Page 1 of 2 February 13, 2020 Spring Semester 2020

Answers to Sample Midterm Questions

- 1. Claims processing. (This is an example of both a "fork-join" queueing system and a workflow system.)
 - (a) GSMP specification:
 - (i) State space: S = the set of all $(n_1, n_2, m) \in \{0, 1, 2, ...\}^3$ such that $n_1 \le m$ and $n_2 \le m$.
 - (ii) **Event set mapping**: For $s = (n_1, n_2, m) \in S$
 - $e_1 \in E(s)$ for all s
 - $e_2 \in E(s)$ if and only if $n_1 > 0$
 - $e_3 \in E(s)$ if and only if $n_2 > 0$
 - $e_4 \in E(s)$ if and only if $m n_1 > 0$ and $m n_2 > 0$
 - [equivalently: $e_4 \in E(s)$ iff $\min(m n_1, m n_2) > 0$; $e_4 \in E(s)$ iff $m \max(n_1, n_2) > 0$]

(iii) **Speeds**: All speeds r(s, e) are equal to 1.

- (iv) State-transition probabilities:
 - $p(s'; s, e_1) = 1$ when $s = (n_1, n_2, m)$ and $s' = (n_1 + 1, n_2 + 1, m + 1)$

$$p(s'; s, e_2) = 1$$
 when $s = (n_1, n_2, m)$ with $n_1 > 0$ and $s' = (n_1 - 1, n_2, m)$

 $p(s'; s, e_3) = 1$ when $s = (n_1, n_2, m)$ with $n_2 > 0$ and $s' = (n_1, n_2 - 1, m)$

$$p(s';s,e_4) = 1$$
 when $s = (n_1, n_2, m)$ with $\min(m - n_1, m - n_2) > 0$ and $s' = (n_1, n_2, m - 1)$

(b) The table is as follows (new clock readings are in **boldface**.)

п	ζ_n	$X(\boldsymbol{\zeta}_n)$	$C_{n,1}$	$C_{n,2}$	<i>C</i> _{<i>n</i>,3}	$C_{n,4}$	<i>e</i> *
0	0.0	(1,1,1)	4	2	3		e_2
1	2.0	(0,1,1)	2		1		e_3
2	3.0	(0,0,1)	1			4	e_1
3	4.0	(1,1,2)	5	6	4	3	e_4
4	7.0	(1,1,1)	2	3	1		e_3

(c) The computations are as follows:

$$\hat{\mu} = \frac{1}{5} (1.0 + 3.0 + 7.0 + 5.0 + 4.0) = 4.0$$

$$s^{2} = \frac{1}{4} ((1.0 - 4.0)^{2} + (3.0 - 4.0)^{2} + (7.0 - 4.0)^{2} + (5.0 - 4.0)^{2} + (4.0 - 4.0)^{2}) = 5.0$$

$$z_{p} = 1.645 \quad [0.95 \text{ quantile for N}(0,1)]$$

$$\varepsilon = 0.1$$

$$n = \frac{z_{p}^{2} s^{2}}{\varepsilon^{2} \hat{\mu}^{2}} = \frac{(1.645)^{2} (5)}{(0.1)^{2} (4)^{2}} \approx 85,$$

so we need at least 85 runs.

- 2. Random number generation.
 - (a) The inverse of the cdf is given by $F_X^{-1}(u) = (u / \beta)^{1/\alpha}$ for $0 \le u \le 1$. Using inversion, generate U and return $X = (U / \beta)^{1/\alpha}$.
 - (b) The pdf is $f_X(x) = dF_X(x)/dx = \alpha\beta x^{\alpha-1}$ so the expected value of the distribution is $\int_0^{\beta^{-1/\alpha}} x f_X(x) dx = \int_0^{\beta^{-1/\alpha}} \alpha\beta x^{\alpha} dx = \frac{\alpha}{\alpha+1} \beta^{-1/\alpha}$. For $\alpha = 2$ and $\beta = 4$, the expected value equals 1/3. The given value is less than half of this amount, so the generator is untrustworthy.