
CS 590M   Page 1 of  6 
Simulation   February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

Assignment #4 Solutions 
 

1. Truncated distributions are useful if we think we know the general form of an input distribution, but we 
have some additional information that further restricts the range of possible values. 
(a)  As stated in the text, the cdf is: 
 

 *

0 if 
( ) ( )( ) if 
( ) ( )

1 if 

⎧ <
⎪ −⎪= ≤ <⎨ −⎪
⎪ ≥⎩

x a
F x F aF x a x b
F b F a

x b

 

 
For the algorithm in Section 8.2.1, 
 

( ){ }
1

*

{ } { ( ) } { ( )}

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )

−≤ = ≤ = ≤

= + − ≤

⎧ ⎫−= ≤⎨ ⎬−⎩ ⎭
=

P X x P F V x P V F x
P F a F b F a U F x

F x F aP U
F b F a

F x

 

 
(b)  For the algorithm of problem 8.3(b), 
 

 

{ }
{ }
{ }

{ }
{ }

1

*

{ } ( ) | ( ) ( )

( ) | ( ) ( )

( ), ( ) ( )
( ) ( )

( ), ( ) ( )
( ) ( )

( ),

−≤ = ≤ ≤ ≤

= ≤ ≤ ≤

≤ ≤ ≤
=

≤ ≤

≤ ≤ ≤
=

−
=

P X x P F U x F a U F b

P U F x F a U F b

P U F x F a U F b
P F a U F b

P U F x F a U F b
F b F a

F x

 

 
since 

 

  

P U ≤ F(x), F(a) ≤U ≤ F(b){ }

=
0 if x < a

P F(a) ≤U ≤ F(x){ } if a ≤ x < b

F(b)− F(a) if x ≥ b.

⎧

⎨
⎪

⎩
⎪

 

 
The first algorithm (pure inversion) has the advantage that only one iteration is required, whereas 
the second algorithm may require multiple iterations, especially if ( ) ( )−F b F a  is small. 
 
 
 
 
 

 



CS 590M   Page 2 of  6 
Simulation   February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

(c) Using the inversion method, we have the following algorithm: 
 

Algorithm 
1. Generate    U ∼U[0,1]  
2. Return 

1

if ( )
( ) if ( ) ( )

if ( )

−

<⎧
⎪= ≤ <⎨
⎪ ≥⎩

a U F a
X F U F a U F b

b U F b  
 

Equivalently, we can re-express the algorithm as follows. 
 

Algorithm 
1. Generate [0,1]:U U  and set 1( )−=Y F U  (equivalently, generate Y from F) 
2. Return 

if 
if 
if 

<⎧
⎪= ≤ <⎨
⎪ ≥⎩

a Y a
X Y a Y b

b Y b
 

 
More concisely, in Step 2 we return ( )min ,max( , )=X b Y a . 

 
2. Geometric random variates.  
 

(a) Using the hint, fix 0i ≥ and observe that 

                           

( )
( )
( )

1

1

1

ln( ) 1
ln(1 )

ln(1 ) ln ( 1) ln(1 )

ln(1 ) ln ln(1 )

(1 ) (1 )

(1 ) (1 )
(1 ) (1 (1 ))
(1 )

i i

i i

i i

i

i

UP X i P i i
p

P i p U i p

P p U p

P p U p

p p
p p
p p

+

+

+

⎛ ⎞
= = ≤ < +⎜ ⎟−⎝ ⎠

= − ≥ > + −

= − ≥ > −

= − ≥ > −

= − − −
= − − −
= −

 

 
To see that this algorithm corresponds to the inversion method, first note that for any non-integer 
real number y, we have y y= + ε⎢ ⎥⎣ ⎦  for some real number (0,1)ε∈ , so that 

1 1y y y− = +ε− = −δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  for some (0,1)δ∈ . Thus the smallest integer greater than or equal to 

1y − is y⎢ ⎥⎣ ⎦ . As per the extra credit problem, we have, for 0x ≥ , 

                          

( )
1

0 0

1

( ) ( )

1 (1 )(1 ) (1 )
1 (1 )

1 (1 ) ,

x
x xj j
j j

x

F x P X x P X x

pp p p p p
p

p

+⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= =

+⎢ ⎥⎣ ⎦

= ≤ = ≤ ⎢ ⎥⎣ ⎦

− −= − = − =
− −

= − −

∑ ∑  

 



CS 590M   Page 3 of  6 
Simulation   February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

where the second equality follows from the fact that X only takes on integer values, and the fifth 
equality follows from  the standard identity 1

0
(1 ) /(1 )k k k

j
x x x+

=
= − −∑ . Using the definition of the 

generalized inverse (needed because of the x⎢ ⎥⎣ ⎦  term), we have 
 

                          ( ){ }

1

1

1

( ) min{ : ( ) }

min{ :1 (1 ) }

min{ :1 (1 ) }

min : ln(1 ) 1 ln(1 )

ln(1 )min : 1
ln(1 )

ln(1 )min :  is an integer and 1
ln(1 )

ln(1 )
ln(1 )

x

x

F u x F x u

x p u

x u p

x u x p

ux x
p

um m m
p

u
p

−

+⎢ ⎥⎣ ⎦

+⎢ ⎥⎣ ⎦

= ≥

= − − ≥

= − ≥ −

= − ≥ + −⎢ ⎥⎣ ⎦

⎧ ⎫−= ≥ −⎢ ⎥⎨ ⎬⎣ ⎦ −⎩ ⎭
⎧ ⎫−= ≥ −⎨ ⎬−⎩ ⎭

⎢ ⎥−= ⎢ −⎣ ⎦
,⎥

 

 
provided that the final ratio of logarithms is non-integer. Here the last equality follows from the 
previous calculation. The algorithm therefore is, in fact, the inversion method, since 
ln(1 ) / ln(1 )U p− − is non-integer with probability 1 for a uniform random number U.  
 

(b) Because the uniforms in the given algorithm are mutually independent, steps 2 and 3 constitute a 
sequence of Bernoulli trials with success probability ( )P U p p≤ = . The variable i is incremented at, 
and only at, each “failure”, so that X simply counts the number of trials until the first success. As 
discussed in class, X therefore has a geometric distribution. 

 
3. The density looks as follows 
 

 
 

(a) Inversion: 3( ) 0.5( 1)= +F x x  for 1 1− ≤ ≤x , so inversion yields the formula 1/3(2 1)= −X U . 
(Note that, in general, there will be two complex cube roots and one real-valued cube root. We 
obviously want to take the real-valued cube root.) 
  

1.5

0.0
-1.5 -1.0 -0.5 0 0.5 1.0 1.5



CS 590M   Page 4 of  6 
Simulation   February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

(b) Composition: Write 2 2
[ 1,0) [0,1]( ) 0.5 1 ( ) 3 0.5 1 ( ) 3−= ⋅ ⋅ + ⋅ ⋅f x x x x x , so that 

3 3
[ 1,0) [0,1]( ) 0.5 1 ( ) ( 1) 0.5 1 ( )−= ⋅ ⋅ + + ⋅F x x x x x . We can use inversion for each part. The algorithm is  

1. Generate 1 2,U U  iid [0,1]U . 
2. If 1 0.5≤U , then return 1/3

2( 1)−U [equivalently, 1/3
2( )−U ], else return 1/3

2U . 
(c) Acceptance/rejection: take g as a uniform distribution on [-1,1], i.e, [ 1,1]( ) 0.5 1 ( )−= ⋅g x x , and take 

sup ( ) / ( ) 3= =
x

c f x g x . The algorithm is 

  1.    Generate 1 2,U U  iid [0,1]U . 
  2.    Set 12 1= −Y U  

  3.    If 2
2 ≤U Y , then return =X Y , else go to Step 1.  

   
 Inversion and composition each require a cube-root evaluation, and inversion requires one less uniform 

random number, so inversion is better than composition. The A/R algorithm avoids the cube root 
operation, but requires 3c =  pairs 1 2( , )U U , i.e., 6 uniforms random numbers, on average, so whether 
A/R is better or worse than inversion depends on the relative cost of cube root versus pseudorandom 
number generation. 

 
 

4.    First note that ( ) aH t t= . Given that 1− =nT y , the cdf of nT  is ( )( ) ( )( ) 1 H x H yF x e− −= −  for x y≥ , so 

  ( ) ( ) ( )1/1/1 1( ) ( ) ln(1 ) ( ) ln(1 ) ln(1 )
aa aF u H H y u H y u y u− −= − − = − − = − −  

since 1 1/( ) aH t t− = . We can replace 1−u  with u  in the usual way to obtain: 
 
Algorithm 
1. Set 0 0=T and 1=n  
2.  Generate [0,1]:U U  

3. Set  ( )1/1 ln( )
aa

n nT T U−= −  

4.  Set 1← +n n and go to Step 2 
 

 
6.    Ratio-of-Uniforms method. 
 

(a) Following the suggestion, we have   pf (x) = e− x2 /2  and   pf (x) = e− x2 /4 . Clearly, 

  u
* = maxx pf (x) = maxx pf (x) = 1  (i.e., when   x = 0 ). To compute   v*  and   v* , observe that  

 
  

d
dx

x pf (x) = d
dx

xe−x2 /4 = e−x2 /4 1− x2

2

⎛

⎝
⎜

⎞

⎠
⎟  

 Setting the derivative equal to 0, we see that the maximum and minimum values are achieved at 

  x
* = ± 2 , and the values themselves are 

  x
* pf (x*) = ± 2 / e . Hence 

  v* = − 2 / e  and 

  v
* = 2 / e . 

 



CS 590M   Page 5 of  6 
Simulation   February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

(b) Following the hint, we have   u = pf (v / u) = e−v2 /4u2

and, solving for  v , we get   v = ±2u − lnu . 

So the plot of the region 
  
S = (u,v) :u ≤ pf (v / u){ }  and the bounding rectangle (in red) is as 

follows: 
 

                                                       
 

(c) Putting the above results together, the final algorithm is as follows: 
 

1. Generate independent uniform numbers   U1  and   U2  

2. Set   U =U1  and   V = 2 / e(2U2 −1)  
3. Set   Z =V / U  

4. If   U 2 ≤ e−Z 2 /2  return  Z , else go to step 1. 
 

(d) The acceptance probability is 
  
α = p / 2

u*(v* − v*)
= πe

4
≈ 0.73 . As for the ordinary acceptance-

rejection method the expected number of rounds is  1/α , so the expected number of uniform 
variates is  2 /α ≈ 2.74 . (Professional-grade generators try to improve performance by more 
tightly bounding S using, e.g., polygons or ellipsoids.) 
 

(e) See the website for example Python code. Our Q-Q plot is as follows: 
 

 
 



CS 590M   Page 6 of  6 
Simulation   February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 
 

  


