Answers to Sample Midterm Questions

1. Claims processing. (This is an example of both a "fork-join" queueing system and a workflow system.)
(a) GSMP specification:
(i) State space: $S=$ the set of all $\left(n_{1}, n_{2}, m\right) \in\{0,1,2, \ldots\}^{3}$ such that $n_{1} \leq m$ and $n_{2} \leq m$.
(ii) Event set mapping: For $s=\left(n_{1}, n_{2}, m\right) \in S$
$e_{1} \in E(s)$ for all s
$e_{2} \in E(s)$ if and only if $n_{1}>0$
$e_{3} \in E(s)$ if and only if $n_{2}>0$
$e_{4} \in E(s)$ if and only if $m-n_{1}>0$ and $m-n_{2}>0$
[equivalently: $e_{4} \in \mathrm{E}(\mathrm{s})$ iff $\min \left(m-n_{1}, m-n_{2}\right)>0 ; \mathrm{e}_{4} \in \mathrm{E}(\mathrm{s})$ iff $m-\max \left(n_{1}, n_{2}\right)>0$]
(iii) Speeds: All speeds $r(s, e)$ are equal to 1 .
(iv) State-transition probabilities:

$$
\begin{aligned}
& p\left(s^{\prime} ; s, e_{1}\right)=1 \text { when } s=\left(n_{1}, n_{2}, m\right) \text { and } s^{\prime}=\left(n_{1}+1, n_{2}+1, m+1\right) \\
& p\left(s^{\prime} ; s, e_{2}\right)=1 \text { when } s=\left(n_{1}, n_{2}, m\right) \text { with } n_{1}>0 \text { and } s^{\prime}=\left(n_{1}-1, n_{2}, m\right) \\
& p\left(s^{\prime} ; s, e_{3}\right)=1 \text { when } s=\left(n_{1}, n_{2}, m\right) \text { with } n_{2}>0 \text { and } s^{\prime}=\left(n_{1}, n_{2}-1, m\right) \\
& p\left(s^{\prime} ; s, e_{4}\right)=1 \text { when } s=\left(n_{1}, n_{2}, m\right) \text { with } \min \left(m-n_{1}, m-n_{2}\right)>0 \text { and } s^{\prime}=\left(n_{1}, n_{2}, m-1\right)
\end{aligned}
$$

(b) The table is as follows (new clock readings are in boldface.)

n	ζ_{n}	$X\left(\zeta_{n}\right)$	$C_{n, 1}$	$C_{n, 2}$	$C_{n, 3}$	$C_{n, 4}$	e^{*}
0	0.0	$(1,1,1)$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{3}$	--	e_{2}
1	2.0	$(0,1,1)$	2	--	1	--	e_{3}
2	3.0	$(0,0,1)$	1	--	--	$\mathbf{4}$	e_{1}
3	4.0	$(1,1,2)$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{4}$	3	e_{4}
4	7.0	$(1,1,1)$	2	3	1	--	e_{3}

(c) The computations are as follows:

$$
\begin{aligned}
& \hat{\mu}=\frac{1}{5}(1.0+3.0+7.0+5.0+4.0)=4.0 \\
& s^{2}=\frac{1}{4}\left((1.0-4.0)^{2}+(3.0-4.0)^{2}+(7.0-4.0)^{2}+(5.0-4.0)^{2}+(4.0-4.0)^{2}\right)=5.0 \\
& z_{p}=1.645 \quad[0.95 \text { quantile for } \mathrm{N}(0,1)] \\
& \varepsilon=0.1 \\
& n=\frac{z_{p}^{2} s^{2}}{\varepsilon^{2} \hat{\mu}^{2}}=\frac{(1.645)^{2}(5)}{(0.1)^{2}(4)^{2}} \approx 85
\end{aligned}
$$

so we need at least 85 runs.
2. Random number generation.
(a) The inverse of the cdf is given by $F_{X}^{-1}(u)=(u / \beta)^{1 / \alpha}$ for $0 \leq u \leq 1$. Using inversion, generate U and return $X=(U / \beta)^{1 / \alpha}$.
(b) The pdf is $f_{X}(x)=d F_{X}(x) / d x=\alpha \beta x^{\alpha-1}$ so the expected value of the distribution is $\int_{0}^{\beta^{-1 / \alpha}} x f_{X}(x) d x=\int_{0}^{\beta^{-1 / \alpha}} \alpha \beta x^{\alpha} d x=\frac{\alpha}{\alpha+1} \beta^{-1 / \alpha}$. For $\alpha=2$ and $\beta=4$, the expected value equals $1 / 3$. The given value is less than half of this amount, so the generator is untrustworthy.

