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Assignment #2 (Due February 13) 
 
 
 

1. Consider the distribution function 
 

  F(x) =

0 for x < −2
(x / 4)+ (1 / 2) for -2 ≤ x < 0
(x2 +1) / 2 for 0 ≤ x <1/ 2
7 / 8 for 1/2 ≤ x < 3
1 for x ≥ 3

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

 
a) Sketch the function F(x) . Assuming that a uniform random number generator is available, use 

the inversion method to provide an algorithm for generating a random variable X  having 
distribution function F . 

 
b) Compute E[X] and Var[X]  analytically. (One way of verifying your random number generator 

would be to compute the sample mean and variance of a large number of generated samples, and 
see whether what you get is close to the analytical values.) 
 

c) Prove the following converse of the inversion method: if X is a random variable having a 
continuous, strictly increasing distribution function F, then U = F(X)  is uniformly distributed on 
[0,1]. As discussed later, this result can be used to generate pairs of random values with specified 
correlation. [Hint: the assumptions on F ensure that F−1 F(x)( ) = x  for any real number x, and 

F F−1(y)( ) = y  for any y∈[0,1] . Also note that F−1  is an increasing function.] 
  

2. (Computing problem: Hospital unit) A hospital unit consists of a standard care unit (SCU) 
containing b1  beds (numbered  1,2,…,b1 ) and an intensive care unit (ICU) containing b2 beds 
(numbered  1,2,…,b2 ). Patients arrive according to a renewal process with the successive inter-arrival 
times i.i.d. as a random variable A having probability density function 

  
f (x;a) = 2x / a2 0 ≤ x ≤ a

0 otherwise

⎧
⎨
⎩

, 

where a is a parameter of the distribution. (Throughout, all times are measured in units of days.) With 
probability p, an arrival is an SCU patient, and with probability1 p− , an arrival is an ICU patient. An 
arrival to the SCU is assigned to the lowest-numbered available bed, and similarly for the ICU. If 
there is no bed available for an arriving patient, the patient is immediately rerouted to another hospital 
and is thus lost from the system. The length of stay for an SCU patient (in the absence of a “critical 
event” as described below) and the length of stay in the ICU are distributed as random variables SCUL  
and ICUL , respectively, each having a 2-Erlang (λ)  distribution. Such a random variable is distributed 
as the sum of two independent exponential random variables, each with intensityλ . An SCU patient 
may experience a “critical event” at some point after arrival, at which point the patient becomes an 
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ICU patient, and stays in the ICU for an amount of time distributed as ICUL  (i.e., the same as for a 
freshly arrived ICU patient). The time until a critical event for an SCU patient is distributed as a 
random variable Q having a symmetric triangular distribution on the interval [1/2, 3/2]; cf Problem 3 
of Assignment #1. If, for a given patient, the critical-event time Q exceeds the hospitalization time 
SCUL , then the patient is released from the hospital without ever experiencing a critical event. If an 

SCU patient experiences a critical event and there are no available beds in the ICU, the patient is 
immediately transferred to another hospital. Define the state of the system at time t as 
 

 
   
X (t) = M1(t), M2 (t),…, Mb1

(t), N1(t), N2 (t),…, Nb2
(t)( ) , 

 
where  ( ) 1iM t =  if the ith  SCU bed is occupied at time t and ( ) 0iM t = otherwise, and ( ) 1iN t =  if 
the ith  ICU bed is occupied at time t, and ( ) 0iN t =  otherwise. Assume that the hospital unit is 
initially empty (set the clock for the initial patent arrival as a fresh sample from the distribution of A.) 
 
a) Specify { ( ) : 0}X t t ≥  as a GSMP with event set 

   
E ={e0}∪{e1,1,…,e1,b1

}∪{e2,1,…,e2,b2
}  

   
∪{e3,1,…,e3,b1

}, where 0e =  “arrival of patient”, 1,ie =  “departure of patient from SCU bed i”, 

2,ie = “departure of patient from ICU bed i”, and 3,ie =  “critical event for patient in SCU bed i”. 
Give your specification generically in terms of SCU ICU, , ,A L L Q . [Hint: you may want to define 
auxiliary quantities such as SCU ( )i s = the lowest-numbered available bed in the SCU when the 
state is s =

   
(m1,…mb1

,n1,…,nb2
) , where SCU ( ) 1i s = −  if there are no empty beds.] 

 
b) In terms of the process { ( ) : 0}X t t ≥ , give a precise specification of (i) the expected time until the 

hospital unit (SCU + ICU) first fills up all of its beds, (ii) the expected fraction of time during the 
first thirty days of operation during which there are 7 or more empty beds, (iii) the probability 
that the time until the hospital unit first fills up all of its beds is less than or equal to 55 days, and 
(iv) the expected fraction of patient arrivals in [0, 30] that are immediately transferred to another 
hospital. [Define the fourth performance measure directly in terms of the GSSMC 
{ }( , ) : 0n nS C n ≥ , using notions defined in class, such as the nth transition time nζ , the trigger-
event function *( , )E s c , and so forth. You may also want to use indicator functions.] 

 
c) Now assume that (5,4)b = , 0.08a = , SCU ICU[ ] [ ] 0.25E L E L= = , and 0.68p = . Using the general 

algorithm for simulating GSMPs given in class, estimate the four performance measures from 
part (b) to within 1%± with probability 99%. 

 
 

3. (Extra Credit: Markov chain Monte Carlo) In this problem we develop a Monte Carlo method for 
estimating an infinite sum of the form S = g(i)π (i)

i=−∞

∞∑ , where g is a real-valued function and π  is 
a probability distribution on the integers. For example, π  might be of the form π (0) = θ  and 

π (i) = θi−2ecos(i )  for i ≠ 0 , where θ  is a normalizing constant chosen so that π (i)
i=−∞

∞∑ = 1 . In 
applications (especially Bayesian data analysis), θ  is often unknown, so that the distribution π is 
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known only up to a normalizing constant. (Also, the distribution π  is usually multivariate, typically 
with very high dimension, in which case the MCMC method developed here is even more effective.) 
Consider a state-transition matrix Q for a DTMC that is “irreducible” in that for each i and j there 
exists n = n(i, j)  such that Qn (i, j) > 0 . (Intuitively, an irreducible DTMC can, with positive 
probability, go from one state to any other state in a finite number of transitions.) Set 

α (i, j) = min 1,π ( j)Q( j,i)
π (i)Q(i, j)

⎛
⎝⎜

⎞
⎠⎟

 

for all i and j , and consider a real-valued DTMC Xn :n ≥ 0{ }  that is generated according to the 
following algorithm (which can be viewed as a sophisticated version of acceptance-rejection 
sampling): 

(1) Initialize X0  and set m = 0 . 
(2) Generate a random variable Y according to Q(Xm ,⋅) . 
(3) Generate a Uniform[0,1] random variable U. 
(4) If U ≤α (Xm ,Y )  then set Xm+1 = Y , else set Xm+1 = Xm . 
(5) Set m← m +1 and go to Step (2). 

 
a) Show that π (i)Q(i, j)α (i, j) = π ( j)Q( j,i)α ( j,i)  for all i and j. [Hint: evaluate α (i, j)  and α ( j,i)

, both when π ( j)Q( j,i) > π (i)Q(i, j)  and when π ( j)Q( j,i) ≤ π (i)Q(i, j) .]  
 
b) Let P be the state-transition matrix for the DTMC Xm :m ≥ 0{ } . For i and j with i ≠ j , show that 

P(i, j) =Q(i, j)α (i, j) , and then show that π  is a stationary distribution for Xm :m ≥ 0{ } . [Hint: 

recall from Lecture #2, slide 10, that π  is a stationary distribution if π ( j) = P(i, j)π (i)
i
∑ . To 

establish the desired property for π , first use part (a) to show that π (i)P(i, j) = π ( j)P( j,i)  for all 
i and j.] 
 

c) It can be shown that the DTMC Xm :m ≥ 0{ }  obeys a strong law of large numbers in that  

limn→∞ (1 / n) g(Xi )i=1

n∑ = E[g(X)]  a.s., where X is distributed according to the stationary 
distribution π . Using this fact, write down a complete and detailed algorithm that will generate 

 X0 ,X1,…,Xn  (where n is a given, large value) and produce a strongly consistent point estimate of 
the infinite sum S defined above, for the specific distribution π  given above. (Don’t worry about 
how to select the value of n or about providing a confidence interval; in general, we can use the 
regenerative or batch means methods—discussed later in the course—to do this.) Your algorithm 
should incorporate and refine the general algorithm given above. Take X0 = 0  and, given Xm , 
have your algorithm generate Y as Xm +W , where W is uniformly distributed on the set 

 −k,−k +1,…,−1,0,1,…,k −1,k{ }  for a fixed integer k. Your algorithm should not require that you 
know or calculate the value of the normalizing constant θ  in the definition of π . Show that, for 
our specific method of generating a candidate Y, the general definition of α (i, j)  takes on a 
somewhat simpler form, so that step (4) of the general algorithm simplifies. 
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4. (Extra Credit: Analytical solution of gambling game) We can analytically compute the expected 
length,   E[L] , and hence the expected gain,    E[8.99− L]= 8.99−E[L] , for the gambling game, using 
Markov chain theory. Let  Xn  be the absolute difference between the number of heads and tails after 

 n  flips of the coin. 
 
a) Prove that   {Xn : n ≥ 0}  is a Markov chain with state space   S ={0,1,2,3} . [Hint: Write down a 

recurrence relation.] 
 

b) Write down the initial distribution  µ  and transition matrix  P  for the chain. (Assume that when 
the absolute difference of heads and tails becomes equal to 3, the chain just stays in that state 
forever.) 

 
c) Denote by   Ei[L]  the expected length of the game when the initial state is   X0 = i . Using the 

Markov property, it can be shown that the following “first-step decomposition” holds: 
 

  
Ei[L] = 1+ P

j∈S
∑ (i, j) ⋅E j[L]  for   i = 0,1,2  

 
and   E3[L] = 0 . Intuitively, if the current state is   i ∈{0,1,2} , then the expected length is 1 (for the 
current flip) plus the expected number of remaining flips. If the current flip results in a transition 
to state  j , then, by the Markov property, the expected number of remaining flips is the same as if 
you started the game in state  j , that is, 

  
E j[L] . Solve the set of equations defined by the first-step 

decomposition to compute the actual expected gain, which is   8.99− E0[L] . 
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