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Assignment #3 (Due February 27) 
 
 
 
1) (Computing problem) This problem explores the sensitivity of a simulated performance measure to 

various modeling assumptions about the arrival process to a service system, and also introduces a 
method for modeling autocorrelation of interarrival times. Consider a GI/G/1 queue in which the 
service time distribution is symmetric and triangular, taking values in [0, 1.98] and having a mean of 
0.99. (All times are in minutes.) The performance measure µ  of interest is the expected value of the 
average number of jobs in the system over the interval [0, 500]. Using the GSMP simulation 
algorithm, write a program that simulates this queueing system, assuming an arrival at time 0 to an 
empty system. Your program should be able to estimate µ  for the five arrival processes listed below. 
Use 10,000 repetitions for each arrival process, which will allow estimation of µ  to within less than 
roughly 1%±  error with 95% probability. Use different random numbers for each of Parts (a)−(e). 
Give an intuitive explanation of the results that you observe in terms of “clumping behavior” of the 
arriving jobs. The arrival process are 

 
a) (Baseline) A Poisson process with rate 1λ = . That is, successive interarrival times are i.i.d. 

according to an exponential distribution with mean 1 and standard deviation 1.  
 

b) A process in which successive interarrival times are i.i.d according to a Weibull distribution with 
scale parameter 0.8856899λ =  and shape parameter 2.1013491α = . This distribution has mean 
= 1 and standard deviation = 0.5. Recall that the cdf of a Weibull distribution is 

( )( ) 1  for 0xF x e x
α− λ= − ≥  and ( ) 0F x =  if 0x < , so that the exponential distribution can be 

viewed as a special case of the Weibull distribution with 1α = .  
 

c) A process in which successive interarrival times are i.i.d according to a Weibull distribution with 
scale parameter 1.7383757λ =  and shape parameter 0.5426926α = . This distribution has mean 
= 1 and standard deviation = 2.0 
 

d) A process in which each interarrival time has an exponential distribution with mean = 1, but 
successive interarrivals time are correlated in the following way. Let ( : 0)nZ n ≥  be a sequence of 
i.i.d. (0,1)N  random variables, and set 1( )n n nY c Z Z −= −  for 1n ≥ , where 1/ 2c = . Finally, set 

log( ( ))n nX Y= − Φ  for 1n ≥ , whereΦ is the cdf of the (0,1)N distribution. What is [ ]nE Y  and 
what is Cov[ , ]n n jY Y −  for    j = 0,1,2,… ? What is the distribution of each nY ? Explain why each 

nX  has a unit exponential distribution. [Hint: Use a result from Assignment #2.] Note: When 
programming the simulation in Python, you can use the norm.cdf() function from scipy.stats.  
To generate normal random variates, use the Box-Muller method as with Assignment #1. 

 
e) Same questions, and simulation, as part (d), except that now 1( )n n nY c Z Z −= + . 

 
2) For each of the following distributions, derive the maximum likelihood estimates for the indicated 

parameters:  
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a) (0, )U b , MLE for b  
b) ( , )U a b , joint MLEs for a and b 
c) 2( , )N µ σ , joint MLEs for µ and σ  

 
3) Consider the following density functions (with 0 ≤ a < b < c ): 
 

     

  

fY1
(x)  =   

2(x − a)
(b− a)2 if a ≤ x ≤ b

      0 otherwise

⎧
⎨
⎪

⎩⎪
        and     

  

fY2
(x)  =   

2(c − x)
(c − b)2 if b ≤ x ≤ c

      0 otherwise

⎧
⎨
⎪

⎩⎪
     

 
a) Let   Z1, Z2  be two independent uniform random variables on   [a,b] .  Prove that the random 

variable   max(Z1,Z2 )  has density 
  
fY1

. Give an alternative algorithm for generating a sample from 

1Y
f  using inversion. [Hint: 1 2 1 2max( , ) if and only if  and Z Z x Z x Z x≤ ≤ ≤ .] 

b) Let   Z1, Z2  be two independent uniform random variables on   [b,c] .  Prove that the random 

variable   min(Z1,Z2 )  has density 
  
fY2

. Give an alternative algorithm for generating a sample from 

2Y
f  using inversion. 

 
4) (Extra credit, to be done individually) Suppose that we are trying to fit a distribution to data that 

appears to have two modes (i.e., peaks in the histogram of the data). Based on prior knowledge, we 
think that a good model for the underlying distribution is a mixture of two normal distributions. Each 
normal has a variance equal to 1, so that the overall pdf is 

                            
2 2

1 2( ) /2 ( ) /2
1 2

1 1( ; , , ) (1 )
2 2

x xf x e e− −µ − −µα µ µ = α + −α
π π

. 

That is, for each    j = 1,2,…,n , we effectively generate jX from a 1( ,1)N µ  distribution with 
probability α  and from a 2( ,1)N µ distribution with probability 1−α . Our goal is to estimate the 
unknown parameter vector 1 2( , , )Θ = α µ µ . 

 
a) First suppose that the data consist of observations     X = ( X1, X2 ,…, Xn )  and labels 

    L = (L1, L2 ,…, Ln ) , where jL i=  if jX  was generated from the normal distribution with mean iµ  
( 1,2i = ). Derive formulas for the MLE estimates of 1 2, ,α µ µ . Write these formulas in the form 

1 1 1 2ˆ ( , , )f N S Sα = , 1 2 1 1 2ˆ ( , , )f N S Sµ = , and 2 3 1 1 2ˆ ( , , )f N S Sµ =  for appropriate functions 

1 2 3, ,  and f f f , where 1N = the random number of the 'sjX  generated according to 1( ,1)N µ  and 

i
i jj A
S X

∈
=∑  for 1,2i = . Here { : }i jA j L i= = , so that 1N  is the number of elements in 1A . 

[Hint: The sets 1A  and 2A are useful when writing out the likelihood function.] 
 

b) In practice, we won’t get to see the labels    L1, L2 ,…, Ln , so the straightforward approach of part (a) 
won’t quite work. We can use the following iterative approach, however. 
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i) Fix an initial guess (0) (0) (0) (0)
1 2

ˆ ˆ ˆ ˆ( , , )Θ = α µ µ  for the parameter values and set 0m =  
ii) Compute ( ) ( )

1 1
ˆ ˆ[ | , ]m mN E N= Θ X , ( ) ( )

1 1
ˆ ˆ[ | , ]m mS E S= Θ X , ( ) ( )

2 2
ˆ ˆ[ | , ]m mS E S= Θ X  

iii) Compute ( 1)ˆ m+Θ  via ( 1) ( ) ( ) ( )
1 1 1 2

ˆ ˆˆˆ ( , , )m m m mf N S S+α = , ( 1) ( ) ( ) ( )
1 2 1 1 2

ˆ ˆˆˆ ( , , )m m m mf N S S+µ = , and 
( 1) ( ) ( ) ( )
2 3 1 1 2

ˆ ˆˆˆ ( , , )m m m mf N S S+µ = , where 1 2 3, ,  and f f f  are as in part (a). 
iv) If estimates have not converged, set 1m m← + and go to step (ii) 
 
Fill in the missing details of the algorithm by giving explicit formulas for ( )

1
ˆ mN , ( )

1̂
mS , and ( )

2
ˆ mS  in 

step (ii). [Hint: write 1 1
( 1)n

jj
N I L

=
= =∑ , so that, using the independence of the 'sjX ,  

                                

( ) ( )
1 1

( )
1

( )
1

( ) ( ) ( )
1 21

ˆ ˆ[ | , ] ( 1) ,

ˆ[ ( 1) | , ]

ˆ( 1| , )

ˆ ˆ ˆ( 1| , , , ).

nm m
jj

n m
jj

n m
jj

n m m m
j jj

E N E I L

E I L

P L

P L X

=

=

=

=

⎡ ⎤Θ = = Θ⎣ ⎦

= = Θ

= = Θ

= = α µ µ

∑
∑
∑
∑

X X

X

X
 

Use Bayes’ Theorem to write the quantity ( ) ( ) ( )
1 2ˆ ˆ ˆ( 1| , , , )m m m

j jP L X= α µ µ  as a ratio that involves 

normal density functions; when applying Bayes’ Theorem, you can treat ( ) ( ) ( )
1 2ˆ ˆ ˆ,  ,  and m m mα µ µ  as 

constants so that  
 

                       

( ) ( ) ( )
1 2

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2

( ) ( ) ( )
1 2

( ) ( ) ( )
1 2

ˆ ˆ ˆ( 1| , , , )

ˆ ˆˆ ˆ ˆ ˆ( 1| , , ) ( | , , , 1)
ˆ ˆ ˆ( | , , )

ˆ ˆ ˆ( , , , )

m m m
j j

m m m m m m
j j j

m m m
j

m m m
j

P L X

P L P X L
P X

g X

α µ µ

α µ µ α µ µ
α µ µ

α µ µ

=

= =
=

=

 

for an appropriate function g. Similarly, we can write 
  
Si = I (Lj = i)X jj=1

n∑ for 1,2i = .] 

 
c) Run the algorithm (using R, Matlab/Octave, Excel, Python, etc.) to fit parameters to the dataset 

HW3.dat that is posted on the class web page. 


