
CS 590M Page 1 of 2
Simulation February 27, 2020
Peter J. Haas Spring Semester 2020

Assignment #4 (Due March 12)

1. (Truncated distributions) Law, problems 8.3 and 8.4.

2. (Geometric random variates) Law, problem 8.14. For the second part of (a), you can simply use the

fact, given on page 305, that the cdf of a geometric random variable is 1() 1 (1) xF x p +⎢ ⎥⎣ ⎦= − − for 0x ≥
or, for extra credit, you can derive this formula

3. Law, problem 8.11(a). For the composition method, express the original distribution as a weighted

combination of a distribution on [-1,0] and a distribution on [0,1]. For acceptance-rejection, use an
appropriate uniform random variable as the majorizing random variable.

4. A non-homogeneous Poisson process (NHPP) with points (e.g., arrival times) T1,T2 ,… and hazard

function h has the defining property that, taking 0 0T = ,

 P(Tn > t |Tn−1 = yn−1,…,T1 = y1) = P(Tn > t |Tn−1 = yn−1) = e− H (t)−H (yn−1)() (*)

for 1n ≥ and 1nt y −> , where
0

() ()
t

H t h u du= ∫ is the cumulative hazard function. (The name of the

process arises from the fact that, when ()h t λ≡ for all 0t ≥ , the NHPP reduces to an ordinary
Poisson process. NHPPs can be used to model time-of-day effects in an arrival process.)

Suppose that 1() for some 0ah t at a−= > . Give an algorithm for generating points T1,T2 ,… , assuming

the availability of a sequence U1,U2 ,… of uniform[0,1] random numbers. Your algorithm should not
use acceptance/rejection. [Hint: use (*) and the inversion method.]

5. Read Section 7.4.1 in the Law textbook, and apply the runs-up test to your favorite (or least favorite)
random number generator with n = 5000 samples. (Work on this problem individually. You may use
the algorithm in problem 7.8 of the text to compute the number of runs up.)

6. (Computing problem) This problem introduces you to the ratio-of-uniforms method, which
typically incorporates acceptance-rejection and can lead to very fast random number generators. (It
also gives you some experience with Q-Q plots, which were briefly mentioned in class.)

a) Read Section 8.2.5 in the textbook, and then compute the constants u* , v* , and v* in the case of

a standard (mean 0, variance 1) normal distribution, using a value of p = 2π to make the

algebra less messy. [Hint: u* is obvious, and both v* and v* can be found by setting derivatives
equal to 0.]

time x x x
T1 T2 T3 0

CS 590M Page 2 of 2
Simulation February 27, 2020
Peter J. Haas Spring Semester 2020

b) Sketch the set S and the enclosing rectangle T . [Hint: Substitute the formulas for p and f

into the boundary condition u = pf (v / u) , then solve for v as a function of u to get the
formulas for the upper and lower boundaries. You get these boundaries by taking a positive and
negative square root.]

c) Give the final algorithm for generating standard normal random numbers.

d) What is the acceptance probability for the generator? What is the expected number of uniform
random numbers required to produce a single normal sample Z ?

e) Implement the random number generator in Python. Generate 500 samples from N (0,1) and
create a Q-Q plot to see if the output actually does look normal, i.e., lies mostly along the
diagonal line. The textbook discusses Q-Q plots on pp. 339-344. You may use the function
scipy.stats.probplot to create the Q-Q plot, e.g., if the array samples contains the generated
normal samples, then the code is

from scipy.stats import probplot
import matplotlib.pyplot as plt
probplot(samples, dist=”norm”, plot=plt)
plt.show()

