Assignment \#6 (Due April 16)

1. (Computing Problem: Stochastic root-finding in drug design)
a) Suppose that we are designing an over-the-counter drug, and are trying to decide the dosage. For an actual drug amount θ, the "effective dosage" is uncertain, but is modeled as θX, where the random variable X is uniformly distributed on the interval $[1,5]$ and represents uncertain biological factors (not affected by the drug) that vary from person to person. Suppose that the final drug concentration in the liver of a patient increases exponentially with effective dosage, and is given as $g(X, \theta)=e^{\theta X}$. Write a Python program that, with probability 95%, will estimate to within $\pm 1 \%$ the value $\bar{\theta}$ that achieves an expected liver concentration equal to 20 . You can use, e.g., scipy.optimize.brentq for rootfinding.
b) A different drug will decrease user discomfort more and more up to a certain level but, beyond that level, discomfort will start to increase again. The model for the effect of dosage on discomfort is $g(X, \theta)=e^{-\theta X}+(\theta X / 2)$, where again the random variable X is uniformly distributed on the interval $[1,5]$ and represents uncertain biological factors. Write a Python program that will, with probability 95%, estimate to within $\pm 1 \%$ the value $\bar{\theta}$ that minimizes the expected discomfort level. [Hint: for this problem, the derivative with respect to θ of $E[g(X, \theta)]$ can be brought inside the expectation operator. You should therefore be able to use the program from Part (a) with relatively little modification. You can also use scipy.optimize.minimize_scalar to compute both θ_{n} and $g_{n}^{\text {opt }}$ (as in Part (c) below) at the same time.]
c) (Extra credit) In Part (b), denote by $g_{n}^{\text {opt }}$ the estimated minimum discomfort corresponding to θ_{n}. It is likely that your value of $g_{n}^{\text {opt }}$ is less than the true minimum discomfort, which we denote by $g^{\text {opt }} \approx 0.8633$. (This toy problem is simple enough so that, with some work, you can compute the true optimal solution.) Prove that, in fact, for any choice of g and X, we have $E\left[g_{n}^{\text {opt }}\right] \leq g^{\text {opt }}$, so that on average you always think that you have a better solution than you actually do; this bias vanishes as n becomes large. [Hint: First observe that

$$
g_{n}^{\mathrm{opt}}=\min _{\theta} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta\right) \leq \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta^{*}\right)
$$

for any given value θ^{*}.]
2. Consider a simulation of a database system. Denote by U the average processing time for a database query over the course of a day, and by V the fraction (in \%) of database queries during the day that access a particular type of data (say, image data). Suppose that we obtain the following 10 samples of U and V, based on 10 i.i.d. simulation replications.

Run \#:	1	2	3	4	5	6	7	8	9	10
$U:$	12	18	15	35	8	16	2	12	20	6
$V:$	20	38	29	55	12	36	10	47	40	10

Compute a 95% confidence interval for the squared coefficient of correlation between U and V, i.e.,

$$
\operatorname{Corr}[U, V]^{2}=\frac{\operatorname{Cov}[U, V]^{2}}{\operatorname{Var}[U] \operatorname{Var}[V]}
$$

a) Using the Taylor-Series method (i.e., the Delta method)
b) Using the jackknife method [Feel free to use a spreadsheet to manage the calculations]
[Hint: write $\operatorname{Corr}[U, V]^{2}=g\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}\right)$ for an appropriate function g where $\mu_{1}=E[U], \mu_{2}=E[V]$, $\mu_{3}=E\left[U^{2}\right], \quad \mu_{4}=E\left[V^{2}\right]$, and $\mu_{5}=E[U V]$. When computing quantities such as $\partial g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) / \partial x_{i}$ for $i=1,2,3,4,5$, it might be helpful to write $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=a^{2} /(b c)$, where each of a, b, and c is a function of $x_{1}, x_{2}, \ldots, x_{5}$. Compute the values of a, b, and c and then use the chain rule of differentiation to write each partial derivative as a function both of a, b, and c and of the derivatives of a, b, and c.]
3. (Multiple performance measures) Suppose that you are simultaneously interested in $k>1$ different performance measures for the system of interest (as is common in practice), and that, for each of $n>0$ i.i.d. simulation replications you record each of the k measures. For each measure, you construct a $100(1-\alpha) \%$ confidence interval. Since the different performance measures were computed from the same set of replications, the interval estimates are statistically dependent
a) What is the expected number $E[N]$ of confidence intervals that will not bracket the true value?
b) Using Bonferroni's inequality, give a simple procedure for determining a value α^{*} such that if you individually compute a $100\left(1-\alpha^{*}\right) \%$ confidence interval for each of the k performance measures, then the probability that all k intervals simultaneously bracket their true values is at least $100(1-\alpha) \%$.
[Hint: consider events of the form $A_{i}=$ " $i^{\text {th }}$ confidence interval brackets the true value of the $i^{\text {th }}$ performance measure", as well as the indicator functions for such events.]
4. Suppose that $(X(t): t \geq 0)$ is a GSMP having regeneration points $T_{0}=0, T_{1}, T_{2}, \ldots$ and that rewards accrue continuously at rate $q(s)$ whenever the current state is $s \in S$. Also suppose that the performance measure of interest is the β-discounted reward r, defined as

$$
r=E\left[\int_{0}^{\infty} e^{-\beta u} q(X(u)) d u\right]
$$

a) Re-express the reward r in the form $r=E[X] / E[Y]$, where each of X and Y is a random variable that is defined in terms of the first regenerative cycle of the GSMP (just like the random variables Y_{1} and τ_{1} in the standard regenerative method). [Hint: write

$$
\int_{0}^{\infty} e^{-\beta u} q(X(u)) d u=\int_{0}^{T_{1}} e^{-\beta u} q(X(u)) d u+e^{-\beta T_{1}} \int_{T_{1}}^{\infty} e^{-\beta\left(u-T_{1}\right)} q(X(u)) d u
$$

and note that $e^{-\beta T_{1}}$ is independent of $\int_{T_{1}}^{\infty} e^{-\beta\left(u-T_{1}\right)} q(X(u)) d u$ by the regenerative property.]
b) Using the above representation, we can apply the regenerative method to estimate r, based on n cycles. In the $i^{\text {th }}$ cycle (where $1 \leq i \leq n$), we obtain a pair of observations (X_{i}, Y_{i}). Give explicit formulas for X_{i} and Y_{i}. (In the first part of the problem, you basically gave a formula for the first cycle; the second part of the problem is asking for the general formula.)

