Solutions to Sample Midterm Questions

1. Parameter fitting.
(a) Density and likelihood function
(i) The density is $f_{X}(x)=\frac{d}{d x} F_{X}(x)=\frac{a}{b}\left(\frac{x}{b}\right)^{-(a+1)}=a b^{a} x^{-(a+1)}$ for $x \geq b$ and

$$
f_{X}(x)=0 \text { for } x<b
$$

(ii) The likelihood function is

$$
\begin{aligned}
L_{n}\left(a, b ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} f_{X}\left(X_{i}\right) \\
& =\prod_{i=1}^{n} I\left(b \leq X_{i}\right) \times a^{n} b^{n a} \prod_{i=1}^{n} X_{i}^{-(a+1)}
\end{aligned}
$$

where I is an indicator function.
(b) Since L_{n} is initially increasing in b, choose b as large as possible: $\hat{b}=X_{(1)}=\min _{1 \leq i \leq n} X_{i}$.

To choose \hat{a}, maximize the function $h(a)=a^{n} \hat{b}^{n a} \prod_{i=1}^{n} X_{i}^{-(a+1)}$. Equivalently, maximize $\tilde{h}(a)=\log h(a)=n \log a+n a \log \hat{b}-(a+1) \sum_{i=1}^{n} \log X_{i}$.
$\frac{d}{d a} \tilde{h}(a)=\frac{n}{a}+n \log \hat{b}-\sum_{i=1}^{n} \log X_{i}=0$ implies $\hat{a}=\left[\frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{X_{i}}{X_{(1)}}\right)\right]^{-1}$.
(c) Given \hat{b} we have
$E[X]=\int_{b}^{\infty} x f_{X}(x) d x=\int_{b}^{\infty} a \hat{b}^{a} x^{-a} d x=\left.\frac{a \hat{b}^{a} x^{1-a}}{1-a}\right|_{b} ^{\infty}=\frac{a \hat{b}}{a-1}$.
Substitute the sample mean \bar{X}_{n} for $E[X]$ and solve the equation $\bar{X}_{n}=\frac{a \hat{b}}{a-1}$ to get $\hat{a}=\frac{\bar{X}_{n}}{\bar{X}_{n}-\hat{b}}$.
2. Random variate generation
(a) The picture is as follows.

Using the basic version of the acceptance-rejection method, we obtain the following algorithm:

Algorithm:

1. Generate uniform random numbers U_{1}, U_{2}
2. Set $Z_{1}=b U_{1}$ and $Z_{2}=U_{2} /\left(1-e^{-b}\right)$.
3. If $Z_{2} \leq \frac{e^{-Z_{1}}}{1-e^{-b}}$, then return Z_{1}, else go to Step 1.
(b) A much more efficient inversion algorithm is as follows, based on the fact that $F_{X}(x)=\frac{1-e^{-x}}{1-e^{-b}}$:

Algorithm:

1. Generate a uniform random number U
2. Return $X=-\ln \left(1-\left(1-e^{-b}\right) U\right)$
3. Linear congruential generators
a) Starting with $x_{0}=1$, we have the following results

i	x_{i}	$3^{i} \bmod 7$
1	3	3
2	2	2
3	6	6
4	4	4
5	5	5
6	1	1

By inspection of the second column, we see that all values between 1 and 6 occur, so the generator has full period. Inspection of the third column shows that 3 is a primitive element modulo 7 , which also proves that the generator has full cycle since 7 is prime.
b) From Lecture 6, Slide 8 , the RANDU generator is an MCG with modulus 2^{31}. By the Claim on Slide 10 , the period is at most $2^{k-2}=2^{6-2}=2^{4}=16$.
4. Bayesian estimation. Write $X_{(n)}=\max _{1 \leq i \leq n} X_{i}$, and note that $X_{i} \geq 0, \forall i$. Then the likelihood is given by $f\left(X_{1: n} \mid a\right)=\prod_{i=1}^{n}\left[I\left(X_{i} \leq a\right) / a\right]=I\left(X_{(n)} \leq a\right) / a^{n}$, where $I(A)$ denotes the indicator of event A and $X_{1: n}=X_{1}, \ldots, X_{n}$. The prior is $f(a)=I(0 \leq a \leq b) / b$. By Bayes' Theorem, the posterior density of a is

$$
\begin{aligned}
& f\left(a \mid X_{1: n}\right)=\frac{f\left(X_{1: n} \mid a\right) f(a)}{\int f\left(X_{1: n} \mid a\right) f(a) d a}=\frac{I\left(X_{(n)} \leq a\right) I(0 \leq a \leq b) a^{-n} b^{-1}}{\int I\left(X_{(n)} \leq a\right) I(a \leq b) a^{-n} b^{-1} d a}=\frac{I\left(X_{(n)} \leq a \leq b\right) a^{-n}}{\int I\left(X_{(n)} \leq a \leq b\right) a^{-n} d a} \\
& =\frac{I\left(X_{(n)} \leq a \leq b\right) a^{-n}}{\int_{X_{(n)}}^{b} a^{-n} d a}=\frac{I\left(X_{(n)} \leq a \leq b\right) a^{-n}}{\left(X_{(n)}^{1-n}-b^{1-n}\right) /(n-1)} .
\end{aligned}
$$

Thus the posterior mean is $\hat{a}=\int_{a} a f\left(a \mid X_{1: n}\right) d a=\frac{\int_{X_{(n)}}^{b} a^{1-n} d a}{\left(X_{(n)}^{1-n}-b^{1-n}\right) /(n-1)}=\frac{\left(X_{(n)}^{2-n}-b^{2-n}\right) /(n-2)}{\left(X_{(n)}^{1-n}-b^{1-n}\right) /(n-1)}$.

