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Assignment #3 Solutions 
 

1. The point of this problem is that if you model an arrival process as a Poisson process, as in part (a), but 
the true process either has interarrival times that are more or less variable than an exponential, as in parts 
(b) and (c), or if the interarrival times are exponential but dependent, as in parts (d) and (e), then your 
simulation estimate of average number in system can be very inaccurate. See the class website for a 
simulation program that will do the requested estimations. To generate a service time V, use problem 3 
from Assignment #1: generate two uniforms 1U  and 2U , then set 1 20.99( )V U U= + . Note that, in parts 
(d) and (e), the system is no longer, strictly speaking, a GI/G/1 queue, because interarrival times are not 
independent. 

 
For the questions in part (d), observe that, for each n,  
 

1 1E[ ] E[ ( )] E[ ] E[ ] 0 0 0n n n n nY c Z Z c Z c Z c c− −= − = − = ⋅ − ⋅ = , 
 
because each Z is (0,1)N . Similarly, 
 

2 2 2 2 2 2 2 2
1 1 1Covar[ , ] Var[ ] E[ ] E[( ) ] E[ 2 ] 2 E[ ] 1n n n n n n n n n n nY Y Y Y c Z Z c Z Z Z Z c Z− − −= = = − = − + = = , 

 
2 2 2 2 2

1 1 1 1 2 1 1Covar[ , ] E[ ] E[( )( )] E[ ] Var[ ] 1/ 2n n n n n n n n n nY Y Y Y c Z Z Z Z c Z c Z c− − − − − − −= = − − = − = − = − = − ,  
 
and 
 

2 2
1 1Covar[ , ] E[ ] E[( )( )] 0 0  for 2n n j n n j n n n j n jY Y Y Y c Z Z Z Z c j− − − − − −= = − − = ⋅ = ≥ . 

 
Here we have repeatedly used the fact that [ ] [ ] [ ] 0 0 0i j i jE Z Z E Z E Z= = ⋅ =  for i j≠ , by independence. 
Since the sum of normal random variables has a normal distribution, we have that nY  has a (0,1)N  
distribution for each n. By the result of problem 1(c) in Assignment #2, each ( )nYΦ  has a uniform (0,1) 
distribution, and hence each   Xn = − log(Φ(Yn ))  has an exp(1) distribution as in the standard inversion 
method. Since the nY ’s are correlated, so are the nX ’s. (The autocorrelation between nX  and 1nX − —
that is, the covariance divided by the variance—is -0.5.) For part (e), almost identical calculations show 
that each nY  has a (0,1)N distribution, but now the autocorrelation between nY  and 1nY −  is 0.5, which is 
also the autocorrelation  between nX  and 1nX − . This method of generating an autocorrelated sequence of 
random variables, where the random variables have a specified marginal distribution, was originally 
proposed using an autoregressive sequence ( : 0)nY n ≥ of normal random variables, and was called the 
ARTA (autoregressive-to-anything) method. An autoregressive process of order p is defined by

  
Yn = αhYn−hh=1

p∑ + Zn  for n > p . In our example, ( : 0)nY n ≥ is a “moving average” time series of order 1 
rather than an autoregressive time series. The tricky part in using such methods is choosing the 
autocorrelation of the nY  sequence to achieve a desired autocorrelation in the nX  sequence. For a 
discussion of this issue, see Biller and Nelson, “Fitting time-series input processes for simulation”, Oper. 
Res. 53(3), 2005, 549-559. 
 
Using 10,000 replications per experiment, our simulation results were as follows: 
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Arrival process Poisson Weibull 
0.5σ = µ  

Weibull 
2σ = µ  

Negative-correlated 
exponential 

Positive-correlated 
exponential 

E[avg # in system] 11.95 7.13 21.84 7.50 15.46 
 
To explain these results, note that E[service time] / E[interarrival time] 1ρ = < , so that the system is 
stable. If there were no variability in the system, so that the service time is less than the interarrival time 
with probability 1, then there would be at most one job in the system at any time. It is the variability in 
interarrival and service times that causes congestion. In other words, every once in a while the server gets 
temporarily overwhelmed by a clump of customers, either because the customers all came in at roughly 
the same time (short interarrival times) or a service was extra long. It then takes a while for the server to 
process this clump of customers, and the system is congested. For a Poisson arrival process, the standard 
deviation of the interarrival time equals the mean. When the interarrival times are less variable but with 
the same mean, as in part (b), the clumping effect is decreased, and the congestion goes down, leading to 
a lower average number in system. Conversely, when the interarrival times are more variable, as in part 
(c), the clumping effect is increased, and the congestion goes up, leading to a higher average number in 
system. When interarrival times are negatively correlated, as in part (d), short interarrival times tend to be 
followed by longer interarrival times, which reduces clumping, so congestion goes down. When 
interarrival times are positively correlated, a short interarrival time tends to be followed by another short 
interarrival time, which leads to clumping, which increases congestion.  

 
2. Derivation of MLE estimators (problem 6.10 parts (a), (c), and (d) in Law) 
 

(a) (0, )U b : The likelihood function is [0, ]1 1

1( ) ( ) 1 ( )n n
i b ini i

L b f X X
b= =

= =∏ ∏ , where 1A  is an indicator 

function as before. Clearly, ( ) 0L b =  if iX b>  for any i. So we must have 1
ˆ max i n ib X≤ ≤≥ . Indeed, 

( )L b  is maximized by taking 1
ˆ max i n ib X≤ ≤= . (Any larger choice of  b̂  would yield a smaller 

likelihood value because of the factor of  nb− .) 

(b) ( , )U a b : The likelihood function is [ , ]1 1

1( ) ( ) 1 ( )
( )

n n
i a b ini i

L b f X X
b a= =

= =
−∏ ∏ . By reasoning 

similar to part (a), we must have 1
ˆ max i n ib X≤ ≤≥  and 1ˆ min i n ia X≤ ≤≤  , and ( )L b  is maximized by 

taking  a as large as possible and b as small as possible to maximize the factor of ( ) nb a −− . Thus the 

MLE estimates are 1ˆ min i n ia X≤ ≤=  and 1
ˆ max i n ib X≤ ≤= .  

(c) 2( , )N µ σ : Since the normal density function is 
2

2
( )
21( ; , )

2

x

f x e
µ
σµ σ

σ π

−−
=  

the log-likelihood function is (ignoring the constant term log 2n π− ) 

   
!L(µ,σ ) = −n logσ − 1

2σ 2 ( Xi − µ)2
i=1

n∑ . So we can find the MLE estimates by taking derivatives 

and setting them equal to 0: 
 

 

   

∂
∂µ
!L(µ,σ ) = 1

σ 2 ( Xi − µ) = 0
i=1

n∑

⇒ Xii=1

n∑ − nµ = 0⇒ µ = 1
n

Xii=1

n∑ " Xn
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∂
∂σ
!L(µ,σ ) = − n

σ
+ 1
σ 3 ( Xi − µ)2 = 0

i=1

n∑

⇒σ 2 = 1
n

( Xii=1

n∑ − µ)2 = 1
n

( Xii=1

n∑ − Xn )2

 

 The last step is obtained by substituting the optimal value of µ. 
 
3.  Asymmetric triangular distributions 
 

(a) Note that we can write 1 1 2 2( )  and ( )Z b a U a Z b a U a= − + = − + , where 1 2,U U  are Uniform[0,1]. 
Let [ , ]x a b∈ . Then   

  
1 1 2 1 2

2
1 2 1

2
2

1

( ) ( ) (  and )

( ) ( ) ( )
ZF x P Z Z x P Z x Z x

P Z x P Z x P Z x

x a x aP U
b a b a

2∨Ζ = ∨ ≤ = ≤ ≤

= ≤ ≤ = ≤

− −⎛ ⎞ ⎛ ⎞= ≤ =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 The third equality uses the independence assumption and the fourth equality uses the identically-
distributed assumption. Take the derivative of 

1
( )ZF x

2∨Ζ  with respect to x to obtain the final 
answer. Thus we can generate a sample from the given distribution as  

 
  ( )1 1 2 1 2max ( ) ,( ) ( )max( , )Y b a U a b a U a a b a U U= − + − + = + −  

Alternately, observe that, as a consequence of the above calculations, 
1

1 ( ) ( )YF u a b a u− = + − , so 

that we can use the inversion method: 1 ( )Y a b a U= + − . 
 
(b) In a similar manner, write 1 1 2 2( )  and ( )Z c b U b Z c b U b= − + = − + . Then 

  
1 1 2 1 2

2
1 2 1

2 2
2

1

1 ( ) ( ) (  and )

( ) ( ) ( )

1

ZF x P Z Z x P Z x Z x

P Z x P Z x P Z x

x b x b c xP U
c b c b c b

2∧Ζ− = ∧ > = > >

= > > = >

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= > = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

 so that  
1

2

( ) 1Z
c xF x
c b2∧Ζ
−⎛ ⎞= −⎜ ⎟−⎝ ⎠

.  Again, take the derivative to get the final answer. Thus we can 

generate 2 1 2( )min( , )Y b c b U U= + − .  Alternatively, we have 
2

1( ) ( ) 1YF u c c b u− = − − − , so we 

can use inversion to generate 2 ( )Y c c b U= − − . 
 

4.  (a)   Proceeding similarly as in problem 2(c), the log-likelihood function is (ignoring constant terms)  

                               

   

!L(α ,µ1,µ2 ) = N1 log(α )− ( X j − µ1)2 / 2
j∈A1

∑
+ (n− N1) log(1−α )− ( X j − µ2 )2 / 2

j∈A2
∑ .

 

Setting partial derivatives equal to 0 and solving, we find that 1 1 1 2 1ˆ ( , , ) /f N S S N nα = = , 

1 2 1 1 2 1 1ˆ ( , , ) /f N S S S Nµ = = , and 2 3 1 1 2 2 1ˆ ( , , ) / ( )f N S S S n Nµ = = − . 
 

(b)  This iterative procedure is an example of an expectation-maximization (EM) algorithm. Such 
algorithms are widely used for maximum likelihood estimation in the presence of “hidden” or 
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“latent” data, as in this example, where the labels are hidden from the observer. Step (ii) is the E-
step, where we estimate (functions of) the hidden data as conditional expectations, given the 
observed data and the current parameter estimates. Step (iii) is the M-step, where we compute 
maximum-likelihood estimates based on the observed data plus our estimates of (functions of) the 
missing data. Following the hint, we have 

                           

( ) ( ) ( )
1 2( ) ( ) ( )

1 2 ( ) ( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2

( ) ( ) ( )
1 2

( ) ( ) ( )
1 2

ˆ ˆ ˆ( 1, | , , )
ˆ ˆ ˆ( 1 | , , , )

ˆ ˆ ˆ( | , , )

ˆ ˆˆ ˆ ˆ ˆ( 1 | , , ) ( | , , , 1)
ˆ ˆ ˆ( | , , )

ˆ ˆ ˆ( , , , )

m m m
j jm m m

j j m m m
j

m m m m m m
j j j

m m m
j

m m m
j

P L X
P L X

P X

P L P X L
P X

g X

α µ µ
α µ µ

α µ µ

α µ µ α µ µ
α µ µ

α µ µ

=
= =

= =
=

=

,  

 where 

                           
2

1

2 2
1 2

( ) /21/2

1 2 ( ) /2 ( ) /21/2 1/2

(2 )( , , , )
(2 ) (1 )(2 )

x

x x

eg x
e e

µ

µ µ

α πα µ µ
α π α π

− −−

− − − −− −
=

+ −
. 

So ( ) ( ) ( ) ( )
1 1 21
ˆ ˆ ˆ ˆ( , , , )nm m m m

jj
N g Xα µ µ

=
=∑ , ( ) ( ) ( ) ( )

1 1 21
ˆ ˆ ˆ ˆ( , , , )nm m m m

j jj
S g X Xα µ µ

=
=∑ , and 

( ) ( ) ( ) ( )
2 1 21
ˆ ˆ ˆ ˆ( , , , )nm m m m

j jj
S g X Xα µ µ

=
=∑ , where 1 2 1 2( , , , ) 1 ( , , , )g x g xα µ µ α µ µ= − . 

 
(c) As can be seen from the histogram below, the data has two modes, so a mixture model is a 

reasonable choice of distribution type. 
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 The following R code will read in the data and run the EM algorithm for 10 iterations. 
 
# read in data and convert to a vector 
ww = read.table(file="c:\\hw3.dat"); w = ww[,1] 
# intialize parameter estimates 
alpha = 0.5; mu1 = 0; mu2 = 10; n = 500 
# run EM algorithm for 10 iterations 
# note that dnorm is the normal density function 
for (i in c(1:10)) { 
   n1 = alpha*dnorm(w,mean=mu1)/(alpha*dnorm(w,mean=mu1) 
              +(1-alpha)*dnorm(w,mean=mu2)) 
   s1 = sum(w * n1); s2 = sum(w * (1-n1)) 
   n1 = sum(n1) 
   alpha = n1/n;   mu1 = s1/n1;   mu2 = s2/(n-n1) 
   print(c(i, alpha, mu1, mu2)) 
} 
 
The output is given below. Note that values of alpha = 0.4 mu1 = 1 mu2 = 5 were used to generate 
the data. Also note that the accuracy of the method is limited by the number of data points used.) 
 
Iter    alpha             mu1              mu2 
1    0.7360416   2.2503899   5.8331326 
2    0.6056252   1.7521410   5.4134904 
3    0.5146083   1.3215125   5.1834916 
4    0.4715885   1.1064114   5.0610442 
5    0.4544805   1.0243922   5.0053551 
6    0.4479828   0.9945666   4.9827001 
7    0.4455399   0.9835934   4.9739469 
8    0.4446240   0.9795148   4.9706312 
9    0.4442809   0.9779918   4.9693842 
10  0.4441523   0.9774222   4.9689166  


