Sample Midterm Questions

1. Suppose that we have observed data values X_1, \ldots, X_n and we wish to fit a cdf of the following form:

$$F_{X}(x) = \begin{cases} 1 - \left(\frac{x}{b}\right)^{-a} & \text{if } x \ge b; \\ 0 & \text{if } x < b, \end{cases}$$

where a, b > 0. (Parameter *a* determines the "shape" and parameter *b* the support region.)

- a) Write down the density function $f_X(x)$ and then the likelihood function $L_n(a,b;X_1,...,X_n)$.
- b) Derive formulas for \hat{a} and \hat{b} , the maximum likelihood estimates for the unknown parameters a and b. [Hint: First determine \hat{b} and then maximize the function $h(a) = L_n(a, \hat{b}; X_1, ..., X_n)$ to determine \hat{a} .
- c) Suppose that you have computed a maximum likelihood estimator \hat{b} of *b* as in part (b). Give the formula for a method-of-moments estimator of *a* under the assumption that a > 1.
- 2. Consider the truncated exponential distribution given by $f_X(x) = \frac{e^{-x}}{1 e^{-b}} I(0 \le x \le b)$.
 - a) Give an algorithm for generating a sample from $f_X(x)$ based on acceptance-rejection with a uniform majorizing density.
 - b) Give an algorithm for generating a sample from $f_X(x)$ based on inversion.
- 3. Linear congruential generators
 - a. Does the linear congruential generator $x_{n+1} = 3x_n \mod 7$ have full period? Justify your answer.
 - b. If we extract the lowest 6 bits from each of a sequence of seeds produced by the RANDU generator, what is the maximum period of the resulting sequence?
- 4. Suppose that we are given i.i.d. observations $X_1, X_2, ..., X_n$ from a Uniform [0, a] distribution, and we want to estimate the parameter *a* using Bayesian methods. Suppose that our prior distribution on *a* is Uniform [0,b]. Give a formula for the posterior-mean estimator \hat{a} .