
CS 590M Page 1 of 3
Simulation March 12, 2020
Peter J. Haas Spring Semester 2020

Assignment #5 (Due April 2)

This assignment will give you a hands-on introduction to agent-based simulation via the NetLogo
package. For historical reasons, agents in NetLogo are called “turtles” and they live on a grid of
“patches”, or rectangular regions. The can also be “links” between agents, which model relationships
(neighborhoods, family relationships, and so on). The assignment consists of the steps given below. You
may work in teams of two.

1. Set up a working NetLogo installation. You can download the latest version of NetLogo from

https://ccl.northwestern.edu/netlogo/download.shtml (you do not need to fill in the information on the
initial web page —just click on the download button).

2. Go to the NetLogo user manual (either on the web at https://ccl.northwestern.edu/netlogo/docs/ or via
the help menu in the NetLogo app). Read the Introduction (“What is NetLogo?” and “Sample Model:
Party”), and work through Tutorials #1, #2, and #3.

3. After building the basic turtle model in Tutorial #3, modify the model into a simple infectious-disease

model, which works as follows. Initially, all turtles are healthy (yellow-colored) except for one
randomly selected turtle (red colored), and every baby turtle is born healthy. If, at any tick, the closest
turtle to a given turtle j is infected and this turtle is within a radius of 3 units of turtle j, then turtle j
becomes infected as well (and its icon turns red). If a turtle becomes infected at the nth tick, it will die
at the (n+ k) th tick, where k is the value of a parameter called illness-length. Implementation of this
model requires the following tasks.

a. Besides the existing turtle attribute energy, add two new attributes: sick is a Boolean variable that

indicates whether the turtle is infected or not, and time-sick is an integer variable indicating the
time in ticks since the turtle initially became infected.

b. When creating the initial set of turtles, set the color equal to yellow and sick equal to false. Then
choose a turtle at random, set its sick variable to true and its color to red. Whenever you hatch a
new turtle, sets its sick value to false and its color to yellow.

c. In the go procedure, add a call to a new procedure called check-disease right after the call to the

eat-grass procedure. The check-disease procedure for a turtle first tests if the turtle is sick. If so, it
first increments the turtle’s time-sick variable by 1. Then, if time-sick equals or exceeds illness-
length, the turtle dies. If the turtle is not sick we identify the closest turtle within a radius of 3
units, if one exists. The NetLogo statement

 let x min-one-of other turtles in-radius 3 [distance myself]

will return this turtle as x (figure out why this works). The statement

 if (x != nobody) and ([sick] of x)

https://ccl.northwestern.edu/netlogo/download.shtml
https://ccl.northwestern.edu/netlogo/docs/

CS 590M Page 2 of 3
Simulation March 12, 2020
Peter J. Haas Spring Semester 2020

will test if there exists a turtle within radius 3 and, if so, whether the turtle is sick. If so, turn the
turtle red, mark it as sick, and initialize the time-sick variable to 0.

d. Keep track of the number of deaths by disease and the total number of deaths. You can do this by

defining some global variables at the top of the file:

 Globals [ill-deaths total-deaths]

and incrementing these variables appropriately when a turtle dies. (Make sure to increment the
variables before you execute the die command, or the update will get lost.)

e. Modify the interface so that (i) the monitors under the setup and go buttons now display the total
number of turtles and the number of sick turtles, (ii) the plot now displays a red curve giving the
number of sick turtles over time, (iii) there is now a slider to the right of the turtle field that lets
you set the illness-length parameter to a value between 1 and 20, and (iv) there are now monitors
showing disease mortality (# of deaths due to the disease) and total mortality (# of deaths due to
both disease and running out of energy). The interface should look as follows:

f. Play with the model to explore its behavior! Watch how the results change when you vary the
lethality of the disease. (The smaller the illness-length parameter, the more lethal the disease.
Ebola is an example of a highly lethal disease, whereas this year’s version of the flu represents a
highly contagious, but not as lethal disease. Our disease is a bit strange in that a parent will not
pass on the disease to its child.) Look at how other parameter changes affect the model. Think
about other factors that you might want to model, e.g., a vaccination policy.

g. Now systematically explore the impact of the lethality parameter on model behavior by running a
series of experiments. Specifically, read about the BehaviorSpace experiment tool at
https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html (or via the help menu on the app).
Set up and run a series of experiments in which the illness-length parameter varies from 1 to 20

https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html

CS 590M Page 3 of 3
Simulation March 12, 2020
Peter J. Haas Spring Semester 2020

and the remaining parameters are fixed at number = 50, energy-from-grass = 14, and birth-energy
= 22. Run 10 Monte Carlo replications per parameter setting, so that there will be a total of 200
experiments; the experiments don’t take that long to run. For each experiment, measure the final
turtle population size at the end of the simulation, i.e., after 500 ticks; call this variable turtlePop.
Have BehaviorSpace write the results to a .csv file and use this file create a plot of E[turtlePop] as
a function of lethality (i.e., of illness-length). (Use the “table” and not the “spreadsheet” option for
the output.) For each lethality value from 1 to 20, you will of course estimate E[turtlePop] by the
average of 10 Monte Carlo replications. On your plot, show error bars for each point that
correspond to 95% simultaneous Bonferroni confidence intervals. (Recall that such intervals are
based on the Bonferroni inequality and have the property that, with probability 95%, all 20
confidence intervals shown in the plot will be valid at the same time.) See if you can explain the
overall shape of the curve based of your observation of the model’s behavior. You can use any
software that you would like to manipulate the data and create the plot. Some R code that does the
job is given below, but you can also use Excel, Matlab, hand-coded Python, and so on.

So for this assignment you will need to turn in (i) the .nlogo file, (ii) a printout of your code, (iii) a
screenshot as above, and (iv) the plot described in part g, along with a brief attempted explanation of the
shape of the curve. For the screenshot, you can use “File/Export/Export Interface” from the Netlogo menu
to create a .png image file, or you can print to pdf.

Below is some R code for creating the experiment plot.

setwd("./Desktop") # directory where csv file is located
z = qnorm(.99875) # for 95% Bonferroni CI with 20 points
reps = 10 # number of Monte Carlo reps per illness.length value
Read output from NetLogo BehaviorSpace, ignore first 6 lines of metadata
T = read.csv("HW5 Lethality experiment-table.csv",skip=6)
compute avg of final pop per illness.length
M = aggregate(T$count.turtles, list(T$illness.length), mean)
compute std of final pop per illness.length
S = aggregate(T$count.turtles, list(T$illness.length), sd)
M$sd = unlist(S[2]) # append sd column to dataframe M
colnames(M) = c("lethality","turtle pop.","sd")
M$lower = M$"turtle pop." – z * M$sd / sqrt(reps) # lower CI bound
M$upper = M$"turtle pop." + z * M$sd / sqrt(reps) # upper CI bound
plot(M$lethality,M$`turtle pop.`,
 ylim=1.05*range(c(M$lower,M$upper)), # leave enough room for error bars
 xlab="lethality",
 ylab="final population size",
 pch=16, type="o") # black dots, with dots connected by lines
The next command adds error bars to the plot
arrows(M$lethality, M$lower, M$lethality, M$upper, length=0.05, angle=90,
code=3)

If you would like to read more about agent-based simulation, you can look at Section 13.2 in Law, the
tutorial at https://link.springer.com/content/pdf/10.1057%2Fjos.2010.3.pdf, or the several books about
agent-based simulation on the course reference list.

https://link.springer.com/content/pdf/10.1057%2Fjos.2010.3.pdf

