
CS 590M  Page 1 of 2 
Simulation  February 27, 2020 
Peter J. Haas  Spring Semester 2020 
 
 

 

Assignment #4 (Due March 12) 
 

1. (Truncated distributions) Law, problems 8.3 and 8.4. 
 
2. (Geometric random variates) Law, problem 8.14. For the second part of (a), you can simply use the 

fact, given on page 305, that the cdf of a geometric random variable is 1( ) 1 (1 ) xF x p +⎢ ⎥⎣ ⎦= − −  for 0x ≥
or, for extra credit, you can derive this formula 

 
3. Law, problem 8.11(a). For the composition method, express the original distribution as a weighted 

combination of a distribution on [-1,0] and a distribution on [0,1]. For acceptance-rejection, use an 
appropriate uniform random variable as the majorizing random variable. 

 
4. A non-homogeneous Poisson process (NHPP) with points (e.g., arrival times)    T1,T2 ,…  and hazard 

function h has the defining property that, taking 0 0T = , 

                            P(Tn > t |Tn−1 = yn−1,…,T1 = y1) = P(Tn > t |Tn−1 = yn−1) = e− H (t )−H ( yn−1 )( )          (*)                        

for 1n ≥  and  1nt y −> ,  where 
0

( ) ( )
t

H t h u du= ∫  is the cumulative hazard function. (The name of the 

process arises from the fact that, when ( )h t λ≡  for all 0t ≥ , the NHPP reduces to an ordinary 
Poisson process. NHPPs can be used to model time-of-day effects in an arrival process.) 

 
 
 

 
Suppose that 1( )  for some 0ah t at a−= > . Give an algorithm for generating points    T1,T2 ,… , assuming 

the availability of a sequence    U1,U2 ,…  of uniform[0,1] random numbers. Your algorithm should not 
use acceptance/rejection. [Hint: use (*) and the inversion method.] 
 

5. Read Section 7.4.1 in the Law textbook, and apply the runs-up test to your favorite (or least favorite) 
random number generator with n = 5000 samples. (Work on this problem individually. You may use 
the algorithm in problem 7.8 of the text to compute the number of runs up.) 
 

6.  (Computing problem) This problem introduces you to the ratio-of-uniforms method, which 
typically incorporates acceptance-rejection and can lead to very fast random number generators. (It 
also gives you some experience with Q-Q plots, which were briefly mentioned in class.) 

 
a) Read Section 8.2.5 in the textbook, and then compute the constants   u* ,   v* , and   v*  in the case of 

a standard (mean 0, variance 1) normal distribution, using a value of   p = 2π  to make the 

algebra less messy. [Hint:   u*  is obvious, and both   v*  and   v*  can be found by setting derivatives 
equal to 0.] 
 
 

time x x x 
T1 T2 T3 0 
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b) Sketch the set  S  and the enclosing rectangle  T . [Hint: Substitute the formulas for  p  and  f  

into the boundary condition   u = pf (v / u) , then solve for  v  as a function of  u  to get the 
formulas for the upper and lower boundaries. You get these boundaries by taking a positive and 
negative square root.] 
 

c) Give the final algorithm for generating standard normal random numbers. 
 

d) What is the acceptance probability for the generator? What is the expected number of uniform 
random numbers required to produce a single normal sample  Z ? 
 

e) Implement the random number generator in Python. Generate 500 samples from   N (0,1)  and 
create a Q-Q plot to see if the output actually does look normal, i.e., lies mostly along the 
diagonal line. The textbook discusses Q-Q plots on pp. 339-344. You may use the function 
scipy.stats.probplot to create the Q-Q plot, e.g., if the array samples contains the generated 
normal samples, then the code is 

 
from scipy.stats import probplot 
import matplotlib.pyplot as plt 
probplot(samples, dist=”norm”, plot=plt) 
plt.show() 

 
 


