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Discrete-Event Systems and Generalized Semi-Markov Processes 
 
Ref: Section 1.4 in Shedler or Section 4.1 in Haas 
 
1. Discrete-Event Stochastic Systems 
 
Recall our previous definition of a discrete-event stochastic system: the system makes stochastic state 
transitions only at an increasing sequence of random times. If X(t) is the state of the system at time t, then 
a typical sample path of  the underlying stochastic process of the simulation, i.e. (X(t): t ≥ 0), looks like 
this (for a finite or countably infinite state space): 
 

 
For a given simulation model, we need to precisely specify the process ( ( ) : 0)X t t ≥ , so that we can 
generate sample paths of the process and obtain meaningful point and interval estimates of system 
characteristics based on well-defined properties of the process. The basic mathematical model for a 
discrete-event system is the generalized semi-Markov process (GSMP), which captures the key notions of 
state, events and clocks. After presenting the GSMP model, we will describe the general “variable time 
advance” algorithm that is used to simulate GSMPs. We then describe some special subclasses of GSMPs 
that can be simulated efficiently using special-purpose algorithms. 
  
2. The GSMP Model 
 
See the textbook by Gerald Shedler for a thorough treatment of GSMP’s. Heuristically, a GSMP 
( ( ) : 0)X t t ≥  makes stochastic state transitions when one or more events associated with the occupied 
state occur. (Associated events = events that can possibly occur in the state = events that are scheduled in 
the state.) 
• events associated with a state “compete” to trigger the next state transition 
• each event has its own distribution for determining the next state 
• new events can be scheduled at each state transition---a new event with respect to a state transition is 

an event that is associated with the new state and either (a) is not associated with the old state or (b) is 
associated with the old state and also triggers the state transition 

• for each new event, a clock  is set with a reading that indicates the time until the event is scheduled to 
occur; when the clock runs down to 0 the event occurs (unless it is canceled in the interim)  

• an old event with respect to a state transition is an event, associated with the old state, that does not 
trigger the state transition and is associated with the next state; its clock continues to run down 

• a cancelled event with respect to a state transition doesn’t trigger the state transition and is not 
associated with the next state; its clock reading is discarded 

• clocks can run down at state-dependent speeds 

t

X (t)
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3. GSMP Building Blocks 
 
• S: a (finite or countably infinite) set of states 
•   E ={e1,e2 ,…,eM }: a finite set of events 
•   E(s) : the set of events scheduled to occur in state s ∈ S. Of course, E(s) ⊆ E. We say that event e is 

active in s if e ∈ E(s). 
•   p( ′s ;s, E*) : the probability that the new state is   s '  given that the events in E* simultaneously occur 

in s. If   E
* ={e*}  for some   e

* ∈E(s) , then we simply write   p( ′s ;s,e*) . 
•   r(s,e) : the nonnegative finite speed at which clock for e runs down in state s; typically r(s, e)=1, but 

can be set to other values in order to model “processor sharing” or “preempt resume” service 
discipline. (For modeling the latter we allow r(s, e) = 0.) 

•   F( ⋅ ; ′s , ′e ,s, E*) : the distribution function used to set the clock for the new event   e '  when the 
simultaneous occurrence of the events in E* triggers a state transition from s to   s ' . 

• µ : the initial distribution function for the state and clock readings. We will always assume that µ is 
such that the initial state s is chosen according to a distribution ν and for each event   e∈E(s) the 
clock is set independently according to   F0( ⋅ ;e,s) . 

 
 
Sets of new and old events: 

 

 
 

clock
reading

timex x o
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Example: GI/G/1 Queue 
 
Assume that the interarrival-time distribution aF  and the service-time distribution sF  are continuous, so 
that an arrival and service completion never occur simultaneously. Also assume that a job arrives to an 
empty system at time 0. 
 
Let ( )X t =  number of jobs in service or waiting in queue at time t 
 
Then ( ( ) : 0)X t t ≥  can be specified as a GSMP with 

• S = {0, 1, 2, ...} 
• E = {e1, e2}, where e1 = “arrival” and e2 = “completion of service” 
• E(s) = {e1} if s = 0 and E(s) = {e1, e2} if s > 0  
• p(s+1; s, e1) = 1 and p(s – 1; s, e2) = 1  
• F(x; 's , 'e , s, e) = Fa(x) if 'e  = e1 and Fs(x) if 'e  = e2 
• r(s,e) ≡ 1 for all s and e 
• ν(1) = 1, F0( ⋅ ; e1, s) = Fa( ⋅ ),  and F0( ⋅ ; e2, s) = Fs( ⋅ ) 

 
3. GSMP’s and GSSMC’s 
 
A GSMP is formally defined in terms of a GSSMC {(Sn,Cn): n ≥ 0}, where 

• Sn = state just after nth transition 
• Cn = (Cn,1, Cn,2, ... , Cn,M) = clock-reading vector after nth transition (by convention, , 0n iC =  if 

event ie  is not active in state nS ) 
 
The transition kernel is given by a somewhat complicated-looking expression, namely 
 

P((s,c), A) =  p( 's ; s, E*) 
( ')ie N s∈

∏ F(ai; 's , s, E*) 
( ')ie O s∈

∏ [0, ]1
ia

(ci*) 

 
for sets A = { 's } × {(c '1 , ... , c 'M ) ∈ C(s): 0 ≤  c 'i  ≤ ai for 1 ≤ i ≤ M}, where E* = E*(s,c), N( 's ) = N( 's ; 
s,  E*), O( 's ) = O( 's ; s,  E*), and ci* = ci*(s,c) = ci – t*(s,c) r(s,ei). 

 
The initial distribution µ(A) is of the form  
 
  µ(A) = ν( 's )

( ')ie E s∈
∏ F0(ai; ei, 's ). 

 
for a set A as above.) 
 
To construct the process {X(t): t ≥ 0} from {(Sn, Cn): n ≥ 0}, let ζn be the time of the nth state transition: 
 

  ζn =  
1
*

0
( , )

n

k k
k
t S C

−

=
∑  
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where t*(s,c) is the holding time in state s starting with clock-reading vector c = (c1, c2, … , cM): 
 

  
t *(s,c) = min

{i:ei∈E (s)}
{ci / r(s,ei )} 

 
 

and ( )N t is the number of state transitions in [0, ]t : 
 
  ( ) max{ 0 : }nN t n t= ≥ ζ ≤  
 
Then let Δ ∉ S and set 
 

  X(t) = ( ) if ( )

if ( )
N tS N t

N t
<∞⎧

⎨
Δ =∞⎩

          

for t ≥ 0. (If S is finite then ( )N t is finite for each t <∞ .) The process {X(t): t ≥ 0} is the GSMP. Thus, 
we can use results from GSSMC theory to study GSMP’s. 
 

 
 
4. Sample Path Generation 
 
The GSMP definition leads directly to an algorithm for sample-path generation: 
 
Sample-Path Generation Algorithm 
 

1. (Initialization) Select s S∈ according to ν . For each ( )ie E s∈  generate a clock reading ic  
according to 0 ( ; , )iF e s⋅ . Set 0ic =  for ( )ie E s∉ . 

2. Determine the time *( , )t s c  until the next state transition and determine the set of events 
* *( , ) { : / ( , ) *( , )}i i iE E s c e c r s e t s c= = =  that will trigger the next state transition. 

3. Generate the next state s '   according to the probability mass function ( ; , *)p s E⋅ . 

ζ0  = 0 ζ1

S1

S0

S3

S2

t S C*( , )0 0 t S C*( , )1 1 t S C*( , )2 2

ζ2 ζ3 ζ4t

N t( ) = 0

N t( ) = 1

N t( ) = 2

X t S( ) = 3

N t( ) = 3

t S C*( , )3 3
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4. For each ( '; , *)ie N s s E∈ , generate '
ic  according to ( ; ', , , *)iF s e s E⋅ . 

5. For each ( '; , *)ie O s s E∈ , set ' *( , ) ( , )i i ic c t s c r s e= − . 
6. For each ei ∈ (E(s) – E*) – E( 's ), set '

ic  = 0 (i.e., cancel event ie ). 
7. Set s = 's  and c = 'c , and go to Step 2. (Here c = (c1, c2, … , cM) and similarly for 'c .) 
 

This algorithm generates a sequence of states {Sn: n ≥ 0}, clock-reading vectors {Cn: n ≥ 0}, holding 
times { *( , ) : 0}n nt S C n ≥ . The state-transition times {ζn: n ≥ 0}, the continuous-time process 
{ ( ) : 0}X t t ≥ , etc., are then computed as described previously.  We can then use our usual techniques to 
estimate quantities of the form ( )( )E f X t⎡ ⎤⎣ ⎦  or even 

( )
( ) 1

( ) ( )0
0

1 1( ( )) ( ) *( , ) ( )
−

=

⎡ ⎤⎛ ⎞⎡ ⎤α = = + − ζ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑∫
N tt

n n n N t N t
n

E f X u du E f S t S C f S t
t t

, 

 
 
The algorithm is an example of a variable time-advance procedure (and is given at a high level of 
abstraction). We will discuss some more detailed computational issues for such procedures shortly. 
(Exercise: What other kinds of time advance procedures can you think of?) 
 
Flowcharts and figures: When programming a simulation of a complex system such as a GSMP, it can 
be very helpful to use diagrams and flowcharts to increase your understanding of the system and avoid 
programming errors. Flowcharts can correspond to the overall simulation logic or to a component of a 
simulation (such as the processing of an arrival event in a queue), and can specify which random variables 
to generate, and so on. See Law, pp. 30-31 for a simple example involving a queueing simulation. 
 
5. Generating Clock Readings 

 
How do we generate clock readings from a general clock-setting distribution during the sample-path 
generation algorithm? We’ll discuss this more fully later, but right now we will present the most basic 
technique. Let’s start with a specific example: 
 
Generation of Exponential Random Variables: 
 
The exponential distribution with rate (or intensity) λ  has density function f and distribution function F 
given by 
 

  if 0
( ; )

0 if 0

xe x
f x

x

λλλ
−⎧ ≥

= ⎨
<⎩

 and 1 if 0
( ; )

0 if 0

xe x
F x

x

λ

λ
−⎧ − ≥

= ⎨
<⎩

. 

 
The mean of the distribution is 1/ λ . 
 

Suppose that we have a uniform random variable U, and set V = lnU
λ

− . We claim that V D=  exp(λ). 

 
Proof: 
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ln{ } {ln } { }x xUP V x P x P U x P U e eλ λλ
λ

− −−⎧ ⎫> = > = < − = < =⎨ ⎬
⎩ ⎭

 

 
Τhis is an instance of a more general method for generating non-uniform RV’s from uniform(0,1) RV’s 
called the inversion method.  
 
 
The Inversion Method: 
 
The idea is to generate a random variable V having continuous increasing distribution function F(x) = 
P{V ≤ x} by setting  
 

V = 1F − (U),  
 
where 1F − is the inverse of F and U is uniform(0,1). Since F is non-decreasing, we have 
 

P{V ≤ x} = P{ 1F − (U) ≤ x} =  P{ F( 1F − (U)) ≤ F(x)} = P{U ≤ F(x)} = F(x) 
 
For example, in the case of an exp(λ) random variable, we have F(x) = 1 – xe λ− , so that  
 

1F − (u) = ln(1 )u
λ

− − , and we can set V = ln(1 ')U
λ

− − , where 'U  D=  uniform(0,1). Observing that  

U = 1 – 'U  also is a uniform(0,1) RV, we obtain our previous formula. 
 
The method can be extended to any distribution function F (not necessarily continuous) if we define  
 

1F − (u) = min{x: F(x) ≥ u}. 
 
 

The proof is almost the same as above, and hinges on the fact that 1F − (u) ≤ x  iff  u ≤ F(x) by definition 
of  the function 1F − (u).  
 
Exercise: Show that the inversion method, when applied to generate a discrete random variable, coincides 
with the naive method given earlier. 

F(x)

x

u

F (u )-1
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6. Markovian and Semi-Markovian GSMP’s 
 
Certain subclasses of GSMPs can be simulated more efficiently than by using the general sample-path 
generation algorithm.  
 
 
Definition: An event 'e  is simple if  
 

  F(⋅; ′s , ′e ,s, E*) ≡ F(⋅; ′e )  and   F0(⋅; ′e ;s) ≡ F(⋅; ′e )  
 

for some function ( ; ')F e⋅  and all 's , s, and E*. 
 
Suppose that each clock-setting distribution is simple and exponential, so that ( ; ) 1 i x

iF x e e λ−= −  for all 
0x ≥  and ie E∈ . The exponential distribution has three special properties that we can exploit: if 

X D= exp(λ) and Y D=  exp(µ) with X and Y independent, then 
 

                            min( X ,Y )=
D

exp(λ + µ)     (independent of whether X Y<  or Y X< ), 
 

  
P( X < Y ) = λ

λ + µ
, 

and 
 

  P( X > a + b | X > a) = e−λb . 
 
The first two properties generalize to an arbitrary number of exponentially distributed random variables. 
The third property is called the “memoryless” property of the exponential distribution. 
 
As a consequence of the memoryless property, it can be shown that, whenever the GSMP jumps into a 
state s, the clock readings for the events in ( )E s  are distributed as independent exponential random 
variables. Using the remaining two properties, we obtain the following simulation algorithm. 
 

1. (Initialization) Select  s ∈S  according to ν. 
2. Generate a holding time   t *  as a sample from an  exp(λ)  distribution, where 

  
λ = λ(s) = λiei∈E (s)∑  

3. Select   ei ∈E(s) as the trigger event with probability   λi / λ . 

4. Generate the next state   s '  according to the probability mass function   p( ⋅ ;s,ei )  
5. Set  s = ′s  and go to step 2. 
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Observe that the sequence   (Sn : n ≥ 0)  of states visited by the GSMP is a DTMC with transition matrix 

given by 
  
R(s, ′s ) = p( ′s ;s,ei )(λi / λ)

ei∈E (s)∑ . Given the sequences of states, the holding times are 

mutually independent, with the holding time in state  Sn  distributed as 
  exp λ(Sn )( ) . 

 
It is often the case that the occurrence of event ie  in s will cause a transition from s to a unique state 

( )i iy y s=  with probability 1. Then the algorithm simplifies even further: 
 

1. (Initialization) Select  s ∈S  according to ν. 
2. Generate a holding time   t *  as a sample from an  exp(λ)  distribution, where 

  
λ = λiei∈E (s)∑  

3. Set   ′s = yi(s) with probability   λi / λ  
4. Set  s = ′s  and go to step 2. 

 
As can be seen, there is no need to maintain individual clock readings as in the general case. 
 
It can be shown that a GSMP {X(t): t ≥ 0} with simple and exponentially distributed clock-setting 
distributions is in fact a continuous-time Markov chain (CTMC) in that it has a finite or countable state 
space and obeys a continuous-time version of the Markov property: 
 
                                     P{X (t + u) = s | X (s) :0 ≤ s ≤ t}= P{X (t + u) = s | X (t)}. 
 
(See Ross, Ch. 6, for a general discussion of CTMCs.) All CTMCs have the sample path structure 
described above: the sequence of states visited is a CTMC and, given the states, the holding times are 
mutually independent and exponentially distributed with a rate that depends only on the current state. 
 
Poisson Process 
 
An important special case is when   S ={0,1,2,…}, there is a single exp( )λ event, and the occurrence of the 
event in state s causes a transition to state 1s +  with probability 1. A graphical representation of the 
process, which we denote by{ ( ) : 0}N t t ≥  is as follows. 
 

                                            

λ

 0  1  2  3

λ λλ

....
 

 
The process { ( ) : 0}N t t ≥  is called a Poisson process with rate λ . The holding times in successive state 
are i.i.d. according to an exp(λ) distribution. It can be shown that  
 

 
  
P N (t + s) = m+ n | N (t) = m( ) = e−λs (λs)n

n!
 for all t and m. 
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That is, the number of upward jumps that occur within a specified time interval follows a Poisson 
distribution. 
 
A common example of a Poisson process occurs when the successive interarrival times to a queue are 
i.i.d. according to an exp(λ) distribution. Then ( )N t  is the number of arrivals to the queue in the time 
interval [0, t]. 
 
Poisson processes arise in other settings also.  For example, if one has a component with an exponentially 
distributed lifetime that is immediately replaced with an identical component, then the total number of 
replaced components in [0, ]t  is given by a Poisson process { ( ) : 0}N t t ≥ . 
 
Remark:  
 
A Poisson process is a special type of renewal (counting) process.  Specifically, suppose that nT , the time 
at which the nth event occurs, is given by    Tn = τ1 + τ2 +!+ τn , where the τi’s are i.i.d. positive random 
variables.  Then ( ) max{ 0: }nN t n T t= ≥ ≤  counts the number of events that occur in [0, ]t , and is called a 
renewal counting process.  A renewal counting process is a special case of a GSMP in which there is 
exactly one simple event e  and the transition probability function is given by ( 1; , ) 1p s s e+ =  for 0s ≥ . 
A Poisson process with rate λ is the special case in which each τi is an exponential random variable with 
mean λ-1. 
 
Semi-Markov process 
 
A GSMP { ( ) : 0}X t t ≥  with simple events in which exactly one event is active in a state, so that ( ) 1E s =  
for each s S∈ , is a semi-Markov process (SMP). A semi-Markov process { ( ) : 0}X t t ≥  with discrete 
state space S is similar to a CTMC in that the sequence ( : 0)nX n ≥  of states visited by the process is a 
DTMC with transition matrix, say, R. The holding time in state s S∈ , however, is distributed according 
to an arbitrary distribution function ( ; )F s⋅  that can depend on s. (This definition is a little narrower than 
some, in which the distribution of the holding time in state s can also depend on 's , the next state hit by 
the process.) 
 
Example (Renewal Counting Process): 
 
When  
 
•    S ={0,1,2,…} 
• ( , 1) 1 for all R s s s S+ = ∈  
• ( ; ) ( ) for some function ( )F s G G⋅ = ⋅ ⋅ . 
 
then{ ( ) : 0}X t t ≥ coincides with a renewal counting process. 
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Simulation of a semi-Markov process: 
 
The algorithm for simulation of a CTMC applies almost unchanged, except that the holding time in state 

nX  is generated according to ( ; )nF X⋅  rather than ( )exp ( )nXλ . 
 
7. A More Complicated GSMP Example 
 
Patrolling Repairman: 
 
• N machines 
• single repairman visits machines in order    1→ 2→!→ N →1→ 2 →!  
• repairs stopped machine, passes running machine 
• repair times for machine j are i.i.d. as a random variable Rj 
• lifetimes for machine j are i.i.d. as a continuous random variable Lj 
• walking time from machine j to next machine is a constant Wj  > 0 
• at time 0, the repairman has just finished repairing machine 1 and all other machines are broken.  
 
Suppose we wish to estimate µr, the expected fraction of time in [0, t] that the repairman spends repairing 
machines. If we define our system state by X(t) = A(t), where 
 

  A(t) = 
1 if repairman is repairing a machine
0 otherwise

⎧
⎨
⎩

 

 

then µr = 
0

1 ( )
t

E A u du
t
⎡ ⎤
⎢ ⎥⎣ ⎦∫ . We might also want to estimate µs, the expected number of stopped machines 

at time t, or µw, the long-run average wait for repair for machine 1. 
 
Problems: 
 
• Can’t determine number of stopped machines from observing A(t) 
• Not clear how to generate sample paths of {A(t): t ≥ 0} 
 
⇒ need to put more information into state definition 
 
Here’s another attempt at a state definition: 
 

X(t) = (Z1(t), Z2(t), ... , ZN(t), M(t), N(t)), 
 
where  
 

Zj(t) = 
1 if machine j is waiting for repair at time t
0 otherwise

⎧
⎨
⎩
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M(t) = 
if machine j is under repair at time t

0 if no machine is under repair at time t
j⎧

⎨
⎩

 

 
N(t) = j  if at time t the repairman will next arrive at machine j 

 
Then we can generate sample paths of {X(t): t ≥ 0} (because this process is a well-defined GSMP as 
shown below and, as was shown earlier, there is a well-defined algorithm for generating sample paths of a 
GSMP). Also, all of the system characteristics of interest can be precisely expressed in terms of {X(t): t ≥ 
0}: 
 

  µr = 
0

1 ( ( ))
t

rE f X u du
t
⎡ ⎤
⎢ ⎥⎣ ⎦∫    and    µs = E[fs(X(t))] 

 
where  
 

fr(z1, ... , zN, m, n) = 1{1,2,...,N}(m) 
 
fs(z1, ... , zN, m, n) = z1 + z2 + ... + zN + 1{1,2,...,N}(m) 
 

(Recall that 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.) 
 
Also, we can express µw  in terms of {X(t): t ≥ 0}. To see this, set B0 = 0 and recursively define the start 
and termination of the nth waiting time for machine 1 by 
 
An = min{ζk > Bn-1: Z1(ζk-1) =  0 and Z1(ζk) = 1} and Bn = min{ζk > An: M(ζk-1) ≠ 1 and M(ζk) = 1} 
 
where ζn is the time of the nth state transition. We can also define these times in terms of the continuous 
time process by setting 
 
          An = min{t > Bn-1: Z1(t-) =  0 and Z1(t) = 1} and Bn = min{t > An: M(t-) ≠ 1 and M(t) = 1}, 
 
where X(t-) indicates the stat of the system just before time t. 
 
In either case, we can then write the nth waiting time as Dn = Bn – An, and hence  
 

  µw = 
1

1lim
n

kn k
D

n→∞ =
∑   (assuming that it exists) 

 
The process {X(t): t ≥ 0} can be specified as a GSMP as follows: 
 
• S consists of all (z1, ... , zN, m, n) ∈ {0,1}N × {0, 1, ..., N} × {1, 2, ... , N} such that 

♦ n = m + 1 if 0 < m < N 
♦ n = 1 if  m = N 
♦ m = j only if  zj = 0 (1 ≤ j ≤ N) 
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• E = {e1, e2, ... , eN+2}, where  
♦ ej = “stoppage of machine j” (1 ≤ j ≤ N) 
♦ eN+1 = “completion of repair” 
♦ eN+2 = “arrival of repairman” 

• E(s) is defined as follows for s = (z1, ... , zN, m, n): 
♦ ej ∈ E(s)  (1 ≤ j ≤ N) iff   zj = 0 and m ≠ j 
♦ eN+1 ∈ E(s)   iff   m > 0 
♦ eN+2 ∈ E(s)   iff   m = 0 

• p( 's ; s, e*) is defined as follows: 
♦ if e* = ej (1 ≤ j ≤ N),  then p( 's ; s, e*) = 1 

when s = (z1, ... , zj-1, 0, zj+1, ... , zN, m, n) and 's  = (z1, ... , zj-1, 1, zj+1, ... , zN, m, n) 
♦ if e* = eN+2, then p( 's ; s, e*) = 1 

when s = (z1, ... , zj-1, 1, zj+1, ... , zN, 0, j)  with j < N and 's  = (z1, ... , zj-1, 0, zj+1, ... , zN, j, j+1); 
when s = (z1, z2, ... , zN-1,  1, 0, N) and 's  = (z1, z2, ... , zN-1, 0, N, 1); 
when s = (z1, ... , zj-1, 0, zj+1, ... , zN, 0, j) with j < N and 's  = (z1, ... , zj-1, 0, zj+1, ... , zN, 0, j+1);   
and when s = (z1, z2, ... , zN-1,  0, 0, N) and 's  = (z1, z2, ... , zN-1,  0, 0, 1) 

♦ exercise: do the case e* = eN+1 
• F(x; 's , 'e , s, e*) is defined as follows 

♦ if 'e  = ej (1 ≤ j ≤ N), then F(x; 's , 'e , s, e*) = P{Lj ≤ x} 
♦ if 'e  = eN+1 and 's  =  (z1, ... , zN, m, n) then F(x; 's , 'e , s, e*) = P{Rm ≤ x} 
♦ if 'e  = eN+2 and 's  =  (z1, ... , zN, 0, n) then F(x; 's , 'e , s, e*) = 1[0,x](Wn-1) if n > 1 and 1[0,x](WN) if 

n = 1 
• r(s, e) ≡ 1 for all s and e 
• initial dist’n: ( ) 1sν = , where s = (0,1,1,...,1,0,2), { }0 1 1 0 2 [0, ] 1( ; , )  and F ( ; , ) 1 ( )N xF x e s P L x x e s W+= ≤ =  
 
Note: Specifying a GSMP can be complex and time-consuming. Some reasons to do this are: 
 

1. A GSMP description as above, together with the general GSMP simulation algorithm, given 
previously, provide direct guidance when coding up the model, and help ensure that “corner 
cases” are not overlooked. 
 

2. A GSMP description can be used to communicate the model to others at a high level (rather than 
requiring people to grope their way through your code). This helps to separate questions of 
correct logical model specification from correct implementation in a specific programming 
language. 

 
3. Theory developed for GSMPs can help in establishing important properties of the simulation, 

such as stability, i.e., convergence to steady state, so that steady-state estimation problems are 
well defined. Other results can be used to ensure that simulation output-analysis methods (such as 
the regenerative and batch-means methods that we will cover later in the course) can validly be 
applied to the specific model of interest, so that the resulting estimates are correct. 
 

 


