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Sample Midterm Questions 
 
 
 

1. Suppose that we have observed data values    X1,…, Xn  and we wish to fit a cdf of the following form: 
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where , 0a b > . (Parameter a determines the “shape” and parameter b the support region.) 

 
a) Write down the density function ( )Xf x  and then the likelihood function    Ln(a,b; X1,…, Xn ) .  

 
b) Derive formulas for â  and b̂ , the maximum likelihood estimates for the unknown parameters a 

and b. [Hint: First determine b̂  and then maximize the function    h(a) = Ln(a, b̂; X1,…, Xn )  to 
determine â . 

 
c) Suppose that you have computed a maximum likelihood estimator   b̂  of b as in part (b). Give the 

formula for a method-of-moments estimator of a under the assumption that   a >1 .  
 

2. Consider the truncated exponential distribution given by 
  
f X (x) = e− x

1− e−b I (0 ≤ x ≤ b) . 

a) Give an algorithm for generating a sample from   f X (x)  based on acceptance-rejection with a 
uniform majorizing density. 
 

b) Give an algorithm for generating a sample from   f X (x)  based on inversion. 
 
 
3. Linear congruential generators 

 
a. Does the linear congruential generator   xn+1 = 3xn mod7  have full period? Justify your answer. 

 
b. If we extract the lowest 6 bits from each of a sequence of seeds produced by the RANDU 

generator, what is the maximum period of the resulting sequence? 
 
4. Suppose that we are given i.i.d. observations    X1, X2 ,…, Xn  from a Uniform  [0,a]  distribution, and we 

want to estimate the parameter  a  using Bayesian methods. Suppose that our prior distribution on  a  
is Uniform  [0,b] . Give a formula for the posterior-mean estimator   â . 


