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Assignment #2 Solutions 
 

1. The distribution function looks roughly as follows: 
 

                               
 

 
(a)  We have 
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Thus, the algorithm is as follows: 

 
Algorithm 

 
  1.Generate a uniform(0,1) random variable U 

2. Return X, where 
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(b) We have  
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(c)  Note that the assumptions on F are necessary for the result to hold; e.g., if X is a discrete random 

variable, then   F( X )  cannot possibly have a uniform(0,1) distribution. To prove the result, fix 
[0,1]y∈ . Then 

                         ( ) ( )1 1 1 1{ ( ) } { ( ) ( )} { ( )} ( )P F X y P F F X F y P X F y F F y y− − − −≤ = ≤ = ≤ = =   

and hence U has a uniform cdf. The first equality holds because 1F −  is nondecreasing, the third 
equality holds by definition of F, and the second and fourth equalities hold from the properties 
given in the hint. 

 
2. Hospital unit 

(a)  GSMP building blocks: 
 State space: 1 2{0,1}b bS +=  

 Active events: for 
   
s = (m1,…,mb1

,n1,…,nb2
)∈S ,  

0 ( )e E s∈  always 

1, ( ) iff 1i ie E s m∈ =  

2, ( ) iff 1i ie E s n∈ =  

3, ( ) iff 1i ie E s m∈ =  

 State-transition probabilities: As in the hint, define SCU ( ) min{ : 0}ii s i m= =  with  SCU ( ) 1i s = −  if 

11min 1i b im≤ ≤ = , and similarly define ICU ( ) min{ : 0}ii s i n= =  with  ICU ( ) 1i s = −  if 
11min 1i b in≤ ≤ = . 

Then, for 
   
s = (m1,…,mb1

,n1,…,nb2
),s ' = (m1

' ,…,mb1

' ,n1
' ,…,nb2

' )∈S  

  *
0for e e= , 

       if SCU ICU( ) 1 and ( ) 1, theni s i s≠ − ≠ −  

SCU

* '
( )( ; , )  when '  except that 1 i sp s s e p s s m′ = = =  

and 

ICU

* '
( )( ; , ) 1  when '  except that 1 i sp s s e p s s n′ = − = =  

       if SCU ICU( ) 1 and ( ) 1, theni s i s= − ≠ −  
*( ; , )  when '  p s s e p s s′ = =  

and 

ICU

* '
( )( ; , ) 1  when '  except that 1 i sp s s e p s s n′ = − = =  
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       if SCU ICU( ) 1 and ( ) 1, theni s i s≠ − = −  

SCU

* '
( )( ; , )  when '  except that 1 i sp s s e p s s m′ = = =  

and 
*( ; , ) 1  when '  p s s e p s s′ = − =  

       if SCU ICU( ) ( ) 1, theni s i s= = −  
*( ; , ) 1 when '  p s s e s s′ = =  

*
1,for  ie e= , 

* '( ; , ) 1 when '  except that 0ip s s e s s m′ = = =  
*

2,for  ie e= , 
* '( ; , ) 1 when '  except that 0ip s s e s s n′ = = =  

*
3,for  ie e= , 

ICU

* ' '
ICU ( )( ; , ) 1 when '  except that (1) 0 and (2) if ( ) 1, then 1 i i sp s s e s s m i s n′ = = = ≠ − =

 
  *( ; , ) 0 otherwisep s s e′ =  
 Speeds:  ( , ) 1 for all  and ( )r s e s S e E s= ∈ ∈  
 Clock-setting distributions: 

 

*
0 0

*
1, 1, SCU 1

*
2, 2, ICU 2

*
3, 3, 1
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i i

F x s e s e F x e P A x

F x s e s e F x e P L x i b

F x s e s e F x e P L x i b

F x s e s e F x e P Q x i b

≡ = ≤

≡ = ≤ ≤ ≤

≡ = ≤ ≤ ≤

≡ = ≤ ≤ ≤

 

Initial distribution:     ν(s0 ) = 1, where s0 = (0,0,…,0) . Initial clock-setting distribution for   

0e  is as above. 
 

(b)  For convenience, set 
   
h(s) = mi +i=1

b1∑ ni  for s = (m1,…,mb1
,n1,…nb2

)∈S
i=1

b2∑ . I.e., ( )h s  is the 

number of occupied beds in state s. 
      (i) Performance measure = [ ]E T , where 

   
T = min t ≥ 0 : X (t) = (1,1,…,1){ } . 

      (ii) Performance measure = ( )( )30

1 20

1 ( ) 7
30

E I b b h X t dt⎡ ⎤+ − ≥⎢ ⎥⎣ ⎦∫ ,. 

 
      (iii) Performance measure = { }55P T ≤ , where T is defined as in (i). 
 
      (iv) Performance measure = Trans Arr[ / ]E N N , where     

( )*
Arr -1 -1 01

30 and ( , ) { }n n nn
N I E S C eζ∞

=
= ≤ =∑   and 

( )*
Trans 1 1 0 11

30 and ( , ) { } and ( ) ( )n n n n nn
N I E S C e h S h Sζ∞

− − −=
= ≤ = =∑ . Take 0 / 0 0= . 

 
(c) See the class web page for a Python program that solves the problem. Note that, to generate 

samples of A, we can use inversion: 2( ; ) ( / )F x a x a= , so that 1( )F u a u− = . To generate samples 
of SCUL , observe that SCU[ ] 2 / 0.25E L λ= = , so that 8λ = , and hence we can generate a sample 
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as ( )1 2log log / 8U U− + , where 1 2,U U  are independent uniform random numbers. Samples of 

ICUL  are generated in the same manner. Finally, to generate a sample of Q, we can generate a 
triangular random variable on [0, 2] using the result in Assignment #1, and then shift and scale to 
get the desired result, i.e., we can generate a sample as 1 20.5( ) 0.5U U+ + . A tricky aspect of the 
coding is the fact that events must be canceled at an SCU departure or at a critical event. Our 
results were as follows. (All times are in days.) 

 
Performance 

measure # reps Point 
Estimate 

99% 
CI 

CI 
Half-width 

E[Time to first fill-up] 70000 30.44 [30.15, 30.72] 0.29 

E[fraction of time with ≥ 7 empty beds] 6500 0.07 [0.0706, 0.0718] 0.0006 

P{ Time to first fill-up ≤ 55} 15000 0.83 [0.8239, 0.8397]  0.0079 

E[fraction of transferred arrivals] 3000 0.05 [0.0533, 0.0544] 0.0005 
 

 
3. Markov-chain Monte Carlo (MCMC).  
 

(a) When   π ( j)Q( j,i) > π (i)Q(i, j) , we have ( , ) 1i jα =  and  
( ) ( , )( , ) 1
( ) ( , )
i Q i jj i
j Q j i

πα
π

= < ,  

so that ( ) ( , ) ( , ) ( ) ( , ) 1 ( ) ( , ) ( , )j Q j i j i i Q i j i Q i j i jπ α π π α= ⋅ = . An almost identical argument holds 
when ( ) ( , ) ( ) ( , )j Q j i i Q i jπ π≤ . 

(b) For i j≠ , we have 

    

1( , ) { | }
{ , ( , ) | }
{ | } { ( , )} [by independence]
( , ) ( , ) [by definition of the algorithm and properties of U(0,1)]

n n

n

n

P i j P X j X i
P Y j U i j X i
P Y j X i P U i j
Q i j i j

α
α

α

+= = =
= = ≤ =
= = = ≤
=

 

 By part (a), we have, for i j≠ , 
   ( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ( , )i P i j i Q i j i j j Q j i j i j P j iπ π α π α π= = =  
 The outer expressions are trivially equal when i j= , so we have shown that 

( ) ( , ) ( ) ( , )i P i j j P j iπ π=  for all i and j. Now sum over i and use the fact that ( , )P j ⋅ is a pmf for 
each  j to obtain 

   ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ),
i i i
i P i j j P j i j P j i jπ π π π= = =∑ ∑ ∑  

So, by definition, π is a stationary distribution for { : 0}nX n ≥ . 
 

(c) Let φ  be the pdf of W, and define 
2 cos( ) if 0

( )
1 if 0

ii e i
h i

i

−⎧ ≠
= ⎨

=⎩
 

so that hπ θ= . Observe that ( )( , ) ( , ) | |Q i j Q j i i jφ= = −  for all i and j, so that we can take 
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   ( ) ( )( , ) min 1, min 1,
( ) ( )
j h ji j
i h i

πα
π

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 Then the algorithm is as follows: 
1. Set 0 0, 0, 0X Z m= = =  

2. Generate [0,1]V U:  and set (2 1)W k V k= + −⎢ ⎥⎣ ⎦  

3. Set mY X W= +  
4. Generate [0,1]U U:  

5. If ( )min 1, ( ) / ( )mU h Y h X≤ , then set 1mX Y+ = , else set 1m mX X+ =  

6. Set ( )1mZ Z g X +← +  and 1m m← +  

7. If m n= , then return / ( 1)Z n+ as a point estimate, else go to Step 2 
 

By the cited SLLN, / ( 1)Z n S+ → with probability 1 as n→∞ , so the estimator is strongly 
consistent. Note that if ( ) ( )mh Y h X≥ , then in Step 5 we can immediately set 1mX Y+ =   without 
having to generate U. The general algorithm is called the Hastings-Metropolis algorithm, and the 
special case in which mY X W= + is called the Metropolis Random-Walk algorithm. These 
algorithms can be extended to the setting of GSSMCs, in which case they are used to estimate 
integrals rather than sums. This class of algorithms has proven very powerful in practice, especially 
when a state is a high-dimensional vector (so that the sum or integral is multidimensional). Then the 
Hastings-Metropolis iteration can, for example, be applied to one dimension at a time, e.g., in a 
round-robin manner; the Gibbs sampler is a well-known example of such a method. MCMC 
algorithms have revolutionized the area of Bayesian statistical models, permitting for the first time 
the computation of complicated “posterior” expectations that correspond precisely to the problem of 
estimating sums and integrals of the type discussed above. (In this setting, the “posterior” probability 
distribution is usually high-dimensional and known only up to a multiplicative constant and, as in 
the homework problem, this constant is difficult or essentially impossible to compute. The key 
feature of the algorithm is that it uses only ratios of the distribution π, so that the constant cancels 
out, and thus does not need to be known a priori.) 
 

4. Analytical solution of gambling game. 
 

(a) Let   Cn = 1  if the nth coin flip is heads and   Cn = −1  if the nth coin flip is tails. Then 

  Xn+1 = g( Xn ,Cn+1) , where   g(x,c) = x + c , so the  Xn ’s satisfy a recursion as in Lecture 2, Slide 

8, so that   {Xn : n ≥ 0}  is a Markov chain. 
 

(b) The initial distribution is    µ(0) =1  and     µ(i) = 0 for   i /= 0 . The transition matrix is  
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(c) Write   yi = Ei[L]  for   i = 0,1,2,3 . Then the first-step decomposition equations are 
 

(1)   y0 = 1+ y1  

(2)   y1 = 1+ 0.5y0 + 0.5y2  

(3)   y2 = 1+ 0.5y1  
 

Substitute (1) and (3) into (2) to get  
 

  y1 = 1+ 0.5(1+ y1)+ 0.5(1+ 0.5)y1 = 2+ 0.75y1  
 
so that   y1 = 8  and, from (1),   E[L] = y0 = 9 . Hence the expected gain is   8.99−9 =−0.01 . 
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