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A Probability and Statistics Refresher

Peter J. Haas

Probability theory provides a mathematical framework for modelling real-world situations char-

acterized by “randomness,” “uncertainty,” or “unpredictability.” The theory also provides a toolbox

of techniques for computing probabilities of interest, as well as related quantities such as expected

values. As with any mathematical tool, the usefulness of a probability model depends on how well

the model mirrors the real-world situation of interest. The field of statistics is largely concerned

with matching probabilistic models to data. A statistical analysis starts with a set of data and

assumes that the data is generated according to a probability model. The data is then used to make

inferences about this probability model. The goal can be to fit “the best” probability model to

the data, to estimate the values of certain parameters of an assumed model, or to test hypotheses

about the model. The results of the inference step can be used for purposes of prediction, analysis,

and decisionmaking.

In the context of simulation, we often use statistical techniques to develop our simulation

model of the system under study; a simulation model is essentially a complicated probability

model. For such a model, the probabilities and expected values that are needed for prediction and

decisionmaking typically cannot be computed analytically or numerically. We therefore simulate

the model, i.e., use the model to generate data, and then once again apply statistical techniques to

infer the model properties of interest based on the output of the simulation.

The following sections summarize some basic topics in probability and statistics. Our emphasis

is on material that we will use extensively in the course. Our discussion glosses over some of the

technical fine points—see Section 11 for some pointers to more careful discussions.

1 Probabilistic Experiments and Events

1.1 Probabilistic Experiments

We start with a set Ω, called the sample space, that represents the possible elementary outcomes

of a probabilistic experiment. A classic example of a simple probabilistic experiment is the rolling

of a pair of dice, one black and one white. Record the outcome of this experiment by a pair (n,m),

where n (resp., m) is the number of spots showing on the black (resp., white) die. Then Ω is the

set that contains the 36 possible elementary outcomes:

Ω = { (1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (2, 6), . . . , (6, 1), (6, 2), . . . , (6, 6) } .
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Figure 1: Definition of event for dartboard example.

As a more complicated example, consider an experiment in which we throw a dart at a square

dartboard. (We are assuming here that our throw is so erratic that it can truly be considered

unpredictable.) One way to describe the outcome of this experiment is to give the (x, y) coordinates

of the dart’s position, where we locate the origin (0, 0) at the lower left corner. Note that Ω is an

uncountably infinite set. As can be inferred from these examples, there is often some leeway in how

Ω is defined when setting up a probability model.

1.2 Events

A subset A ⊆ Ω is called an event—if the outcome of the experiment is an element of A, then we

say that “event A has occurred.” For example, consider the two-dice example, together with the

event

A = { (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) } .

In words, A is the event in which “the sum of the spots showing on the two dice equals 7.” If,

for example, the outcome of our dice experiment is (3, 4), then we say that event A has occurred

since (3, 4) ∈ A. For our dart experiment, assuming that we measure coordinates in feet and the

dartboard is 1′ × 1′, we say that the event “the dart hits the lower half of the dartboard” occurs if

the outcome is an element of the set

A = { (x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.5 } . (1.1)

This event is illustrated in Figure 1. In general, the event Ω is the (certain) event that “an outcome

occurs” when we run the probabilistic experiment. At the other extreme, the “empty” event ∅
contains no elements, and corresponds to the (impossible) situation in which no outcome occurs.

There is a close connection between set-theoretic notions and the algebra of events. The com-

plimentary event Ac = Ω − A is the event in which A does not occur. The event A ∩ B is the

event in which both A and B simultaneously occur, and the event A ∪ B is the event in which A

occurs, or B occurs, or both. The event B − A = B ∩ Ac is the event in which B occurs and A

does not occur. Events A and B are disjoint if they have no elements in common: A ∩ B = ∅.

Intuitively, disjoint events can never occur simultaneously. For an experiment in which we roll one

die and record the number of spots, so that Ω = { 1, 2, 3, 4, 5, 6 }, the events A = { 1, 3, 5 } = “the

die comes up odd” and B = Ac = { 2, 4, 6 } = “the die comes up even” are disjoint. If A ⊆ B, then

the occurrence of A implies the occurrence of B.
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2 Probability Measures and Probability Spaces

2.1 Probability Measures

A probability measure P assigns to each1 event a number between 0 and 1. The number P (A) is

interpreted as the likelihood that event A will occur when we run the probabilistic experiment:

P (A) = 0 means that A will not occur, whereas P (A) = 1 means that A is certain to occur.

For a given specification of P to be logically consistent, it must satisfy three basic ground rules:

P (∅) = 0, P (Ω) = 1, and

P

(⋃
n

An

)
=
∑
n

P (An)

whenever A1, A2, . . . form a finite or countably infinite collection of disjoint events. The first two

requirements are that “with certainty, some outcome occurs” and “it is impossible that no outcome

occurs” when we run the probabilistic experiment. The third condition guarantees, for example,

that if the probability that a dart lands in the bottom third of the dartboard is 0.3 and the

probability that the dart lands in the middle third of the dartboard is 0.4, then the probability

that the dart lands in the bottom two-thirds of the dartboard is 0.3 + 0.4 = 0.7.

For our two-dice example, one way of assigning probabilities is to set P (A) = 1/36 for each

“singleton” event of the form An,m = { (n,m) }. In words, A = “n spots are showing on the

black die and m spots are showing on the white die.” Observe that the singleton events are

mutually disjoint and that any arbitrary event can be written as the union of (disjoint) singleton

events. It follows that the probability of any event A is uniquely determined. For example, if

A = { (1, 2), (2, 1) } = “the sum of the spots showing on the two dice equals 3” then, from the

ground rules, P (A) = P (A1,2 ∪A2,1) = P (A1,2) +P (A2,1) = 2/36. This assignment of probabilities

corresponds to a probability model in which each die is “fair” and the two dice behave independently

(see Section 2.4).

For our dartboard example, we can model the situation in which the dart is equally likely to

land anywhere on the board by defining P (A) =
∫∫
A dx dy for each event A; an event A corresponds

to a specified region on the dartboard and P (A) is simply the area of the region. For the event A

defined in (1.1), we have

P (A) =

∫∫
A
dx dy =

∫ 0.5

0

∫ 1

0
dx dy = 1/2.

2.2 Basic Properties of Probability Measures

We now list some elementary properties of probability measures that follow from the three ground

rules. All sums, unions, and intersections are taken over a finite or countably infinite collection of

events.

(i) 0 ≤ P (A) ≤ 1.

1Actually, when Ω is uncountably infinite, it turns out that there are some very weird events to which we can’t

assign probabilities in a consistent manner. You will never encounter such weird events in this course, however.
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(ii) P (Ac) = 1− P (A).

(iii) P (A) ≤ P (B) whenever A ⊆ B.

(iv) (Boole’s inequality) P (
⋃
nAn) ≤

∑
n P (An).

(v) (Bonferroni’s inequality) P (
⋂
nAn) ≥ 1−

∑
n P (Acn).

Observe that Boole’s inequality holds for any finite or countably infinite collection of events—the

inequality becomes an equality if the events are mutually disjoint.

2.3 Probability Spaces

We refer to (Ω, P ), a sample space together with a probability measure on events (i.e., on subsets of

Ω) as a probability space. A probability space is the mathematical formalization of a probabilistic

experiment.2 Some useful advice: whenever anybody starts talking to you about probabilities,

always make sure that you can clearly identify the underlying probabilistic experiment and proba-

bility space; if you can’t, then the problem is most likely ill-defined.

2.4 Independent Events

Events A and B are independent if P (A ∩ B) = P (A)P (B). In our experiment with two dice,

suppose that each elementary outcome is equally likely. Then the events A = “the black die comes

up even” and B = “the white die comes up even” are independent, since A ∩ B comprises 9

outcomes and each of A and B comprises 18 outcomes, so that P (A) = P (B) = 18/36 = 1/2 and

P (A ∩B) = 9/36 = 1/4.

Events A1, A2, . . . , An are mutually independent if

P (An1 ∩An2 ∩ · · · ∩Ank
) = P (An1)P (An2) · · ·P (Ank

)

for 2 ≤ k ≤ n and 1 ≤ n1 < n2 < · · · < nk ≤ n. The events in a countably infinite collection are

said to be mutually independent if the events in every finite subcollection are mutually independent.

3 Conditional Probability

3.1 Definition of Conditional Probability

Conditional probability formalizes the notion of “having information” about the outcome of a

probabilistic experiment. Consider the two-dice example with equally likely outcomes. Let A =

“the black die has an even number of spots” and B = “the sum of the spots showing on the two

dice equals 4.” In the absence of any information about the outcome of the experiment, an observer

2As mentioned previously, when Ω is uncountably infinite there are in general certain weird sets A ⊂ Ω on

which probabilities cannot be defined. Therefore, advanced texts on probability define a probability space as a triple

(Ω, P,F), where F is the “σ-field” of subsets on which P is defined.
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would estimate the (unconditional) probability of event A as 0.5, since 18 of the 36 possible outcomes

are elements of A. Given the additional information that event B has occurred, the observer knows

that the outcome is one of (1, 3), (2, 2) or (3, 1). Of these, only the outcome (2, 2) corresponds

to the occurrence of event A. Since the outcomes (1, 3), (2, 2), and (3, 1) are equally likely, the

observer would estimate P (A | B), the conditional probability that A has occurred given that B

has occurred, as 1/3. In general, for events A and B such that P (B) > 0, we define

P (A | B) =
P (A ∩B)

P (B)
. (3.1)

3.2 Independence, Law of Total Probability, Product Representation

Observe that our previous definition of independence for A and B is equivalent to requiring that

P (A | B) = P (A). I.e., knowing that B has occurred does not change our assessment of the

probability that A has occurred.

Turning the definition in (3.1) around, we have the important relationship P (A ∩ B) = P (A |
B)P (B). Observe that, by one of our basic ground rules, P (A) = P (A ∩B) + P (A ∩Bc) = P (A |
B)P (B)+P (A | Bc)P (Bc). An important generalization of this result is the law of total probability:

if B1, B2, . . . , Bn are mutually disjoint events such that B1 ∪B2 ∪ · · · ∪Bn = Ω, then

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2) + · · ·+ P (A | Bn)P (Bn). (3.2)

Another important result that follows from the basic definition of conditional probability asserts

that, for any events A1, A2, . . . , An,

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2 | A1)P (A3 | A1 ∩A2) · · ·P (An | A1 ∩A2 ∩ · · · ∩An−1). (3.3)

For example, suppose that we have n people in a room (where 2 ≤ n ≤ 365), and each person

is equally like to have been born on any of the 365 days of the year (ignore leap years and other

anomalies). For 1 ≤ i < n, let Ai = “the birthday of person (i + 1) is different from persons 1

through i. Then P (Ai | A1 ∩ · · · ∩ Ai−1) = (365− i)/365 for 1 ≤ i < n. It follows from (3.3) that

the probability of the event Bn = “at least two people in the room share a birthday” is

P (Bn) = 1− P (A1 ∩ · · · ∩An−1) = 1−
n−1∏
i=1

(
1− i

365

)
.

This solution to the “birthday problem” is well known because it is somewhat counter-intuitive: for

n = 23, the probability of at least one shared birthday exceeds 50%, and for n = 50 the probability

exceeds 97%.

3.3 Bayes’ Rule

Bayes’ Rule can be viewed as formalizing the process of learning from observations or data. Let

A1, A2, . . . , An be a set of mutually exclusive and exhaustive events: Ai ∩ Aj = ∅ for i 6= j and
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i 2 3 4 5 6 7 8 9 10 11 12

pX(i) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Table 1: pmf for random variable X = “sum of spots” in two-dice example.

⋃n
i=1Ai = Ω. Then, starting with (3.1) and using the law of total probability, we can write

P (Ai | B) =
P (Ai ∩B)

P (B)
=

P (Ai)P (B | Ai)∑n
j=1 P (Aj)P (B | Aj)

(3.4)

for 1 ≤ i ≤ n, which is one form of Bayes’ Rule. I.e., the “posterior” probability that Ai occurred,

given that event B occurred, is the normalized product of the “prior” probability P (Ai) that Ai

occurred times the “likelihood” P (B|Ai) of observing event B given that Ai occurred. Thus, Bayes’

Rule tells us how to adjust our prior probability P (Ai) to obtain the posterior probability P (Ai | B),

in light of our observation that B occurred.

4 Random Variables

4.1 Definition

Heuristically, a random variable X is a variable whose value is determined by the outcome of a

probabilistic experiment. More formally, X is a real-valued function that is defined on the sample

space Ω. For example, consider the two-dice experiment, and for each elementary outcome (n,m),

set X(n,m) = n+m. Then the value of the random variable X is the sum of spots showing on the

two dice. Observe that X can take on the possible values 2, 3, . . . , 11, 12.

4.2 Indicator Random Variables

A particularly useful type of random variable is the indicator random variable for an event A. This

random variable, denoted I(A), equals 1 if event A occurs and equals 0 otherwise. Formally,

I(A)(ω) =

1 if ω ∈ A;

0 if ω 6∈ A.

Observe that P { I(A) = 1 } = P (A) and P { I(A) = 0 } = 1−P (A). Also observe that I(A∩B) =

I(A)I(B) and I(A∪B) = I(A)+I(B)−I(A)I(B); if A and B are disjoint, then the latter expression

simplifies to I(A ∪B) = I(A) + I(B).

4.3 Distribution of a Random Variable

The distribution of a random variable X is the unique probability measure µ defined by

µ(A) = P {X ∈ A } = P ({ω ∈ Ω: X(ω) ∈ A })

6



CS 590M

Figure 2: pmf for random variable X = “sum of spots” in two-dice example.

for each subset A of the real numbers. When X is discrete, i.e., takes values in a finite or countably

infinite set S = { a1, a2, . . . }, the distribution of X is usually described in terms of the probability

mass function (pmf), sometimes denoted by pX , where

pX(ai) = µ({ai}) = P {X = ai }

for ai ∈ S. Of course, a pmf pX must satisfy pX(ai) ≥ 0 for all i and∑
i

pX(ai) = 1.

The set S is sometimes called the support of X. In the two-dice example with fair and independent

dice, all of the elementary outcomes are equally likely, and we have, for example,

pX(4) = P {X = 4 } = P (A4) = 3/36,

where

A4 = {ω ∈ Ω: X(ω) = 4 } = { (1, 3), (2, 2), (3, 1) } .

The complete pmf for X is displayed in Table 1 and plotted in Figure 2.

The situation is usually more complicated for a continuous random variable X, i.e., a random

variable taking values in an uncountably infinite set S such as an interval [a, b] of the real line.

In this case, we typically have P {X = x } = 0 for any x ∈ S. The distribution of a continuous

random variable X is often described in terms of the probability density function (pdf), sometimes

denoted by fX . Roughly speaking, for x ∈ S and a small increment ∆x > 0, we take the quantity

fX(x)∆x as the approximate probability that X takes on a value in the interval [x, x+ ∆x]. More

precisely, for a subset A ⊆ S, we have

µ(A) = P {X ∈ A } =

∫
A
fX(x) dx.

In analogy with a pmf, a pdf must satisfy fX(x) ≥ 0 for all x and∫ ∞
−∞

fX(x) dx = 1.
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Figure 3: The pdf and cdf for a U [0, 1] random variable U .

Figure 4: The pmf and cdf for a random variable X with pX(0.5) = 0.3, pX(1.5) = 0.5, and

pX(3) = 0.2.

As an example, consider a random variable U having the “uniform distribution on [0, 1],” abbrevi-

ated U [0, 1]. Here U is equally likely to take on any value between 0 and 1. Formally, we set

fU (x) =


0 if x < 0;

1 if 0 ≤ x < 1;

0 if x ≥ 1

for all real values of x.3 Then, e.g., for A = [0.25, 0.75], we have

P {U ∈ A } = P { 0.25 ≤ U ≤ 0.75 } = µ(A) =

∫
A
fU (x) dx =

∫ 0.75

0.25
1 dx = x

∣∣0.75
0.25

= 0.5.

For either a discrete or continuous random variable X satisfying the regularity condition4

P {−∞ < X <∞} = 1, the right-continuous function FX defined by

FX(x) = P {X ≤ x } = µ
(
(−∞, x]

)
for real-valued x is the cumulative distribution function (cdf) of X. The function FX is nonde-

creasing, with FX(−∞) = 0 and FX(∞) = 1. For a continuous random variable X, the cdf is

3We have defined fU (x) at the points x = 0 and x = 1 so that fU is right-continuous; this is a standard convention.

Changing the definition at these two points has no real effect, since P {U = x } = 0 for any single point x.
4Such a random variable is often called proper. We restrict attention throughout to proper random variables.
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Figure 5: The pdf and cdf for the mixed random variable Y .

simply the indefinite integral of fX :

FX(x) =

∫ x

−∞
fX(u) du.

For example, the cdf FU for the U [0, 1] random variable U defined above is

FU (x) =


0 if x < 0;

x if 0 ≤ x ≤ 1;

1 if x > 1.

The pdf and cdf for a U [0, 1] random variable are plotted in Figure 3. On the other hand, the

cdf FX of a discrete random variable X is piecewise constant. The jumps occur at, and only

at, the points in the support set S, and the magnitude of the jump at x ∈ S equals pX(x); see

Figure 4. A random variable can also have a mixed distribution, part discrete and part continuous.

For example, Figure 5 shows the pdf and cdf for a mixed random variable Y such that with 20%

probability Y equals 0.5, with 30% probability Y is uniformly distributed between 1.0 and 1.5, with

10% probability Y equals 2.0, and with 40% probability Y is uniformly distributed between 2.5 and

3.0. When displaying the pdf for a mixed random variable, we treat the pdf at the discrete points

of support as a Dirac delta function or “impulse” function that places a specified “probability mass”

at the point in question.

In general, it suffices to define the cdf FX for a random variable X in order to completely specify

its distribution. If X is discrete, then we can compute the pmf from the cdf using the relationship

pX(x) = FX(x)−FX(x−), where FX(x−) is shorthand for limε→0 F (x− ε). It follows from the fact

that FX is piecewise constant that if X has support on the integers, then pX(i) = FX(i)−FX(i−1)

for each integer i. If X is continuous, then we can compute the pdf from the cdf by differentiation.

For mixed random variables, we can use a combination of these two techniques.

5 Multiple Random Variables

It is often the case that two or more random variables are defined on a given probability space

(Ω, P ). In our discussion, we will mostly focus on the case of two random variables X and Y , the

9
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generalization of our results to three or more random variables being obvious.

5.1 Joint, Marginal, and Conditional Distributions

We can describe the joint probability distribution of X and Y by means of the joint cdf FX,Y , where

FX,Y (x, y) = P {X ≤ x, Y ≤ y }.5 If X and Y are both discrete, we can also describe the joint

distribution using the joint pmf pX,Y (x, y) = P {X = x, Y = y }. If X and Y are both continuous,

then (assuming differentiability) we can describe the joint distribution using the joint pdf defined

by fX,Y = dFX,Y /dx dy. Given a joint distribution of X and Y , we might be interested in the

marginal distribution of X alone. The marginal cdf of X is defined in terms of the joint cdf by

FX(x) = P {X ≤ x } = P {X ≤ x, Y <∞} = FX,Y (x,∞).

If X and Y are both discrete or both continuous, then the marginal pmf or marginal pdf of X can

be computed from the corresponding joint distribution:

pX(x) = P {X = x } =
∑
y

pX,Y (x, y) or fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy.

Of course, we can define quantities FY (y), pY (y), and fY (y) in an analogous manner to obtain the

marginal distribution of Y .

For discrete random variables X and Y , we can define the conditional pmf of X, given that

Y = y, by adapting our general definition of conditional probability:

pX|Y (x|y) = P {X = x | Y = y } =
P {X = x, Y = y }

P {Y = y }
=
pX,Y (x, y)

pY (y)
.

If X and Y are both continuous, then a natural definition for a conditional pdf is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

We conclude this section by giving a continuous analogue of Bayes’ Rule (3.4):

fX|Y (x|y) =
fY |X(y|x)fX(x)∫∞

−∞ fY |X(y|x′)fX(x′) dx′
(5.1)

This rule shows how to update the prior density fX of the random variable X to a posterior density

fX|Y given the observation Y = y. The conditional density fY |X is called the likelihood of Y , given

the value of X. For example, if X has a Beta(α, β) distribution (see Sec. 7.5 below) and Y has a

Binom(n,X) distribution (see Sec. 7.7), then

fX|Y (x|y) =

(
n
y

)
xy+α−1(1− x)n−y+β−1/B(α, β)∫ 1

0

(
n
y

)
zy+α−1(1− z)n−y+β−1 dz/B(α, β)

=
xy+α−1(1− x)n−y+β−1

B(y + α, n− y + β)
.

That is, fX|Y is the pdf of a Beta(α + Y, β + n − Y ) distribution. Because the prior and poste-

rior distributions belong to the same family, they are called conjugate distributions, and the beta

distribution is called a conjugate prior for the binomial distribution.

5We use notation such as P {X ≤ x, Y ≤ y } instead of the more cumbersome notation P ({X ≤ x} ∩ {Y ≤ y}).
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5.2 Independent Random Variables

The real-valued random variables X1, X2, . . . , Xn are mutually independent if

P {X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An } = P {X1 ∈ A1 }P {X2 ∈ A2 } · · ·P {Xn ∈ An }

for every collection of subsets A1, A2, . . . , An of the real line. To establish independence, it suffices

to show that

P {X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn } = P {X1 ≤ x1 }P {X2 ≤ x2 } · · ·P {Xn ≤ xn }

for every set of real numbers x1, x2, . . . , xn, i.e., it suffices to show that the joint cdf factors. If

X1, X2, . . . , Xn are all discrete or all continuous, then it suffices to show that the joint pmf or joint

pdf factors:

pX1,X2,...,Xn(x1, x2, . . . , xn) = pX1(x1)pX2(x2) · · · pXn(xn)

or

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn).

A countably infinite collection of random variables is said to be mutually independent if the random

variables in each finite subcollection are independent. Observe that X and Y are independent if

and only if the conditional pmf or pdf equals the marginal pmf or pdf for X.

6 Expectation

6.1 Definition

The expected value (aka the mean) of a random variable X, denoted E [X], is one way of roughly

indicating where the “center” of the distribution of X is located. It also has the interpretation of

being the average value of X over many repetitions of the probabilistic experiment. The idea is to

weight each value of X by the probability of its occurrence. If X is discrete, then we define

E [X] =
∑
ai∈S

aipX(ai),

and if X is continuous, then we define

E [X] =

∫ ∞
−∞

xfX(x) dx.

If X is a mixed random variable, then we compute the expected value by combining summation

and integration. For example, consider the random variables U , X, and Y whose distributions are

displayed in Figures 3 through 5. The expectations for these random variables are computed as

E [U ] =

∫ ∞
−∞

xfU (x) dx =

∫ 1

0
x dx =

x2

2

∣∣∣∣1
0

= 1/2,
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E [X] =
∑
ai∈S

aipX(ai) = 0.5 pX(0.5)+1.5 pX(1.5)+3.0 pX(3.0) = 0.5 (0.3)+1.5 (0.5)+3.0 (0.2) = 1.5,

and

E [Y ] = 0.5 (0.2) +

∫ 1.5

1.0
0.6x dx+ 2.0 (0.1) +

∫ 3.0

2.5
0.8x dx = 1.775.

Observe that, for an indicator random variable I(A), we have

E [I(A)] = 1 · P { I(A) = 1 }+ 0 · P { I(A) = 0 } = P { I(A) = 1 } = P (A).

So that results about expectation can sometimes be used to obtain results about probability by

judicious use of indicator functions.

The expected value of a random variable need not exist. A well known example of a distribution

that is ill-behaved in this way is the Cauchy distribution, whose pdf is given by

fX(x) =
1

π(1 + x2)
, −∞ < x <∞,

and for which the expected value is undefined. A random variable having a well defined and finite

expected value is said to be integrable.

We often are interested in the expected value of a function g of a random variable:

E [g(X)] =
∑
ai∈S

g(ai)pX(ai) or

∫ ∞
−∞

g(x)fX(x) dx,

for X discrete or continuous, respectively. As with simple expectation, mixed random variables

are handled using a combination of summation and integration. Sometimes computations of ex-

pectations can be simplified via a change of variable. E.g., suppose that u = g(x) for a monotone

function g with inverse ginv, so that x = ginv(u) and, roughly speaking, dx = g′inv(u) du, where g′inv
is the derivative of ginv. Then∫ b

a
φ(x) dx =

∫ g(b)

g(a)
φ
(
ginv(u)

)
g′inv(u) du.

For example, if g(x) = x3, then ginv(u) = u1/3 and g′inv(u) = 1
3u
−2/3, so that, e.g.,∫ a

0
x2 dx =

∫ a3

0
(u1/3)2

1

3
u−2/3 du =

1

3

∫ a3

0
du = a3/3.

Now consider the case of two variables x and y with u = g(x, y) and v = h(x, y), and suppose

that x = ginv(u, v) and y = hinv(u, v) for appropriate functions ginv and hinv. Then the change-of-

variables formula is∫∫
A
φ(x, y) dx dy =

∫∫
B
φ
(
ginv(u, v), hinv(u, v)

)
W (u, v) du dv,

where B =
{ (
g(x, y), h(x, y)

)
: (x, y) ∈ A

}
and

W (u, v) =

∣∣∣∣∂ginv(u, v)

∂u

∂hinv(u, v)

∂v
− ∂ginv(u, v)

∂v

∂hinv(u, v)

∂u

∣∣∣∣ .
12
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That is, W (u, v) is the absolute value of the determinant of the “Jacobian” matrix

J(u, v) =

(
∂ginv(u,v)

∂u
∂ginv(u,v)

∂v
∂hinv(u,v)

∂u
∂hinv(u,v)

∂v

)
.

In the special case where u = g(x), v = h(y), and A = [a1, a2] × [b1, b2], we have x = ginv(u) and

y = hinv(v), and the above formula specializes to∫ a2

a1

∫ b2

b1

φ(x, y) dx dy =

∫ g(a2)

g(a1)

∫ h(b2)

h(b1)
φ
(
ginv(u), hinv(v)

)
g′inv(u)h′inv(v) du dv.

6.2 Basic Properties

We now state some basic properties of the expectation operator. Here and elsewhere, a property

of a random variable is said to hold almost surely (a.s.) if it holds with probability 1.

If X and Y are random variables and a and b are real-valued constants, then

(i) X is integrable if and only if E [|X|] <∞.

(ii) If X = 0 a.s., then E [X] = 0.

(iii) If X and Y are integrable with X ≤ Y a.s., then E [X] ≤ E [Y ].

(iv) If X and Y are integrable, then E [aX + bY ] = aE [X] + bE [Y ].

(v) |E [X] | ≤ E [|X|].

(vi) If X and Y are independent, then E [XY ] = E [X]E [Y ].

Note that, in general, E [XY ] = E [X]E [Y ] does not imply that X and Y are independent.

6.3 Moments, Variance, Standard Deviation

The rth moment of a random variable X is E [Xr] and the rth central moment is E [(X − µ)r],

where µ = E [X]—the second central moment is called the variance of X and denoted Var [X]. It

is easy to show that

Var [X] = E[X2]− µ2.

The standard deviation of X is defined as the square root of the variance: Std [X] = Var1/2 [X].

For real numbers c and d, we have Var [cX + d] = c2 Var [X] and Std [cX + d] = |c| Std [X]. The

variance and standard deviation measure the degree to which the probability distribution of X

is concentrated around its mean µ = E [X]. When the variance or standard deviation equals 0,

then X = µ with probability 1. The larger the variance or standard deviation, the greater the

probability that X can take on a value far away from the mean.

We frequently talk about moments of distributions, rather than random variables. E.g., the

mean µ and variance σ2 of a random variable X having cdf F and pdf f are given by

µ =

∫ ∞
−∞

xf(x) dx and σ2 =

∫ ∞
−∞

(x− µ)2f(x) dx.

13
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Figure 6: Definition of a convex function.

We may refer to µ and σ2 as the “mean and variance of X,” the “mean and variance of f ,” or

“mean and variance of F .” Sometimes one may see the notation

µ =

∫ ∞
−∞

x dF and σ2 =

∫ ∞
−∞

(x− µ)2 dF

used for these quantities; this notation is mostly used to refer to situations in which X is a mixed

random variable, so that F has some discontinuities. In this case, moments are computed by

a combination of integration (over the intervals where F is differentiable) and summation (over

the discontinuity points). E.g., for the mixed random variable Y in Figure 5, we have E [Y ] =

(0.5)(0.2) + (2)(0.1) +
∫ 1.5
1.0 0.6y dy +

∫ 3.0
2.5 0.8y dy = 1.775.

6.4 Identities and Inequalities

There are many identities and inequalities for moments of random variables—a very useful inequal-

ity for our purposes is Hölder’s inequality: let X and Y be random variables, and let p and q be

constants such that 1 < p <∞ and 1/p+ 1/q = 1. Then

E [|XY |] ≤ E1/p [|X|p]E1/q [|Y |q] .

Take p = q = 2 to obtain the Cauchy–Schwarz inequality:

E [|XY |] ≤ E1/2
[
X2
]
E1/2

[
Y 2
]
.

In particular, E2 [X] ≤ E
[
X2
]
—take Y ≡ 1 and use the fact that E [X] ≤ E [|X|]. Next, fix

0 < α ≤ β and take X = |Z|α, Y ≡ 1, and p = β/α in Hölder’s inequality to obtain

E1/α [|Z|α] ≤ E1/β
[
|Z|β

]
,

14
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which is Lyapunov’s inequality. Observe that if a nonnegative random variable X has a finite

rth moment for some r > 0, then Lyapunov’s inequality implies that X has a finite qth moment

for q ∈ (0, r]. We conclude our discussion of inequalities with Jensen’s inequality. Recall that a

function f is convex if for every real x, y, and p with x < y and p ∈ [0, 1] we have f
(
px+(1−p)y

)
≤

pf(x)+(1−p)f(y); see Figure 6. If the foregoing inequality is reversed, then f is said to be concave.

Jensen’s inequality asserts that

f(E [X]) ≤ E [f(X)]

for any convex function f and random variable X. The inequality holds in the reverse direction for

concave functions. An application of Jensen’s inequality yields an alternative proof of the previous

assertion that E2 [X] ≤ E
[
X2
]
, since the function f(x) = x2 is convex.

A useful representation of the rth moment (r ≥ 1) of a nonnegative continuous random variable

X is as follows:

E [Xr] =

∫ ∞
0

rxr−1F̄X(x) dx,

where F̄X = 1− FX . In particular, taking r = 1, we find that

E [X] =

∫ ∞
0

F̄X(x) dx. (6.1)

A simple proof of this result when X is continuous is as follows:

E [Xr] =

∫ ∞
0

urfX(u) du =

∫ ∞
0

(∫ u

0
rxr−1 dx

)
fX(u) du

=

∫ ∞
0

∫ ∞
x

rxr−1fX(u) du dx =

∫ ∞
0

rxr−1F̄X(x) dx.

Here the third equality is obtained by changing the order of integration. A similar argument using

sums instead of integrals shows that the result in (6.1) holds for discrete random variables also.

6.5 Covariance and Correlation

The covariance of two random variablesX and Y with respective means µX = E [X] and µY = E [Y ]

is defined as

Cov [X,Y ] = E [(X − µX)(Y − µY )]

and measures the degree to which a linear relationship holds between X and Y . A normalized

version of the covariance that is independent of the units in which X and Y are expressed, i.e.,

that is scale invariant, is the correlation coefficient ρX,Y , defined by

ρX,Y =
Cov [X,Y ]

σXσY
,

where σ2X and σ2Y are the variances of X and Y . The quantity ρ is more formally known as the

“Pearson linear correlation coefficient.” The Cauchy-Schwartz inequality implies that −1 ≤ ρX,Y ≤
1. A value of ρX,Y close to 1 (resp., -1) indicates a strong positive (resp., negative) linear relationship

15
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Figure 7: Samples of (X,Y ) pairs from distributions with various correlation values.

between X and Y , whereas a value of ρX,Y close to 0 indicates the absence of a discernable linear

relationship; see Figure 7, which plots some samples from the joint distribution of (X,Y ) under

several different scenarios. Note that ρX,Y is close to 0 in Figure 7(d), even though there is a

strong relationship between X and Y—the reason is that the relationship is nonlinear. It follows

from basic property (vi) of expectation that if X and Y are independent, then Cov [X,Y ] = 0; the

converse assertion is not true in general.

Some simple algebra shows that

Var

[ n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi] +
∑
i 6=j

Cov [Xi, Xj ] ,

so that

Var

[ n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi]

if X1, X2, . . . , Xn are mutually independent.

7 Some Important Probability Distributions

In this section we discuss some probability distributions that play a particularly important role in

our study of simulation; see Tables 6.3 and 6.4 in the textbook for more details. We start with

several continuous distributions.

16
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7.1 Uniform Distribution

We have already discussed the U [0, 1] distribution. In general, the distribution of a random variable

that is equally likely to take on a value in a subinterval [a, b] of the real line is called the uniform

distribution on [a, b], abbreviated U [a, b]. The pdf and cdf for a U [a, b] random variable U are

given by

fU (x) =


0 if x < a;

1/(b− a) if a ≤ x < b;

0 if x ≥ b

and FU (x) =


0 if x < a;

(x− a)/(b− a) if a ≤ x ≤ b;

1 if x > b.

(7.1)

If U is a U [0, 1] random variable, then V = a+ (b− a)U is a U [a, b] random variable. The easiest

way to prove this assertion (and many others like it) is to work with the cdf of each random

variable:

FV (x) = P {V ≤ x } = P { a+ (b− a)U ≤ x } = P {U ≤ (x− a)/(b− a) } = FU
(
(x− a)/(b− a)

)
.

By inspection, FU
(
(x − a)/(b − a)

)
coincides with the function FU in (7.1). The pdf fU is then

obtained from FU by differentiation. The mean and variance of the U [a, b] distribution are (a+b)/2

and (b− a)2/12.

7.2 Exponential Distribution

The pdf and cdf of an exponential distribution with intensity λ, abbreviated Exp(λ), are

f(x) =

0 if x < 0;

λe−λx if x ≥ 0
and F (x) =

0 if x < 0;

1− e−λx if x ≥ 0

This distribution is also called the “negative exponential distribution.” The mean and variance are

given by 1/λ and 1/λ2. A key feature of this distribution is the “memoryless” property: if X is an

Exp(λ) random variable and u, v are nonnegative constants, then

P {X > u+ v | X > u } =
P {X > u+ v }
P {X > u }

=
F̄ (u+ v)

F̄ (u)
=
e−(u+v)

e−u
= e−v = P {X > v } ,

where, as before F̄ = 1 − F . E.g., suppose that X represents the waiting time until a specified

event occurs. Then the probability that you have to wait at least v more time units is independent

of the amount of time u that you have already waited; at time t = u, the “past” has been forgotten

with respect to estimating the probability distribution of the remaining time until the event occurs.

Another important property of the exponential distribution concerns the distribution of Z =

min(X,Y ), where X is Exp(λ1), Y is Exp(λ2), and X and Y are independent. The distribution of

Z can be computed as follows:

P {Z > z } = P {min(X,Y ) > z } = P {X > z, Y > z } = P {X > z }P {Y > z }

= e−λ1ze−λ2z = e−(λ1+λ2)z.
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That is, the distribution of Z is also exponential, but with parameter λ = λ1 +λ2. The probability

that X < Y can be computed using indicator functions together with a continuous version of the

law of total probability:

P {X < Y } =

∫ ∞
0

P {X < Y | Y = y } fY (y) dy =

∫ ∞
0

P {X < y | Y = y } fY (y) dy

=

∫ ∞
0

P {X < y } fY (y) dy =

∫ ∞
0

FX(y)fY (y) dy =

∫ ∞
0

(1− e−λ1y)λ2e−λ2y dy

=

∫ ∞
0

λ2e
−λ2y dy − λ2

∫ ∞
0

e−(λ1+λ2)y dy = 1− λ2/(λ1 + λ2) = λ1/(λ1 + λ2).

Here the third equality follows from the independence of X and Y , and the fourth equality follows

from the fact that P {X = y } = 0 for any fixed y. An easy inductive argument generalizes these

results to an arbitrary number of independent exponential random variables.

7.3 Normal and Related Distributions

The pdf φ of a normal (aka Gaussian) distribution with mean µ and variance σ2 is

φ(x;µ, σ2) =
1√

2πσ2
e(x−µ)

2/(2σ2)

for −∞ < x <∞. We abbreviate this distribution as N(µ, σ2). There is no closed form expression

for the cdf Φ(x;µ, σ2), and values of Φ must be computed numerically or looked up in tables.

Two normal random variables X and Y are independent if and only if Cov [X,Y ] = 0. Let X be

N(µX , σ
2
X) and Y be N(µY , σ

2
Y ) independent of X, and let c and d be real constants. Then aX+ b

is N(aµX + b, a2σ2X) and X + Y is N(µX + µY , σ
2
X + σ2Y ). In particular, if X is N(µX , σ

2
X), then

(X−µX)/σX is N(0, 1), that is, X has the standard normal distribution in which µ = 0 and σ2 = 1.

We often denote the standard normal pdf and cdf simply as φ(x) and Φ(x).

The distribution of Y = eX , where X is a normal random variable, is called the lognormal

distribution; i.e., the logarithm of Y has a normal distribution. The distribution of X2
1 +X2

2 + · · ·+
X2
k , where k ≥ 1 and X1, X2, . . . , Xk are independent standard normal random variables, is called

the chi-square distribution with k degrees of freedom, abbreviated as χ2
k. If X is N(0, 1) and Y is χ2

k,

then the random variable T = X/
√
Y/k has the Student t distribution with k degrees of freedom,

abbreviated tk. This distribution looks similar to the N(0, 1) distribution but with fatter tails, i.e.,

higher variance—see Figure 8. As k increases, the Student t distribution becomes identical to the

normal distribution.

7.4 Gamma Distribution

The pdf of the Gamma distribution with shape parameter α and rate parameter λ, abbreviated

Gamma(α, λ), is given by

f(x;α, λ) = λe−λx(λx)α−1/Γ(α)

18
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Figure 8: pdf for standard normal distribution snd Student t distribution with 2 degrees of freedom.

for x ≥ 0 and f(x;α, λ) = 0 for x < 0. Here Γ(α) is the gamma function, defined by Γ(α) =∫∞
0 xα−1e−x dx and satisfying Γ(α) = (α − 1)! whenever α is a postive integer. The mean and

variance of the distribution are α/λ and α/λ2.

7.5 Beta Distribution

The pdf of the Beta distribution with parameters α and β, abbreviated Beta(α, β), is given by

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)

if x ∈ [0, 1], and f(x;α, β) = 0 otherwise. Here B(α, β) is the beta function, defined by B(α, β) =∫ 1
0 x

α−1(1− x)β−1 dx and satisfying B(α, β) = Γ(α)Γ(β)/Γ(α+ β). The mean and variance of the

distribution are α/(α+ β) and αβ(α+ β)−2(α+ β + 1)−1.

7.6 Discrete Uniform Distribution

We now discuss some important discrete distributions. A discrete uniform random variable X with

range [n,m], abbreviated DU [n,m], is equally likely to take on the values n, n + 1, . . . ,m, i.e.,

pX(k) = 1/(m−n+ 1) for k = n, n+ 1, . . . ,m. The mean and variance are given by (n+m)/2 and

[(m− n+ 1)2 − 1]/12. If U is a continuous U [0, 1] random variable, then V = bn+ (m− n+ 1)Uc
is DU [n,m], where bxc is the largest integer less than or equal to x. Here’s a proof: fix k ∈
{n, n+ 1, . . . ,m } and observe that

P {V = k } = P { bn+ (m− n+ 1)Uc = k } = P { k ≤ n+ (m− n+ 1)U < k + 1 }

= P

{
k − n

m− n+ 1
≤ U <

k − n+ 1

m− n+ 1

}
=

1

m− n+ 1
.

19



CS 590M

7.7 Bernoulli and Binomial Distributions

The Bernoulli distribution with parameter p, abbreviated Bern(p), has pmf given by p(1) = 1 −
p(0) = p. That is, a Bern(p) random variable X equals 1 with probability p and 0 with probability

1−p. Often, X is interpreted as an indicator variable for a “Bernoulli trial with success probability

p.” Here X = 1 if the trial is a “success” and X = 0 if the trial is a “failure.” The mean and

variance are given by p and p(1− p).
The number of successes Sn in n independent Bernoulli trials, each with success probability p,

can be represented as Sn = X1 + X2 + · · · + Xn, where X1, X2, · · · , Xn are independent Bern(p)

random variables. The random variable Sn has the binomial distribution with parameters n and p,

abbreviated Binom(n, p). The pmf is given by

p(k) =

(
n

k

)
pk(1− p)n−k

for k = 0, 1, . . . , n. The mean and variance are given by np and np(1− p).

7.8 Geometric Distribution

The geometric distribution with parameter p, abbreviated Geom(p), has support on the nonnegative

integers and a pmf and cdf given by

p(k) = p(1− p)k and F (k) = 1− (1− p)k+1

for k = 0, 1, 2, . . ., where p ∈ [0, 1]. The mean and variance are given by (1− p)/p and (1− p)/p2.
Observe that, if X is Geom(p), then

P {X ≥ m+ n | X ≥ m } =
P {X ≥ m+ n }
P {X ≥ m }

=
F̄ (m+ n− 1)

F̄ (m− 1)

=
(1− p)m+n

(1− p)m
= (1− p)n = P {X ≥ n } ,

so that the Geom(p) distribution has a memoryless property analogous to that of the exponen-

tial distribution. Indeed, the geometric distribution can be viewed as the discrete analog of the

exponential distribution.

7.9 Poisson Distribution

The Poisson distribution with parameter λ, abbreviated Poisson(λ), has support on the nonnegative

integers and a pdf given by

p(k) =
e−λλk

k!

for k = 0, 1, 2, . . ., where λ > 0. The mean and variance are both equal to λ.
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y 1 2 3 4 5 6

E [X | Y = y] 27/6 33/6 39/6 45/6 51/6 57/6

Table 2: Conditional expectation of X = Y + Z, given Y , for the two-dice experiment.

8 Conditional Expectation

8.1 Definition

If X is a discrete random variable, then we define the conditional expectation of X, given that

event B has occurred, as

E [X | B] =
∑
x

xP {X = x | B } .

If X is an indicator random variable of the form I(A) then this definition reduces to our definition

of conditional probability in (3.1).

An important special case occurs when B = {Y = y }, where Y is a discrete random variable

defined on the same probability space as X and y is a real number such that P (B) = P {Y = y } >
0. Then we can write

E [X | Y = y] =
∑
x∈S

x pX|Y (x|y).

For example, in the two-dice experiment with fair and independent dice, if Y is the number of

spots on the black die, Z is the number of spots on the white die, and X = Y + Z, then, based on

Table 1, we have E [X] = 7. On the other hand, we have, for example,

pX|Y (2|1) = P {X = 2 | Y = 1 } =
P {X = 2, Y = 1 }

P {Y = 1 }
=

1/36

6/36
= 1/6,

and similar calculations show6 that pX|Y (x|1) = P {X = x | Y = 1 } = 1/6 for x = 3, 4, 5, 6, 7.

Thus

E [X | Y = 1] =

7∑
x=2

x pX|Y (x|1) =

7∑
x=2

x (1/6) = 27/6.

Continuing in this manner, we obtain the results in Table 2.

If X and Y are continuous, then we define

E [X | Y = y] =

∫ ∞
−∞

xfX|Y (x|y) dx.

This definition has the same form as in the discrete case, but with the conditional pdf playing the

role of the conditional pmf.

In both the discrete and continuous cases, we can interpret the quantity E [X | Y = y] as an

observer’s computation of the expected value of X, given the additional information that the

6Alternatively, note that, for x = 2, 3, 4, 5, 6, 7, we have P {X = x | Y = 1 } = P {Z = x− 1 | Y = 1 } =

P {Z = x− 1 } = 1/6, where the second equality follows from the independence of Y and Z and the third equality

follows from the fairness of the white die.
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outcome of the probabilistic experiment was such that Y = y. Suppose that before we run the

experiment, we decide that we will tell the observer the value of Y and then ask the observer to assess

the conditional expected value of X, given Y . What is our a priori assessment of the observer’s

answer? First note that we can view the quantity E [X | Y = y] as a deterministic function g(y)

of the variable y. E.g., in Table 2, we have g(1) = 27/6, g(2) = 33/6, and so forth. Prior to the

experiment, we view Y as a random variable and our a priori assessment of the observer’s answer

is g(Y ), which is also a random variable. We write E [X | Y ] for the random variable g(Y ). In the

two-dice experiment for example, we have P {Y = y } = 1/6 for y = 1, 2, 3, 4, 5, 6, so that, from

Table 2, we see that E [X | Y ] = 27/6 with probability 1/6, E [X | Y ] = 33/6 with probability 1/6,

and so forth.

We can extend our definition of conditional expectation in an obvious way to define quantities

such as E [X | Y1, Y2 . . . , Yn] for n ≥ 2; sometimes we abbreviate such a conditional expectation

using notation of the form E [X | G], where G = {Y1, Y2 . . . , Yn }. Indeed, we can use this notation

even when G is a singleton set—so that G = {Y } for some Y—by equating E [X | G] with E [X | Y ].

8.2 Basic Properties of Conditional Expectation

Some basic properties of conditional expectation are as follows. Let X, and Y be random variables

and G a collection of one or more random variables, and let a, b, and c be real-valued constants.

Then

(i) If X = c a.s., then E [X | G] = c a.s..

(ii) If X and Y are integrable with X ≤ Y a.s., then E [X | G] ≤ E [Y | G] a.s..

(iii) |E [X | G] | ≤ E [|X| | G] a.s..

(iv) If X and Y are integrable, then E [aX + bY | G] = aE [X | G] + bE [Y | G] a.s..

Each of the above properties is asserted to hold almost surely, since the conditional expectations

are random variables. On the other hand, these properties can often be expressed without reference

to almost sure events. For example, consider the property in (i) when G = {Z } and Z is discrete.

For E [X | Z] = c to hold almost surely, it must be the case that E [X | Z = z] = c for each z such

that P {Z = z } > 0. Similarly, the conclusion in (ii) implies that E [X | Z = z] ≤ E [Y | Z = z]

for each z such that P {Z = z } > 0. Each of the remaining properties can be specialized in this

manner.

Another key property is the law of total expectation, which asserts that7 E [X] = E
[
E [X | G]

]
.

When G = {Y } with Y either discrete or continuous, the law of total expectation is often written

as

E [X] =
∑
y

E [X | Y = y]P {Y = y }

7The phrase “almost surely” does not appear here, since we are asserting the equality of two numbers.
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or

E [X] =

∫ ∞
−∞

E [X | Y = y] fY (y) dy.

If we take X = I(A) and Y =
∑n

k=1 kI(Bk), where B1, B2, . . . , Bn are mutually disjoint events

such that B1 ∪ B2 ∪ · · · ∪ Bn = Ω, then the law of total expectation reduces to the law of total

probability given in (3.2).

Under certain conditions, a conditional expectation can be “factored” into two multiplicative

terms. Specifically, suppose that the value of a random variable X can be determined exactly from

the values of the random variables in the collection G. If the random variables Y and XY are both

integrable, then

E [XY | G] = XE [Y | G] a.s..

It follows from this result, for example, that E
[
X2Y | X

]
= X2E [Y | X] a.s..

The final property of conditional expectation that we consider concerns the effects of condition-

ing on different amounts of information. Let X be an integrable random variable, and let G1 and

G2 be collections of random variables such that G1 ⊆ G2. Then

E
[
E [X | G1]

∣∣ G2] = E
[
E [X | G2]

∣∣ G1] = E [X | G1] a.s..

For example, it follows that E [X | Y ] = E
[
E [X | Y, Z]

∣∣ Y ] a.s.. If all of the random variables are

discrete, this assertion implies that

E [X | Y = y] =
∑
z

E [X | Y = y, Z = z] pZ|Y (z|y)

for any y such that P {Y = y } > 0.

8.3 Conditional Probability with Respect to Random Variables

Conditional probabilities with respect to a collection G of random variables can be defined by setting

P (A | G) = E [I(A) | G]. Observe that P (A | G) is a random variable. The properties of such

conditional probabilities follow directly from the analogous properties of conditional expectations.

8.4 Conditional Moments, Variance Decomposition

We can define higher-order conditional moments and conditional central moments, such as

Var [X | G] = E[X2 | G]− E2 [X | G] .

Observe that

E
[
Var [X | G]

]
= E

[
E[X2 | G]− E2 [X | G]

]
= E

[
E[X2 | G]

]
− E

[
E2 [X | G]

]
= E[X2]− E

[
E2 [X | G]

]
and

Var
[
E [X | G]

]
= E

[
E2 [X | G]

]
− E2

[
E [X | G]

]
= E

[
E2 [X | G]

]
− E2 [X] ,
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where we have used the law of total expectation. Combining these results, we obtain the important

relationship

Var [X] = Var
[
E [X | G]

]
+ E

[
Var [X | G]

]
.

This decomposition of the variance is a key ingredient in a variety of variance-reduction techniques

for simulation output analysis.

9 Stochastic Convergence and Basic Limit Theorems

The statistical methods used to analyze the output of a simulation rest on limit theorems for

sequences of random variables. Such limit theorems involve several different modes of convergence.

9.1 Modes of Convergence

Let X and {Xn : n ≥ 1 } be random variables defined on a common probability space. Then the

sequence {Xn : n ≥ 1 } converges with probability 1 to X if

P
{

lim
n→∞

Xn = X
}

= 1.

We also say that the sequence converges to X almost surely (a.s.), and we often write “Xn → X

a.s. as n → ∞” or “limn→∞Xn = X a.s..” A weaker form of convergence is “convergence in

probability.” We say that the sequence {Xn : n ≥ 1 } converges in probability to X if

lim
n→∞

P { |Xn −X| ≤ ε } = 1

for every ε > 0, and we write Xn
pr→ X. A still weaker form of convergence is as follows. The

sequence {Xn : n ≥ 1 } converges in distribution to X if

lim
n→∞

P {Xn ≤ x } = P {X ≤ x }

for each x at which the cdf of X is continuous, and we write Xn ⇒ X. Observe that the random

variables involved in the foregoing definition need not be defined on the same probability space.

Setting F (x) = P {X ≤ x } and Fn(x) = P {Xn ≤ x } for each n, convergence in distribution is

sometimes expressed as “weak convergence” of the cdf sequence {Fn : n ≥ 1 } to F :

lim
n→∞

Fn(x) = F (x)

for each x at which F is continuous, and we write Fn ⇒ F . In our applications, the limiting

distribution is typically continuous, e.g., the N(0, 1) distribution, so that convergence must occur

for every point x. The following assertions summarize the relationships between the various modes

of convergence:

(i) If Xn → X a.s., then Xn
pr→ X.

(ii) If Xn
pr→ X, then Xn ⇒ X.
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(iii) If Xn ⇒ c for some real constant c, then X
pr→ c.

By “Xn ⇒ c” in the foregoing result, we mean that the sequence {Xn : n ≥ 1 } converges to the

degenerate random variable that equals c with probability 1.

An important result concerning convergence in distribution is the continuous mapping theorem,

which states that if Xn ⇒ X, then h(Xn)⇒ h(X) for any continuous function h. (This same result

holds trivially for the other two modes of convergence.) Another key result is Slutsky’s theorem: If

Xn ⇒ X and if Yn ⇒ c for some real-valued constant c, then

(i) Xn + Yn ⇒ X + c;

(ii) YnXn ⇒ cX; and

(iii) Xn/Yn ⇒ X/c provided c 6= 0.

9.2 Limit Theorems

Now that we have defined various modes of stochastic convergence, we are ready to discuss limit

theorems for random variables. The most basic limit theorems involve a sequence {Xn : n ≥ 1 }
of mutually independent and identically distributed (i.i.d.) random variables. Denote by X̄n the

average of the first n random variables (n ≥ 1):

X̄n =
1

n

n∑
i=1

Xi.

The strong law of large numbers (slln) for i.i.d. random variables asserts that, if µ = E [X1] <∞,

then

lim
n→∞

X̄n = µ a.s..

That is, with probability 1 the sample average of the Xi’s converges to the common expected value

of these random variables. In the historically earliest version of the slln, each Xi is a Bern(p)

random variable. In this setting, the slln asserts that X̄n, the fraction of successes in n trials,

converges almost surely to p, the success probability, as the number of trials increases.

The central limit theorem (clt) for i.i.d. random variables provides information about the

approximate distribution of the random variable X̄n as n becomes large, and illuminates the rate

of convergence in the slln. As above, let {Xn : n ≥ 0 } be a sequence of i.i.d. random variables

with common mean µ and common variance σ2. The clt asserts that if 0 < σ2 <∞, then
√
n(X̄n − µ)

σ
⇒ N(0, 1)

as n → ∞, where N(0, 1) is a standard (mean 0, variance 1) normal random variable. Intuitively,

X̄n is distributed approximately as µ+ (σ/
√
n)N(0, 1), and hence as N(µ, σ2/n), when the sample

size n is large. Note that the asymptotic variance σ2/n converges to 0 as n becomes large, so

that the probability distribution of X̄n becomes increasingly concentrated around µ; this behavior

is consistent with the slln. (The slln, of course, makes an even stronger assertion about the

convergence of X̄n to µ.)
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10 Estimating Means and Variances

In this section, we consider the problem of estimating the mean µ and variance σ2 (both assumed

unknown to us) of a probability distribution, given a set of n independent and identically distributed

(i.i.d.) observations X1, X2, . . . , Xn drawn from this distribution.

We first define two desirable properties for a general estimator Zn of an unknown parameter

θ, where Zn is computed from i.i.d. observations X1, X2, . . . , Xn. The estimator Zn is said to be

unbiased for θ if E [Zn] = θ for each n, and is strongly consistent for θ if Zn → µ with probability 1

as n → ∞. An unbiased estimator Zn is equal “on average” to the quantity that it is trying to

estimate—there are no systematic errors that cause Zn to consistently be too high or too low over a

sequence of probabilistic experiments. The value of a strongly consistent estimator becomes (with

probability 1) closer and closer to the quantity that it is trying to estimate as the sample size

becomes larger and larger. I.e., the more observations, the better the estimate.

10.1 Point Estimates of the Mean and Variance

A natural point estimator of µ is the sample average X̄n = (1/n)
∑n

i=1Xi. Observe that

E[X̄n] = E
[ 1

n
(X1 +X2 + · · ·+Xn)

]
=

1

n

(
E[X1] + E[X2] + · · ·+ E[Xn]

)
=

1

n
(nµ) = µ,

Thus X̄n is unbiased for µ. Moreover, the law of large numbers implies that X̄n is strongly consistent

for µ: X̄n → µ a.s. as n→∞.

A perhaps unnatural point estimator of σ2 is the sample variance

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2 =
n

n− 1

(
1

n

n∑
i=1

X2
i − X̄2

n

)
.

To compute the expected value of S2
n, we can assume without loss of generality that µ = 0, so that

Var [X] = E[X2], since adding a constant c to each Xi does not affect the value of S2
n. (Here X

denotes a generic sample from the distribution of interest.) Then

E

[
n− 1

n
S2
n

]
= E

 1

n

∑
i

X2
i −

1

n2

∑
i

∑
j

XiXj

 = E

n− 1

n2

n∑
i=1

X2
i −

1

n2

∑
i 6=j

XiXj


=
n− 1

n2

n∑
i=1

E[X2
i ]− 1

n2

∑
i 6=j

E [XiXj ] =
n− 1

n
E[X2] =

n− 1

n
Var [X] ,

where we have used the fact that, by independence, E [XiXj ] = E [Xi]E [Xj ] = µ2 = 0 for i 6= j.

Thus E[S2
n] = σ2, and S2

n is unbiased for σ2. This result motivates the use of the factor 1/(n− 1)

rather than 1/n in the definition of S2
n. It follows from the slln that, provided Var [X] < ∞,

limn→∞(1/n)
∑n

i=1X
2
i = E[X2] a.s. and limn→∞ X̄

2
n = E2[X] a.s., so that S2

n → σ2 a.s. as n→∞.

Thus S2
n is strongly consistent for σ2.
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Figure 9: Critical points for t distribution.

10.2 Confidence Intervals: Normally-Distributed Observations

In order to meaningfully interpret a point estimate, it is essential to assess the precision of the

estimate, i.e., to quantify the uncertainty associated with the estimate. A standard approach to

this problem is to provide a 100(1 − δ)% confidence interval for the point estimate, where δ is a

small number such as 0.01 or 0.05. In the case of an unknown mean µ, this means that we compute

endpoint estimators L and U from the data, such that with probability 1−δ these numbers bracket

µ. That is, P {L ≤ µ ≤ U } = 1− δ. Roughly speaking, if we were to repeatedly draw samples of

size n from the distribution under study and compute a confidence interval from each sample, then

the confidence interval [L,U ] would contain the unknown number µ about 100(1− δ)% of the time.

Suppose that the distribution of interest is N(µ, σ2), and that we wish to estimate the unknown

mean µ based on an i.i.d. sample X1, X2, . . . , Xn. This situation may seem a bit artificial, but

it turns out to be highly relevant to a number of estimation problems that arise when analyzing

simulation output. From basic properties of the normal distribution, we know that the sample

mean X̄n is N(µ, σ2/n). Moreover, it is not too hard to show that the normalized sample variance

nS2
n/σ

2 has a χ2
n−1 distribution and is independent of X̄n. It follows that the random variable

√
n(X̄n−µ)/Sn has a tn−1 distribution, i.e., a Student t distribution with n−1 degrees of freedom.

Let t be the unique number such that P {−t ≤ Tn−1 ≤ t } = 1−δ, where Tn−1 is a random variable

having the tn−1 distribution. Then

P

{
X̄n −

tSn√
n
≤ µ ≤ X̄n +

tSn√
n

}
= P

{
−t ≤

√
n(X̄n − µ)

Sn
≤ t

}
= 1− δ, (10.1)

where the first equality follows from the equivalence of the respective events and the second equality

follows from the definition of t. Note that, because Student t distributions are symmetric, t is also

the unique number such that P {Tn−1 ≤ t } = 1− (δ/2), that is, t is the 1− (δ/2) quantile of the

Student t distribution with n−1 degrees of freedom. We therefore write tn−1,1−δ/2 rather than just

t to denote this quantity; see Figure 9. Using this notation, we see from (10.1) that a 100(1− δ)%
confidence interval for µ is given by [L,U ] = [X̄n −Hn, X̄n + Hn], where Hn = tn−1,1−δ/2Sn/

√
n.

The quantity Hn is known as the half-width of the confidence interval, and the quantity Sn/
√
n,

which is the standard deviation of X̄n, is sometimes called the standard error of the estimator X̄n.
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10.3 Confidence Intervals: Large Samples

In many (if not most) cases, we have no reason to believe that the distribution of interest is normal,

so the preceding results do not apply. If the sample size n is large,8 however, then we can obtain

an approximate 100(1 − δ)% confidence interval by using the central limit theorem. Specifically,

the central limit theorem given in Section 9.2 asserts that

√
n(X̄n − µ)

σ
⇒ N(0, 1)

as n → ∞. It follows from the slln that σ/Sn → 1 a.s., and hence σ/Sn ⇒ 1, as n → ∞.

Therefore, by Slutsky’s theorem,

√
n(X̄n − µ)

Sn
=

√
n(X̄n − µ)

σn

σ

Sn
⇒ N(0, 1)

as n → ∞. Thus the random variable
√
n(X̄n − µ)/Sn has approximately a N(0, 1) distribution

for large n. We can now proceed almost exactly as in Section 10.2 and obtain an approximate

100(1 − δ)% confidence interval [X̄n −Hn, X̄n + Hn], where Hn = z1−δ/2Sn/
√
n and z1−δ/2 is the

1−(δ/2) quantile of the standard normal distribution. We sometimes call such a confidence interval

an asymptotic confidence interval because the probability that the interval contains µ does not equal

1− δ exactly, but rather converges to 1− δ as n→∞.

11 Further Resources

Chapter 4 in [5] also reviews some basic topics in probability and statistics. Some classic intro-

ductory treatments of probability are given in [2, 4] and some highly regarded recent textbooks

include [1, 6]. A good starting point for web resources (including a free downloadable introductory

textbook by Grinstead and Snell) can be found at:

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html

The Appendix in [3] gives a somewhat higher-level introduction to the topics covered in this docu-

ment, and provides pointers to several advanced references.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability, 2nd ed., Athena Scientific, 2008.

[2] W. Feller. An Introduction to Probability Theory and Its Applications, Volume 1, 3rd ed., Wiley,

1968.

[3] P. J. Haas. Stochastic Petri Nets: Modelling, Stability, Simulation, Springer-Verlag, 2002.

8When the true data distribution is reasonably symmetric about the mean and the tails of the distribution are

not too heavy, then values of n ≥ 50 can be considered large

28



CS 590M

[4] P. G. Hoel, S. C. Port, and C. J. Stone. Introduction to Probability Theory, Houghton-Mifflin,

1971.

[5] A. M Law. Simulation Modeling and Analysis, 5th ed., McGraw-Hill, 2015.

[6] S. Ross. A First Course in Probability, 9th ed., Prentice Hall, 2014.

29


