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Assignment #3 (Due February 27)

1) (Computing problem) This problem explores the sensitivity of a simulated performance measure to
various modeling assumptions about the arrival process to a service system, and also introduces a
method for modeling autocorrelation of interarrival times. Consider a GI/G/1 queue in which the
service time distribution is symmetric and triangular, taking values in [0, 1.98] and having a mean of
0.99. (All times are in minutes.) The performance measure | of interest is the expected value of the

average number of jobs in the system over the interval [0, 500]. Using the GSMP simulation
algorithm, write a program that simulates this queueing system, assuming an arrival at time O to an
empty system. Your program should be able to estimate  for the five arrival processes listed below.

Use 10,000 repetitions for each arrival process, which will allow estimation of | to within less than

roughly +1% error with 95% probability. Use different random numbers for each of Parts (a)—(e).
Give an intuitive explanation of the results that you observe in terms of “clumping behavior” of the
arriving jobs. The arrival process are

a) (Baseline) A Poisson process with rate A =1. That is, successive interarrival times are i.i.d.
according to an exponential distribution with mean 1 and standard deviation 1.

b) A process in which successive interarrival times are i.i.d according to a Weibull distribution with
scale parameter A =0.8856899 and shape parameter o.=2.1013491 . This distribution has mean
= 1 and standard deviation = 0.5. Recall that the cdf of a Weibull distribution is

F(x) =1-e™" forx>0 and F(x)=0 if x<0, so that the exponential distribution can be
viewed as a special case of the Weibull distribution with oo =1.

¢) A process in which successive interarrival times are i.i.d according to a Weibull distribution with
scale parameter A =1.7383757 and shape parameter o.=0.5426926 . This distribution has mean
= 1 and standard deviation = 2.0

d) A process in which each interarrival time has an exponential distribution with mean = 1, but
successive interarrivals time are correlated in the following way. Let (Z, :n >0) be a sequence of
iid. N(0,1) random variables, and set ¥ =c(Z,—Z, ) for n=1, wherec=1/ \/E . Finally, set
X, =—log(®(Y))) for n=1, where @is the cdf of the N(0,1)distribution. What is E[Y ] and
what is COV[YH,Yn_j] for j=0,1,2,...7 What is the distribution of each Y, ? Explain why each
X, has a unit exponential distribution. [Hint: Use a result from Assignment #2.] Note: When
programming the simulation in Python, you can use the norm.cdf() function from scipy.stats.

To generate normal random variates, use the Box-Muller method as with Assignment #1.

e) Same questions, and simulation, as part (d), except that now Y =c(Z +Z, ).

2) For each of the following distributions, derive the maximum likelihood estimates for the indicated
parameters:
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3)

4)

a) U(0,b), MLE for b
b) Uf(a,b),joint MLEs for a and b

¢) N(u,0°),joint MLEs for pand ¢

Consider the following density functions (with 0 <a<b<c):

2074)  ry<xsh 2e=x)
£, = 1 (b-a) and £, (x) = {(c-b)

0 otherwise 0 otherwise

ifb<x<c

a) Let Z,Z, be two independent uniform random variables on [a,b]. Prove that the random
variable max(Z,Z,) has density fY] . Give an alternative algorithm for generating a sample from
fy1 using inversion. [Hint: max(Z,,Z,)<x ifandonlyif Z <xandZ,<x.]

b) Let Z,Z, be two independent uniform random variables on [b,c]. Prove that the random
variable min(Z,Z,) has density f, . Give an alternative algorithm for generating a sample from

Jy, using inversion.

(Extra credit, to be done individually) Suppose that we are trying to fit a distribution to data that
appears to have two modes (i.e., peaks in the histogram of the data). Based on prior knowledge, we
think that a good model for the underlying distribution is a mixture of two normal distributions. Each
normal has a variance equal to 1, so that the overall pdf is

| SN |
SO0, 1,) = o= T+ (1 - o) = e T
1M \/E \/E

That is, for each j=12,..,n, we effectively generate X from a N(u,1) distribution with

probability o and from a N(u,,l)distribution with probability 1—o. Our goal is to estimate the
unknown parameter vector © = (o, 1,1, )-

a) First suppose that the data consist of observations X=(X,X,,..,X ) and labels
L=(L,L,,...,L ), where L, =iif X, was generated from the normal distribution with mean p,
(i=1,2). Derive formulas for the MLE estimates of o, ,,lL,. Write these formulas in the form
o= f,(N,,S,,S,), 0, =f(N,S,S,), and [i,=f(N,,S,,S,) for appropriate functions
fi» 15, and f;, where N, =the random number of the X 's generated according to N(u,,1) and
S, =zj€A‘_ X, for i=1,2. Here 4 ={j:L; =i}, so that N, is the number of elements in 4.

[Hint: The sets 4, and A, are useful when writing out the likelihood function.]

b) In practice, we won’t get to see the labels L ,L,,...,L , so the straightforward approach of part (a)

won’t quite work. We can use the following iterative approach, however.
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i) Fix an initial guess 00 = (", uio), u(zo)) for the parameter values and set m =0

ii) Compute N(m) =E[N, 16", X S(m) =E[S, 16", X .§'(m) =E[S, 16" X]

iiiy Compute @™ via &™) = f(N(’") S('") S('”)) ) = fz(](fl(m),ﬁl(m),ﬁém)), and
ah = f3(N('") S('") S(’”)) where f,, f,, and f are as in part (a).

iv) If estimates have not converged, set m < m +1and go to step (ii)
Fill in the missing details of the algorithm by giving explicit formulas for ](71('") , 3’1('") ,and 3’;”’) in
step (ii). [Hint: write N, = 2”_ I(L. =1), so that, using the independence of the Xj's,
EIN, | ©™ X]= [2 1L, =16, X}
_2 E[I(L,=1)|6™,X]
— _ (m)
_Zl_zlp(Lj =1|6™ X)
=2, P(L =116, 0" 00", X).
Use Bayes” Theorem to write the quantity P(L; —1|(X(m),mm),!-l(2m),Xj) as a ratio that involves
normal density functions; when applying Bayes’ Theorem, you can treat ¢, mm) and u(’”)
constants so that
P(L, =11, 0", ", X )
_ P =1 e " PO e L =1)
PX, 1@, " ")
=g(@", ", 1", X )

for an appropriate function g. Similarly, we can write §, = z:zl I(L;=0)X, for i=12]

Run the algorithm (using R, Matlab/Octave, Excel, Python, etc.) to fit parameters to the dataset
HW?3.dat that is posted on the class web page.



