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Assignment #1 Solutions 
 

1. Simulation is used extensively on Wall Street to price exotic options and determine optimal trading 
rules. The “American” option described in this problem is one of the simplest kinds of options; see the 
2003 book by Glasserman for further details. We’ll first justify the assertion about the form of 
EG( , )s i . From basic probability, we know that    X1 +!+ Xi  is distributed as 2( , )N i iµ σ . Then 
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We have used the fact that, by symmetry of the normal distribution, 1 ( ) ( )x x−Φ =Φ − . 
 
a. See the class web page for a program that simulates the option strategies. Based on 1000 

simulation repetitions, the number of required repetitions was estimated as 5342, so we ran 6000 
repetitions to get a 95% confidence interval of 43.61 ± 2.1110 = [41.50, 45.72].  

b. Based on 1000 simulation repetitions, the number of required repetitions was estimated as 2504, 
so we ran 3000 repetitions to get a 95% confidence interval of 18.09 ± 0.7990 = [17.29, 18.89]. 

c. Using 20,000 repetitions, we obtained independent confidence intervals of 43.33 ± 1.1591 for EG 
and 17.97 ± 0.3064 for TMR. Let U  and V  be the average of the gains for EG and TMR, 
respectively. By the central limit theorem, the two estimators U  and V are statistically 
independent and approximately normally distributed with means given by 43.31 and 18.00, 
respectively. The variances are given by 2 2 2

0.95/U UH zσ =  and 2 2 2
0.95/V VH zσ = , where XH  denotes 

the confidence interval half-width for estimator X . By the hint, V U−  has approximately a 
normal distribution with mean  43.33−17.97 = 25.36 (which is the combined point estimate) and a 
variance of 2 2 2 2 2 2

0.95( ) /V U U V U VH H zσ σ σ− = + = + . Thus the combined 95% confidence interval half-

width is 0.95 V Uz σ −
 (by a derivation as in class), so that  

 

  HW = z0.95σV −U = (HU
2 + HV

2 )1/2 = (1.15902 + 0.30642 )1/2 = 1.1988 . 
 
d. When using the same set of stock prices to compute the two rewards during each of  20,000 

simulation repetitions, we got a 95% confidence interval for [ ] [ ] [ ]E U V E U E V− = −  of  24.92 ± 
1.0956. The half-width of 1.0956 is about 8.6% shorter than the half-width 0f 1.1988 obtained in 
part (c). Intuitively, we get a sharper picture of the difference between the two option policies by 
subjecting each to the exact same sequence of stock fluctuations, so that, in each repetition, any 
differences are due to the policy behaviors only, and not to luck of the draw.  
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2. This problem illustrates some basic techniques of Monte Carlo integration. 

a. With ( )i iZ h U=  for 1i ≥ , we have
1

0
[ ] [ ( )] ( ) ( ) ( )i i UE Z E h U h x f x dx h x dx I

∞

−∞
= = = =∫ ∫  for each i. 

So the strong law of large numbers implies that 
1 1

(1/ ) ( ) (1/ )n n
i ii i

n h U n Z I
= =

= →∑ ∑  with 
probability 1 as n→∞ . Thus the proposed algorithm gives a strongly consistent estimate of I. 
The techniques discussed in class can be used to obtain a confidence interval for I and to choose a 
suitable value of n to achieve a desired level of absolute or relative precision at a specified level of 
confidence. 

b. After we make the suggested transformation (see p. 12 of the probability/stats refresher handout 
for a quick review of how to make a simple change of variable in an integral), we find that 

1 1

0 0
( ( ) )( ) ( )I h a b a y b a dy g y dy= + − − =∫ ∫ , where ( ) ( ) ( ( ) )g y b a h a b a y= − + − . We now proceed 

as in Part (a), but with h replaced by g. 

c.  After making the transformation, we have
1

0
( )I g y dy= ∫ , where 1 2( ) ( 1) /g y h y y−= − . Now 

proceed as in Part (a). 
d. Take Z as

2( )U Ve + , where U and V are independent uniform(0,1) random variables. Then 

 
2 21 1( ) ( )

0 0
[ ] [ ]U V x yE Z E e e dxdy+ += = ∫ ∫ . So proceeding analogously to Part (a), generate  

   U1,U2 ,…,Un  and    V1,V2 ,…,Vn , and compute 
2( )

1
ˆ (1/ ) i i

n U V
n i
I n e +

=
= ∑  as an estimator of I.  

e. Following the hint, write
2( )

0 0
( , ) x yI g x y e dxdy

∞ ∞ − += ∫ ∫ . Making the transformations 1/ ( 1)u x= +  

and 1/ ( 1)v y= +  as in Part (c), we have 
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So generate   U1,U2 ,…,Un and   V1,V2 ,…,Vn , and set 
1 1 2( 2)2 2

1
ˆ (1/ ) ( , ) i i

n U V
n i i i ii
I n U V g V U e

− −− + −− −
=

= ∑ . 
 

3. This result will also be needed later in the course, when we study random-number generation. We have 
( ) (0 1)Xf x I x= ≤ ≤ , ( ) (0 1)Yf y I y= ≤ ≤ , and 

  
0 if 0

( ) if 0 1
1 if 1
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By the hint, we have 
1

0
( ) ( )Z XF z F z y dy= −∫ .  (The last step in the hint uses the independence of  X 

and Y.) If  [0,1]z∈ , then 
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If [1,2]z∈ , then 
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if 0 1

( ) 2 if 1 2
0 otherwise
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The density function for the (obviously-named) “triangular distribution” is sketched below, along with 
the histogram produced by the given R code. 

                             
 
 
 
 
 

4. The estimation procedure introduced in this problem is known as Latin hypercube sampling (LHS), 
because it is based on “Latin squares.” 
a. Using R, the standard method produced an estimate of 0.858 with a standard error of 0.007, 

whereas LHS produced an estimate of 0.851with a standard error of 0.003. (For this simple 
problem, the exact answer can be numerically computed as 0.8511.) Clearly LHS is the superior 
method, with a standard error less than half of that for the standard method (and so LHS would 
yield a confidence interval that is half as wide.) 

b. A typical realization of    W1,W2 ,…,W5  is indicated in the figure below.  

                                                      
The points form a Latin square in that there is exactly one point in each row and each column. 
Thus the points are systematically spread out, in contrast to ordinary uniform random variables, 
which can be “clumpy” in that some rows or columns could contain multiple points and others 
could contain none. Repeating this process n times yields an overall set of points such that there 
are exactly n points in each row and column. This relatively uniform distribution of points covers 
the domain of the function h more thoroughly, yielding better Monte Carlo estimates. Note that we 
could achieve even more thorough coverage by a “complete stratification” scheme in which we 
place 2/N K points uniformly in each of the 2K subregions. For d-dimensional problems with 
   d ≫ 2 , as is typical in situations where we would actually want to use Monte Carlo integration, 
complete stratification would require at least dK points, which could be a huge number. LHS is a 
good compromise strategy, in which a weaker, but still effective, type of uniformity is achieved at 
a much lower cost. “Quasi-random number” techniques produce points that are even more 
uniformly distributed, but these techniques are quite complicated and beyond the scope of the 
course. 
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c. Using the simple formula would only be correct if, for each i, the random variables 

    {h(Wk
( i) ) :  k = 1,2,…, K }  that make up iQ were mutually independent. However, each set 

    W1
( i) ,W2

( i) ,…,WK
( i)  of random variables is highly dependent, since they must lie in disjoint rows 

and columns. The random variables    Q1,Q2 ,…,Qn  are i.i.d., however, so the formula given in the 
presented algorithm is correct. 
 
 

 
 


