqrt{2/e}(2U_2 1)$
 - 3. Set Z = V / U
 - 4. If $U^2 \le e^{-Z^2/2}$ return Z, else go to step 1.
- (d) The acceptance probability is $\alpha = \frac{p/2}{u^*(v^* v_*)} = \frac{\sqrt{\pi e}}{4} \approx 0.73$. As for the ordinary acceptance-

rejection method the expected number of rounds is $1/\alpha$, so the expected number of uniform variates is $2/\alpha \approx 2.74$. (Professional-grade generators try to improve performance by more tightly bounding *S* using, e.g., polygons or ellipsoids.)

(e) See the website for example Python code. Our Q-Q plot is as follows:

