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Assignment #1 (Due February 6) 
 
 

1. (Computing Problem: Stock options) Consider a stock whose price fluctuations over an N day period 
can be well approximated by a lognormal random walk model: if the initial stock price is 0S , then the 

price at the end of day n is    Sn = S0e
X1+!+Xn for 1≤ ≤n N , where    X1, X2 ,…  are i.i.d. normal random 

variables with mean µ  and variance 2σ . Suppose that, at the beginning of day 1, you are given an 
option to purchase one unit of this stock at a fixed price K (the strike price) at the end of any of the N 
days. If you exercise this option when the price is S (> K), then you can immediately sell your stock for 
a gain of −S K . One strategy for deciding when to exercise the option is the following expected gain 
(EG) policy: at the end of day m (1≤ <m N ), if you have not yet exercised the option, then exercise 
the option if >mS K  and if, for    i = 1,2,…, N− m , the gain from this action is better than the expected 
gain EG( , )mS i  from letting exactly i days go by and then either exercising (if + >m iS K ) or giving up 
on ever exercising (if + ≤m iS K ). That is, exercise the option on day m if >mS K  and 

EG( , )− >m mS K S i  for    i = 1,2,…, N− m , where    EG(s,i) = E[(seX1+!+Xi − K )+ ]and ( ) max( ,0)+ =x x . 

If, at the end of day N, you have not exercised the option on any previous day, your gain is ( )+−NS K . 

It can be shown that ( ) ( )EG( , ) α= Φ σ + − Φi
i is i se i b K b , where 20.5α = µ + σ , 

2 1/ 2( ) [ log( / )]−= σ µ−ib i i K s , and Φ  is the cumulative distribution function for a standard normal 

random variable: 
2 / 21( )

2
−

−∞
Φ =

π∫
x xx e dx . 

 
a) Write a simulation program for estimating the expected gain under the EG policy when N = 20 

days, the initial price is   S0 = $100 , the strike price is $100=K , and the random walk parameters 
are 0.05µ = −  and 0.3σ = . Based on a trial run of 1000 replications, determine the number n of 
replications required to estimate the expected gain to within ±5% with 95% probability. Using the 
number n that you have obtained, compute a final point estimate and 95% confidence interval for 
the expected gain based on (at least) n replications. When programming the simulation in Python, 
you can compute the function Φ  using the norm.cdf() function; start your code with 
 
from scipy.stats import norm 
 
To generate normal random variates, you may use the Box-Muller method (Law, p. 453): generate 

1U  and 2U  as i.i.d. uniform(0,1) random variates, and then set ( )1/ 21 1 22 ln cos2= − πX U U  and 

( )1/ 22 1 22 ln sin 2= − πX U U . It can be shown that 1X  and 2X  are i.i.d. N(0,1) random variables. 
(One convenient way to code this is to fill up an array with an even number of normal variates, 
and use them as needed; when the array empties out, fill it up again.) 

 
 
b) Same as above, but for the take the money and run (TMR) policy: at the end of day m (1≤ ≤m N

), exercise the option if the option has not been exercised on a previous day and >mS K . 
 
c) Using 20,000 repetitions, compute a 95% confidence interval for the expected gain under the EG 

policy. Do the same for the TMR policy, making sure to use a completely different set of random 
numbers. Explain how to combine these two confidence intervals into a 95% confidence interval 
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for difference between the expected gain under the EG policy and the expected gain under the 
TMR policy. Compute this confidence interval. [Hint: consider the distribution of the difference 

−X Y  of two independent normal random variables X and Y.] 
 
d) Modify your program to compute, for each repetition of an N-day option period, the difference 

between the gain under the EG policy and the gain under the TMR policy. Run 20,000 simulation 
repetitions to generate 20,000 such differences, and compute a 95% confidence interval for the 
expected difference in the gains (which equals the difference in the expected gains). Is this interval 
wider or narrower than the interval computed in part (c)? Give an intuitive explanation for your 
result. 
 

 
2. (Monte Carlo integration) As mentioned in class, we can use simulation to solve deterministic 

numerical computation problems. Suppose in the following problems that we have available sequences 

   U1,U2 ,…  and    V1,V2 ,…  of i.i.d. uniform(0,1) random numbers. 

a) Suppose that we wish to evaluate the integral 
1

0
( )= ∫I h x dx , where the nonnegative function h is 

so complicated that analytical or numerical evaluation of the integral is impossible. Explain why 
we can estimate I by 

1
ˆ (1/ )

=
= ∑n

n ii
I n Z , where ( )=i iZ h U  for 1≥i  and n is sufficiently large. 

How can we choose n? 
 

b) Now describe an estimation procedure as above, but for the integral ( )= ∫
b

a
I h x dx , where a and b 

are specified numbers. [Hint: consider the transformation ( ) /( )= − −y x a b a .]  
 
c) Same as part (b), but for the integral 

0
( )

∞
= ∫I h x dx . [Hint: consider the transformation 

1/( 1)= +y x .]  

d) Same as part (b), but for the integral 
21 1 ( )

0 0

+= ∫ ∫ x yI e dxdy  and using both sequences    U1,U2 ,…  and 

   V1,V2 ,… . 

e) Same as part (b), but for the integral 
2( )

0 0

∞ − += ∫ ∫
x x yI e dydx . [Hint: using the function ( , )g x y  

which equals 1 if  ≤y x  and 0 otherwise, rewrite I so that the upper limit of the inner integral 
doesn’t depend on x.] 

  
3. (A probability refresher) Let X and Y be independent uniform(0,1) random variables. Compute and 

graph the probability density function (pdf) of Z = X + Y. [Hint: Use the law of total probability to write 
1 1

0 0
( ) ( ) ( | ) ( ) ( ) ( )≤ = + ≤ = + ≤ = = ≤ −∫ ∫Y YP Z z P X Y z P X Y z Y y f y dy P X z y f y dy  

       and consider the cases [0,1]∈z  and [1,2]∈z  separately.] Note: If you want to “cheat” and get a rough 
idea of what the solution should look like, use simulation! E.g., the following R code will do the trick: 

 
x = runif(1000000) 
y = runif(1000000) 
z = x + y 
hist(z, probability=TRUE)  
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4. (An alternative Monte Carlo integration method) Note: do this problem individually. Suppose that 
we want to evaluate the two-dimensional integral 

2 21 1 ( 0.5) ( 0.5)

0 0

x yI e dxdy− − − −= ∫ ∫ using Monte Carlo 

integration. A standard way to do this would be to generate N uniform number pairs 

    Z1 = ( X1,Y1),…,ZN = ( X N ,YN )  and estimate I by 
1

ˆ (1/ ) ( )N
N ii
I N h

=
= ∑ Z . Confidence intervals are of 

the form ˆ /±N NI zs n , where z is an appropriate quantile of the normal distribution and 

( )22
1

1 ˆ( )
1

N
N i Ni
s h I

N =
= −

− ∑ Z . Here all of the X’s and Y’s are uniformly distributed on [0,1] and 

mutually independent, and 
2 2( 0.5) ( 0.5)( ) x yh e− − − −=z  for ( , )x y=z . Now consider the following 

alternative algorithm. Choose K such that K divides N and set /=n N K . Then execute the following 
unbiased estimation procedure: 

A. Generate a sequence    Q1,Q2 ,…,Qn  as follows 

1. Generate K uniform pairs     Z1 = ( X1,Y1),…,ZK = ( X K ,YK ) . 
2. Generate two independent random permutations 1π  and 2π  of    (1,2,…, K ) . E.g., one 

possible realization of 1π  is given by    π1(1) = K ,  π1(2) = K −1,  … ,  π1(K ) = 1 . 
3. Define ( , )k k kU V=W  for    k = 1,2,…, K  by 

 ( )1( ) /k kU k X K= π −  and ( )2 ( ) /k kV k Y K= π − . 

4. Set ( ) 1
1/ ( )K

kk
Q K h

=
= ∑ W . 

5. Repeat Steps 1-4 above n times to create i.i.d. random variables    Q1,Q2 ,…,Qn . 

B. Estimate I by 
   
Î = (1/ n) Qii=1

n∑ = (1/ N ) h(Wi,k )
k=1

K∑i=1

n∑ . 

C. Compute a 100(1 )%−δ confidence interval as ˆ /± nI zs n , where z is the usual (1 / 2)−δ -
quantile of the standard normal distribution and ns is the sample standard deviation of 

   Q1,Q2 ,…,Qn . 
 

a) Using the R, Matlab, or Octave software packages, estimate the standard error (i.e., sample 
standard deviation divided by square root of sample size) for the standard and alternative 
estimation methods described above, with 5,  and 150= =K N . Which method is superior? [The 
file hw1code.txt on the course web site contains R code and Matlab/Octave code for doing the 
calculations, along with download instructions for the open source R and Octave packages. One 
point of this exercise is to introduce you to these useful packages for Monte Carlo simulation. If 
you already know them, you are encouraged to try writing the code yourself.]  
 

b) Draw a sketch in which the unit square is divided into ×K K  square subregions (for 5=K ). On 
this sketch, indicate a typical realization of K two-dimensional points     W1,W2 ,…,WK . Using your 
drawing, give an intuitive explanation of why one of the estimation methods is better than the 
other. (Compare the locations of the K points with the locations of K points chosen randomly and 
uniformly as in the standard algorithm.) 
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c) For the alternative method, we unbiasedly estimate the variance of Î as 2 /ns n  when forming a 

confidence interval, where ( )22
1

1 ˆ
1

n
n ii
s Q I

n =
= −

− ∑ . Since 
   
Î = (1/ N ) h(Wi,k )

k=1

K∑i=1

n∑ , could we 

also have estimated the variance of Î as 2 /s N , where
   
s2 = 1

N −1
h(Wi,k )− Î( )2

k=1

K∑i=1

n∑ ?  


