Assignment #6 (Due April 16)

1. (Computing Problem: Stochastic root-finding in drug design)

- a) Suppose that we are designing an over-the-counter drug, and are trying to decide the dosage. For an actual drug amount θ , the "effective dosage" is uncertain, but is modeled as θX , where the random variable X is uniformly distributed on the interval [1, 5] and represents uncertain biological factors (not affected by the drug) that vary from person to person. Suppose that the final drug concentration in the liver of a patient increases exponentially with effective dosage, and is given as $g(X,\theta) = e^{\theta X}$. Write a Python program that, with probability 95%, will estimate to within $\pm 1\%$ the value $\overline{\theta}$ that achieves an expected liver concentration equal to 20. You can use, e.g., scipy.optimize.brentq for rootfinding.
- b) A different drug will decrease user discomfort more and more up to a certain level but, beyond that level, discomfort will start to increase again. The model for the effect of dosage on discomfort is $g(X,\theta) = e^{-\theta X} + (\theta X/2)$, where again the random variable X is uniformly distributed on the interval [1, 5] and represents uncertain biological factors. Write a Python program that will, with probability 95%, estimate to within ±1% the value $\overline{\theta}$ that minimizes the expected discomfort level. [Hint: for this problem, the derivative with respect to θ of $E[g(X,\theta)]$ can be brought inside the expectation operator. You should therefore be able to use the program from Part (a) with relatively little modification. You can also use scipy.optimize.minimize_scalar to compute both θ_n and g_n^{opt} (as in Part (c) below) at the same time.]
- c) (Extra credit) In Part (b), denote by g_n^{opt} the estimated minimum discomfort corresponding to θ_n . It is likely that your value of g_n^{opt} is less than the true minimum discomfort, which we denote by $g^{opt} \approx 0.8633$. (This toy problem is simple enough so that, with some work, you can compute the true optimal solution.) Prove that, in fact, for any choice of g and X, we have $E[g_n^{opt}] \leq g^{opt}$, so that on average you always think that you have a better solution than you actually do; this bias vanishes as n becomes large. [Hint: First observe that

$$g_n^{\text{opt}} = \min_{\theta} \frac{1}{n} \sum_{i=1}^n g(X_i, \theta) \le \frac{1}{n} \sum_{i=1}^n g(X_i, \theta^*)$$

for any given value θ^* .]

2. Consider a simulation of a database system. Denote by U the average processing time for a database query over the course of a day, and by V the fraction (in %) of database queries during the day that access a particular type of data (say, image data). Suppose that we obtain the following 10 samples of U and V, based on 10 i.i.d. simulation replications.

Run #:	1	2	3	4	5	6	7	8	9	10
U:	12	18	15	35	8	16	2	12	20	6
V:	20	38	29	55	12	36	10	47	40	10

Compute a 95% confidence interval for the squared coefficient of correlation between U and V, i.e.,

 $\operatorname{Corr}[U,V]^{2} = \frac{\operatorname{Cov}[U,V]^{2}}{\operatorname{Var}[U]\operatorname{Var}[V]}$

- a) Using the Taylor-Series method (i.e., the Delta method)
- b) Using the jackknife method [Feel free to use a spreadsheet to manage the calculations]

[Hint: write $\operatorname{Corr}[U,V]^2 = g(\mu_1,\mu_2,\mu_3,\mu_4,\mu_5)$ for an appropriate function g where $\mu_1 = E[U]$, $\mu_2 = E[V]$, $\mu_3 = E[U^2]$, $\mu_4 = E[V^2]$, and $\mu_5 = E[UV]$. When computing quantities such as $\partial g(x_1,x_2,x_3,x_4,x_5) / \partial x_i$ for i = 1,2,3,4,5, it might be helpful to write $g(x_1,x_2,x_3,x_4,x_5) = a^2 / (bc)$, where each of *a*, *b*, and *c* is a function of x_1,x_2,\dots,x_5 . Compute the values of *a*, *b*, and *c* and then use the chain rule of differentiation to write each partial derivative as a function both of *a*, *b*, and *c* and of the derivatives of *a*, *b*, and *c*.]

- 3. (Multiple performance measures) Suppose that you are simultaneously interested in k > 1 different performance measures for the system of interest (as is common in practice), and that, for each of n > 0 i.i.d. simulation replications you record each of the k measures. For each measure, you construct a $100(1-\alpha)$ % confidence interval. Since the different performance measures were computed from the same set of replications, the interval estimates are statistically dependent
 - a) What is the expected number E[N] of confidence intervals that will *not* bracket the true value?
 - b) Using Bonferroni's inequality, give a simple procedure for determining a value α^* such that if you individually compute a $100(1-\alpha^*)\%$ confidence interval for each of the k performance measures, then the probability that all k intervals simultaneously bracket their true values is at least $100(1-\alpha)\%$.

[Hint: consider events of the form $A_i = i^{th}$ confidence interval brackets the true value of the i^{th} performance measure", as well as the indicator functions for such events.]

4. Suppose that $(X(t): t \ge 0)$ is a GSMP having regeneration points $T_0 = 0, T_1, T_2, ...$ and that rewards accrue continuously at rate q(s) whenever the current state is $s \in S$. Also suppose that the performance measure of interest is the β -discounted reward r, defined as

$$r = E\left[\int_0^\infty e^{-\beta u} q(X(u)) du\right].$$

a) Re-express the reward r in the form r = E[X] / E[Y], where each of X and Y is a random variable that is defined in terms of the first regenerative cycle of the GSMP (just like the random variables Y_1 and τ_1 in the standard regenerative method). [Hint: write

$$\int_{0}^{\infty} e^{-\beta u} q(X(u)) du = \int_{0}^{T_{1}} e^{-\beta u} q(X(u)) du + e^{-\beta T_{1}} \int_{T_{1}}^{\infty} e^{-\beta(u-T_{1})} q(X(u)) du$$

and note that $e^{-\beta T_1}$ is independent of $\int_{T_1}^{\infty} e^{-\beta(u-T_1)} q(X(u)) du$ by the regenerative property.]

CS 590M Simulation Peter J. Haas

b) Using the above representation, we can apply the regenerative method to estimate r, based on n cycles. In the i^{th} cycle (where $1 \le i \le n$), we obtain a pair of observations (X_i, Y_i) . Give explicit formulas for X_i and Y_i . (In the first part of the problem, you basically gave a formula for the first cycle; the second part of the problem is asking for the general formula.)