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Combining parallel multiple recursive sequences provides an e�cient way of implementing

random number generators with long periods and good structural properties� Such genera�

tors are statistically more robust than simple linear congruential generators that �t into a

computer word� We made extensive computer searches for good parameter sets� with respect

to the spectral test� for combined multiple recursive generators of di�erent sizes� We also

compare di�erent implementations and give a speci�c code in C that is faster than previous

implementations of similar generators�
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It is now recognized that random number generators �RNGs� should have huge peri	

ods� several orders of magnitude larger than whatever can be used in practice �L
Ecuyer

����� L
Ecuyer ����b� Ripley ������ For example� all full	period linear congruential gen	

erators �LCGs�� or multiple recursive generators �MRGs�� fail decisively some statistical

tests that use approximately
p
� random numbers� where � is the period length �see�

e�g�� L
Ecuyer� Cordeau� and Simard ����� L
Ecuyer and Hellekalek ���� for the LCGs��

To be reasonably safe� the period length of a general purpose generator must exceed


��� or so� and preferably more� And a long period is not su�cient� Good structural

properties are also needed� If the aim is to imitate a sequence of i�i�d� U��� �� �indepen	

dent and identically distributed random variables� uniform over the interval ��� ���� the

set Tt � fun � �un� � � � � un�t���� n � �g� of all vectors of t successive output values over

all the generator
s cycles� should be uniformly distributed over the t	dimensional unit

hypercube ��� ��t� for all t �ideally�� If the seed is random� this set Tt can be viewed as a

sample space from which some points are drawn� In practice� the structural properties

of Tt can be analyzed via the spectral test� for t up to �� or so�

A multiple recursive generator �MRG� of order k is de�ned by the linear recurrence�

xn � �a�xn�� � � � �� akxn�k� mod m� ���

un � xn�m�

where m and k are positive integers� and each ai belongs to ZZm � f�� �� � � � � m � �g
�see Grube ����� Niederreiter ���
�� The recurrence ��� has maximal period length

mk � �� attained if and only if m is prime and the characteristic polynomial P �z� �

zk�a�z
k���� � ��ak is primitive �i�e�� the powers of z� modulo P �z� and m� run through

all nonzero polynomials of degree less than k with coe�cients in ZZ
m�� The latter can

be achieved most economically with only two nonzero coe�cients� say ar and ak with

� � r � k� The recurrence is generally easier to implement when these coe�cients are

small� However� a necessary condition for a good �gure of merit with respect to the

spectral test is that
Pk

i�� a
�
i be large �Grube ����� L
Ecuyer ������ To reconcile these

con�icting requirements� L
Ecuyer ������ proposed combined MRGs �CMRGs�� where

the components are carefully selected so that the combined generator has good structural

properties� while each component remains easy to implement in an e�cient manner� Such

a CMRG turns out to be equivalent �or approximately equivalent� depending on the type

of combination� to an MRG with a large composite modulus� equal to the product of the

moduli of its components� The recurrence of the CMRG can have many large coe�cients






even if the components have only two small nonzero coe�cients� L
Ecuyer ������ gave

a few examples of CMRGs� but only one of these �Example �� was a recommendable

generator� with two components of order �� period length approximately 
���� and with

the parameters chosen speci�cally for an implementation using ��	bit integer arithmetic

with the �approximate factoring� method� That generator behaves well with respect to

the spectral test in up to 
� dimensions�

The aim of this paper is to provide good CMRGs of di�erent sizes� selected via

the spectral test up to �
 �or 
�� dimensions� and a faster implementation than in

L
Ecuyer ������ using �oating	point arithmetic� Why do we need di�erent parameter

sets� Firstly� di�erent types of implementations require di�erent constraints on the

modulus and multipliers� For example� a �oating	point implementation with �� bits

of precision allows moduli of more than �� bits and this can be exploited to increase

the period length for free� Secondly� as ��	bit computers get more widespread� there

is demand for generators implemented in ��	bit integer arithmetic� Tables of good

parameters for such generators must be made available� Thirdly� RNGs are somewhat

like cars� a single model and single size for the entire world is not the most satisfactory

solution� Some people want a fast and relatively small RNG� while others prefer a bigger

and more robust one� with longer period and good equidistribution properties in larger

dimensions� Naively� one could think that an RNG with period length near 
��� is big

enough for any conceivable application� But note that ��� �selected� bits of the RNG
s

sequence are enough to determine all the others� so this sequence has a lot of structure�

and for this reason some might want a bigger number than ����

The tables provided here are the partial results of an extensive computer search

that took more than a year of CPU time on SUN Sparcstations using the software

described in L
Ecuyer and Couture ������� The next section recalls some notation�

de�nes the �gures of merit that we use� and explains our search strategies� Sec	

tion 
 reports the results� Section � provides an implementation in C and gives tim	

ing comparisons� The C code is also available at ftp�iro�umontreal�ca in directory

pub�simulation�lecuyer�combmrg�� Look for the �le combmrg��c� A shorter version

of this paper will appear as L
Ecuyer �����a��

�



�� Notation� Selection Criteria� and Implementation Conditions

The RNGs considered in this paper combine J copies of ���� that is�

xj�n � �aj��xj�n�� � � � �� aj�kxj�n�k� mod mj �
�

for j � �� � � � � J � where the mj are distinct primes and the jth recurrence has order k

and period length mk
j � �� Let ��� � � � � �J be arbitrary integers such that �j is relatively

prime to mj for each j� and de�ne�

wn �

�
� JX

j��

�j
xj�n
mj

�
A mod �� ���

zn �

�
� JX

j��

�jxj�n

�
A mod m�� ���

�un � zn�m�� ���

The sequences fwn� n � �g and f�un� n � �g de�ne two di�erent CMRGs which have

been studied by L
Ecuyer ������� In summary� the CMRG �
� ��� is exactly equivalent

to an MRG as in ��� with modulus m � m� � � �mJ � and the set Tt mentioned in the

introduction is the intersection of a lattice with the unit hypercube� The points of Tt

lie in successive parallel hyperplanes at a distance dt of each other� The other CMRG�

de�ned by ��� ���� is also approximately the same as the �rst one� In other words� these

CMRGs are basically just special implementations of an MRG and they can be analyzed

by applying the spectral test to this MRG�

We use the �gure of merit MT � min��t�T St for some integer T � where St �

��tm
k�tdt�

�� and �t is de�ned as follows� For t � �� �t is the �t de�ned in Knuth

������� page ���� while for t � �� �t � exp�R�t��t� where R�t� is Rogers
 bound on the

density of sphere packings �see Conway and Sloane ����� page ��� and L
Ecuyer ����c��

St and MT are always between � and � and we seek generators with MT close to �� An

St close to � means that all the points of Tt lie in equidistant parallel hyperplanes that

are far apart� leaving thick slices of empty space in between� An MT close to � means

that Tt is evenly distributed over the unit hypercube� for all t � T �

For J � 
� �� k � �� �� �� and prime moduli slightly smaller than 
e for e � ��� �
�

��� ��� �
�� and �
�� we searched for CMRGs with good values of M�� M��� and M	� �or

M�
� for e � �
�� All the mj are selected so that rj � �mk
j � ����mj � �� is prime� and
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so that the least common multiple of the �mk
j � �� is �mk

� � �� � � � �mk
J � ���
J�� �which

is the largest possible period length for the combination�� In most cases� �mj � ���
 is

also prime� With these conditions� the full	period conditions are easier to satisfy and to

verify� because they require �in particular� the factorization of rj�

Table I lists some values ofm and k such thatm� �m����
� and r � �mk�����m���

are all prime� These values were found by random search� using a few months of CPU

time� They are useful for anyone who would like to perform additional searches for

full	period MRGs�

Table I

Values of m and k such that m� �m� ���
 and r are prime�
k m
� 
	� � 
����� 
	� � ���
�� 
	� � �����
� 
	� � 
��� 
	� � 

���� 
	� � �����
� 
	� � �
���� 
	� � �����
� 
�	 � 
��
�� 
�	 � 
���
�
� 
�
 � 
������ 
�
 � �
����� 
�
 � ������
� 
��� � ����
�
� 
��� � 
�����
� 
	� � 

���� 
	� � ������ 
	� � �����
� 
	� � ��
��� 
	� � �
���� 
	� � �����
� 
	� � ��
��� 
	� � �
��
�
� 
�	 � ������ 
�	 � ������� 
�	 � ���
��
� 
�
 � ������� 
�
 � ������� 
�
 � ������
� 
	� � ����� 
	� � ������ 
	� � �����
� 
	� � ����� 
	� � ��
��� 
	� � ��
��
� 
	� � ������ 
	� � �����
� 
�	 � �
�
�� 
�	 � �
���
� 
�	 � ��
���� 
�	 � ����
�
� 
�
 � ������ 
�
 � 

�
��
�� 
	� � ������ 
	� � �����
�� 
	� � ����� 
	� � ���
�

MRG implementations are easier and more e�cient when certain constraints are

imposed on the coe�cients aj�i� For example� forcing some of the coe�cients to be

zero save multiplications� In our search for good coe�cients aj�i� we consider also the

following conditions�
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�B�� The product aj�i�mj � �� is less than 
�	�

�C�� The coe�cient aj�i satis�es aj�i�mj mod aj�i� � mj�

If Condition �B� holds� the integer aj�ixj�i is always represented exactly in �oating point

on a �
	bit computer that supports the IEEE ��� �oating	point arithmetic standard�

with at least �� bits of precision for the mantissa� The generator can then be imple	

mented directly in �oating	point arithmetic� which is typically faster than an integer

arithmetic implementation� On the other hand� with this implementation� the state of

the generator is represented over ��kJ bits� as opposed to �
kJ bits when the xj�i are

represented as �
	bit integers� When Condition �C� is satis�ed and each integer from

�mj to mj �ts into a computer word� each xj�i can be represented as an integer over a

single computer word and the product aj�ixj�i mod mj can be computed via the approxi	

mate factoring method described in Bratley� Fox� and Schrage ������ and L
Ecuyer and

C!ot"e ������� This condition holds if and only if a�j�i � mj or aj�i � bmj�zc for z� � mj�

One can also force any aj�i to be either positive or negative� A coe�cient aj�i � � is

equivalent to a�ij � aj�i �mj � �� but jaj�ij may satisfy a condition such as �B� or �C�

that aj�i �mj does not satisfy�

When �B� or �C� is imposed and some coe�cients are forced to be zero� combination

is usually needed for reaching good �gures of merit MT � because there is a limit on

what an MRG can do with these conditions imposed on its coe�cients� Combination

helps because the coe�cients aj in ��� can be large even if the aj�i in �
� are small� To

illustrate certain limitations in absence of combination� consider an MRG with a prime

modulus m near 
	�� order k � �� and for which �� p of the coe�cients ai are zero� the

others being less than 
�� so that �B� holds� Recall �see L
Ecuyer ����� that a general

lower bound on dt is given by

dt �
�
� �

kX
i��

a�i

�����
�

which in our example yields dt � �� � p�
�� � �������� � ���
��
p
p�� For t � �� since

�� �
p

� one has S� � 
����m�k�t�d� � 
����

p
p� With only two nonzero coe�cients

�p � 
� this gives M� � S� � ���
�� whereas if all the coe�cients are nonzero �p � ��

this still yields M� � S� � ������� It is thus impossible to obtain a good �gure of

merit in this situation� for any p� Similar limitations hold if the MRG has many zero

coe�cients�

�



For several vectors �J� k�m�� � � � � mJ� and di�erent sets of constraints on the coe�	

cients aj�i� we performed random searches among the coe�cients yielding maximal period

length �mk
� � �� � � � �mk

J � ���
J�� for the CMRG� and retained the coe�cient sets with

the largest values of M� that we could �nd� those with the largest values of M��� and

those with the largest values ofM	� �or M�
 for some largemj�� The choice of T � �� ���

and �
 is arbitrary� It gives generators with good lattice structures in small� medium�

and large dimensions� Each random search was given a computing budget of between


� and �� hours of CPU time on a SUN Sparcstation� Performing exhaustive searches

is out of the question because there are too many possibilities� The next section reports

some of the results�

�� Tables of Combined MRGs with Good Figures of Merit

In the tables that we now give� a symbol � next to an MT value means that this is the

best value found for that �gure of merit� within the class of CMRG considered� For each

class� the mj are �xed and the constraints �B� or �C� on the coe�cients aj�i are given in

the second column of the table� The symbol �X� means that no conditions are imposed�

The coe�cients not given in the tables �e�g�� a�� and a�� in Table II� are equal to zero�

For example� for J � 
� k � �� m� � 
	�� 
��� m� � 
	�� 

���� a�� � a�� � �� and

with Condition �B� in force� the combined generator with the largest value of M	� that

we found has M	� � �������� and its coe�cients are given in lines � and � from below

in Table II� This generator is implemented in Figure I� Note that the generators which

satisfy condition �C� in Table II also satisfy condition �B�� For the values of J � k� and

mj chosen in Table II� the searches with no conditions on the coe�cents did no better

than those with condition �B� or �C�� except for the generator in the last two lines of the

table� which is marginally better with respect to M�� than the best one with condition

�B�� This means that for practical purposes� we lose nothing by imposing either �B�

or �C� on the coe�cients� For the larger moduli of Table III� condition �B� becomes

irrelevant� and one loses very little by imposing �C�� Tables IV and V give combinations

of order � with 
 components� whereas Tables VI and VII give combinations of order

� with � components� All the coe�cients in Tables IV and VI satisfy �B�� Condition

�B�� in Table IV means that mj times the sum of the positive coe�cients aj�i does

not exceed 
�	� This is slightly stronger than �B� and implies that the terms of the

linear combination can be added directly in �oating	point arithmetic without checking

�



Table II

MRGs with J � 
� k � �� and Good Figures of Merit up to M	�

m� a�� a�	

m� Cd� a�� a�	 M� M�� M	�

�	� � 	 B ������� �����	
�

�	� � �	
�� B ������� ���


�� 	��
��	� 	�
�
�� 	�
�
��

�	� � 	 B �	��
�� ��	����


�	� � �	
�� B ��
�
�	 ����	
	� 	������ 	��
�	
� 	�
��	�

�	� � 	 B ���	�
� ����
���

�	� � �	
�� B �����
� �������
 	����
� 	�����
 	�������

�	� � �	
�� B �����	
 ���
	��


�	� � 
���� B �
����� ����	�
	 	��
�
�� 	�
�	�� 	�
�
�


�	� � �	
�� B �
�	�	� ��		����

�	� � 
���� B ������� ���
	�
� 	����	� 	��
���� 	�
��	�

�	� � �	
�� C �

�	� �
�	


�	� � 
���� C 
���� ����

 	���	
�� 	�

��� 	�

���

�	� � �	
�� C ��
�� ����
	��

�	� � 
���� C ����� ��
��� 	��
��	 	��
���� 	�
��	�

�	� � �	
�� C ����� �����


�	� � 
���� C ���	� ������ 	���


 	���
�� 	����
��

�	� � �
� B ����
�
 ��������

�	� � ����� B 
��
�� ����
�
 	������� 	���
�� 	���
��

�	� � �
� B ��	���� ���
�
��

�	� � ����� B �	����� �����
�� 	���
�
 	��

�	� 	��	���

�	� � �
� B ��	�

	 �
�	��


�	� � ����� B 
����� ����	

� 	��

�� 	�����	 	����
��

�	� � �
� X ��
�����	� �
�
�
����

�	� � ����� X ��	������� ���
��	���
 	���
	
 	���
	
� 	�
�
	�

for over�ow� In Table IV� with the mj near 

	�� our best combinations that satisfy �B��

are roughly as good as our best that satisfy �B�� But for the mj near 
	�� this is not

the case� Imposing �B�� instead of �B� seems to place a limitation on St in dimension

�� For the combinations of order � with � components� with � nonzero coe�cients per

component� we found no good set of coe�cients that satisfy �B��� We also found no

good combinations in Tables V and VII for which the coe�cients satisfy �C��
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Table III

MRGs with J � 
� k � �� and Good Figures of Merit up to M�


m� a�� a�	

m� Cd� a�� a�	

M� M�� M�


��	 � ��
� X �

�



������

��� ��	��������
���		��	

��	 � �		�� X ��
��

�����
���
�� �����
��
��	�
	���	�

	��


� 	��


�� 	���
��

��	 � ��
� X ���	�		��

�����	
� ��	����	��	�
�
�	���

��	 � �		�� X ��
��

�����
���
�� �����
��
��	�
	���	�

	����
� 	����
� 	����
��

��	 � ��
� C ��

��

�
 �����������

��	 � �		�� C ���
�����	� �����������

	��
���� 	���	�� 	���	��

��	 � ��
� C �������
�� ���



���	

��	 � �		�� C ��
�
����
 �����
��
��

	���	�	 	����	�� 	��	�	


��	 � ��
� C ��
������	 ���
��	�	��

��	 � �		�� C ���
������
 �����������

	���	�� 	����		 	����		�

��	 � �		�� X �
��
����������
��� ��



�����
�
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��	 � ���
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���
	�������


	����	�� 	��
�	� 	��
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�����
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��	 � ���
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����
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�	� ��

�
�����
�
������

	�����
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����

��	 � �		�� X �
����	����	

�
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�	�	���
�

��	 � ���
�� X ��
		

�

������	�
 �����
�
�
�	��	�����

	������ 	������ 	�������

��	 � �		�� C ��	
�	
��� ������		
��

��	 � ���
�� C ������

�� �����
��
	�

	��

�
� 	�
���� 	�
�
��
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����
� ��
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����
� ��
��
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	��
�	� 	��
��
� 	�
�
��
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	�	�
��
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���	�
��

��	 � ���
�� C ���������� �����	�
�
�

	������ 	������ 	�������
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Table IV

MRGs with J � 
� k � �� and Good Figures of Merit up to M	�

m� a�� a�
 a��

m� Cd� a�� a�	 a��

M� M�� M	�

�	� � ���
	 B ����
�� ��	


� �����	��
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 �
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���� 	�
���� 	�
�����
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Table V

MRGs with J � 
� k � �� mj near 

�	� and Good Figures of Merit up to M�
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�� Implementations

Figure I gives an implementation in the C language of the CMRG given in the third entry

of Table II� We call it MRG�
k�a� It has 
 components of order �� whose coe�cients

satisfy Condition �B�� The moduli and coe�cients are m� � 
	� � 
��� a�� � �� a�� �

�������� a�	 � �����
��m� � 
	��

���� a�� � �
���
� a�� � �� a�	 � ��������� This

generator is well	behaved in all dimensions up to at least ��� In addition toM	� � �������

one has M
� � ������ and M
� � ���

�� Its period length is �m	
� � ���m	

� � ���
 �

���� This implementation uses �oating	point arithmetic and works under the �su�cient�

condition that all integers between �
�	 and 
�	 are represented exactly in �oating	point�

The strings m�� m�� a��� etc�� in the code must also be converted by the compiler to the

exact �oating	point representation of the corresponding integers �beware� the author

knows compilers� for other languages than C� that do not do that correctly��

The vectors �s��� s��� s��	 and �s��� s��� s��	 contain the values of �x���� x����

x���� and �x���� x���� x����� respectively� Their initial values constitute the seed � Before

the procedure is called for the �rst time� one must initialize s��� s��� s�� to �exact�

non	negative integers less than m� and not all zero� and s��� s��� s�� to non	negative

integers less than m� and not all zero� This program implements the combination ��� 

���� with �� � ��� � � and with the following slight modi�cation� The normalization

constant is ���m� � �� instead of ��m�� and zn � � is converted to zn � m�� This

��



Table VI

MRGs with J � �� k � �� and Good Figures of Merit up to M	�
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Table VII

Large MRGs with J � �� k � �� and Good Figures of Merit up to M�


m� a�� a�
 a��

m� a�� a�� a��

m	 Cd� a		 a	� a	�

M� M�� M�


��	 � ��
�� X ������	��
��
�

��
 �������
������
�
�
 ���
���
�����
���
��

��	 � ��	�	 X ����
����	��
������ �
	
����������
��
� ���������
���

�
���

��	 � 	���
	 X ��	������������	��� ��������

��	
���
� ���	
	�
��	��������


	������� 	�
���� 	�
����

��	 � ��
�� X ������	��
��
�

��
 �������
������
�
�
 ���
���
�����
���
��

��	 � ��	�	 X ���
������
���	

�
 �
��
��		����
�
�
� ������
���	��
	���
�

��	 � 	���
	 X ��
�������	������

 �
��

�

��
�	�
��� ��
��
����	
����
���

	��
��� 	������� 	�
�

�

��	 � ��
�� X �	�����

��
������
 ������


�����	�
�� �����	
	�����
�����	

��	 � ��	�	 X ���
�
���	��

����
 �
����	
�
�����	�

 ����
����	���

�
��


��	 � 	���
	 X ��
��	
�	��	�

��
� �����

�
	�

�
��� �����
�������
������

	����

 	������ 	�������

modi�cation is to make sure that the generator never returns exactly � or � �frequently�

one takes the logarithm of u or of �� u� where u is the returned value� for example to

generate exponential random variables��

To implement the combination ��� instead� add�


define norm� ����������
������e���

and replace the last two lines of the procedure by�

p � p� � norm� � p� � norm��
if �p � ���	 return �p � ���	� else return p�

This would be slightly slower and may return ����

This generator has been tested extensively with various empirical statistical tests

and it easily passed all the tests�

Figure II provides a similar implementation� for a CMRG with two components of

order �� taken from Table IV� Its period length is �m�
�� ���m�

�� ���
 � 
	��� If the two

components of this generator would also satisfy condition �B��� then the code could be

simpli�ed somewhat� The two lines starting with �if �p � ���	� could be removed and

��



�define norm ����
�	�
����
��
e��	
�define m� �������	
��	
�define m� �����������	
�define a�� ��	�

	�	
�define a��n 
�	��
�	
�define a�� 
������	
�define a��n ���	

��	

double s�	� s��� s��� s�	� s��� s���

double MRG��k�a ��
�
long k�
double p�� p��
�� Component � ��
p� � a�� � s�� � a��n � s�	�
k � p� � m�� p� �� k � m�� if �p� � 	�	� p� �� m��
s�	 � s��� s�� � s��� s�� � p��
�� Component � ��
p� � a�� � s�� � a��n � s�	�
k � p� � m�� p� �� k � m�� if �p� � 	�	� p� �� m��
s�	 � s��� s�� � s��� s�� � p��
�� Combination ��
if �p� �� p�� return ��p� � p� � m�� � norm��
else return ��p� � p�� � norm��
�

Figure I

A �oating	point implementation in C of a �
	bit CMRG

the �p ��� statements that follow these lines could be incorporated with the previous

line� because �B�� would guarantee that p could never exceed 
�	�

Figure III implements a generator in ��	bit integer arithmetic� It is a CMRG with 


components of order �� whose coe�cients satisfy Condition �C� and are given in Table III�

The moduli and coe�cients are m� � 
�	 � ����� a�� � �� a�� � ��������
�� a�	 �

����
�����
� m� � 
�	 � 
��
�� a�� � ������������ a�� � �� a�	 � ������������

The period length is �m	
� � ���m	

� � ���
 � 
	��� This implementation assumes that

all integers from �m� and m� are represented exactly in the �long long� type� This

implementation is similar to the one given in Figure I of L
Ecuyer ������� but with the

parameters of the generator de�ned as constants instead of variables� This makes the

code signi�cantly faster on most computers� Again� the global variables s��� s��� s��

�resp�� s��� s��� s��� must be initialized to non	negative integers less than m� �resp��

m�� and not all zero before the �rst call�

To get an idea of the comparative speeds� for each generator we generated �� million

����� random numbers and added them up� looked at how much CPU time �user time

��



double s�	� s��� s��� s��� s��� s�	� s��� s��� s��� s���

�define norm ����
�������
�����e��	
�define m� �������	���	
�define m� �����������	
�define a�� ��
�����	
�define a�� ��������	
�define a�
n ��	
����	
�define a�� ��������	
�define a�� 
�
�	��	
�define a�
n ����	
��	

double MRG��k
a ��
�
long k�
double p�� p��
�� Component � ��
p� � a�� � s�� � a�
n � s�	�
if �p� � 	�	� p� �� a�� � m��
p� �� a�� � s��� k � p� � m�� p� �� k � m��
if �p� � 	�	� p� �� m��
s�	 � s��� s�� � s��� s�� � s��� s�� � s��� s�� � p��
�� Component � ��
p� � a�� � s�� � a�
n � s�	�
if �p� � 	�	� p� �� a�� � m��
p� �� a�� � s��� k � p� � m�� p� �� k � m��
if �p� � 	�	� p� �� m��
s�	 � s��� s�� � s��� s�� � s��� s�� � s��� s�� � p��
�� Combination ��
if �p� �� p�� return ��p� � p� � m�� � norm��
else return ��p� � p�� � norm��
�

Figure II

A �oating	point implementation in C of a �
	bit CMRG of order � with 
 components�

��



�define norm ��	
��	�����


	
�e���
�define m� �������	��

�������
�define m� �������	��

��
����
�define a�� ��
������	
�define q�� 
�
����
��
�define r�� �
��	����
�define a��n ��
��	�	��
�define q�� �
�

�����
�define r�� ����
��	�
�define a�� ���
������

�define q�� ���


�
	
�define r�� ���������
�define a��n ����������
�define q�� ��
�
���		
�define r�� �

��		��

long long s�	� s��� s��� s�	� s��� s���

double MRG��k�a ��
�
long long h� p��� p��� p��� p���
�� Component � ��
h � s�	 � q��� p�� � a��n � �s�	 � h � q��� � h � r���
h � s�� � q��� p�� � a�� � �s�� � h � q��� � h � r���
if �p�� � 	� p�� �� m��
if �p�� � 	� p�� �� m� � p��� else p�� �� p���
if �p�� � 	� p�� �� m��
s�	 � s��� s�� � s��� s�� � p���
�� Component � ��
h � s�	 � q��� p�� � a��n � �s�	 � h � q��� � h � r���
h � s�� � q��� p�� � a�� � �s�� � h � q��� � h � r���
if �p�� � 	� p�� �� m��
if �p�� � 	� p�� �� m� � p��� else p�� �� p���
if �p�� � 	� p�� �� m��
s�	 � s��� s�� � s��� s�� � p���
�� Combination ��
if �p�� � p��� return ��p�� � p��� � norm��
else return ��p�� � p�� � m�� � norm��
�

Figure III

An implementation in C� on ��	bit integers� of a CMRG of order � with 
 components�

��



Table VIII

CPU time �seconds� to generate and add ��� random numbers� and value of the sum

Generator Period Method SUN DEC Sum

length � Ultra�� Alpha

MRG��k�a 
��� FP ��� ��� ����������

MRG��k�a 
	�� FP ��� ���� ����
�
���

MRG��k�a 
	�� I ���� ���� ����

����

combMRG��a 
��� I ���� ���� 
���������

combMRG��b 
��� I ���� ���� 
���������

combMRG��f 
��� FP ��� ��� 
���������

comblec��a 
�� I ��� ��� 
���������

comblec��f 
�� FP 
�� ��� 
���������

drand
� 

� ��� ���� ��� ���

� system time� it took� and then printed the sum for checking purposes� This was done

�rst on a ��	bit SUN Ultra	
 under OS ���� using the system
s compiler �cc� version

��
� with the ��fast �xtarget�ultra �xarch�v�plusa� options� and also on a ��	bit

DEC AlphaStation 
�� using the compiler cc at optimization level O�� The timings �in

seconds� for selected generators are in Table VIII� We also indicate the period length�

the type of implementation �FP for �oating	point and I for integer arithmetic�� and

the sum of the ��� numbers generated� In addition to the already mentioned CMRGs�

we report the timings for a C version of the �
	bit combined LCG of L
Ecuyer ������

�comblec��a�� the CMRG in Figure I of L
Ecuyer ������ �combMRG��a�� and one of

the system
s generators in UNIX �drand
��� In all cases �except for drand
��� each

integer in the seed was �
���� �It is a good idea to check that your implementations

reproduce the same sums�� For comblec��a and combMRG��a� the times are for the

implementations in integer arithmetic as given in these papers� Implementations of

these two generators in �oating	point arithmetic as in Figure I are called comblec��f

and combMRG��f in the table� The generator combMRG��b is a variant of combMRG��a

with the moduli and multipliers de�ned as embedded constants in the code instead of

variables as in combMRG��a�

Obviously� the timings depend on the type of machine� On di�erent models of SUN

computers they vary �roughly� only by a machine	dependent constant factor� On these

computers� the �oating	point implementation is much faster than the �
	bit integer

implementation� and the implementation based on ��	bit integer arithmetic is rather

��



slow� On the ��	bit DEC Alpha� a RISC machine with fast integer arithmetic� the

implementations in integer arithmetic are more competitive� Considering the period

and the quality of the lattice structure� MRG��k�a could be a good choice for the DEC

Alpha�

The generator of Figure I gives no more than �
 bits of precision even though it

returns ��	bit �oating	point numbers� If more precision is desired� a simple solution

uses two successive numbers produced by the generator to construct each output value�

For example� if MRG��k�a outputs the sequence u�� u�� � � �� one can e�ectively use the

sequence v�� v�� � � � de�ned by vi � �	u�i � u�i��� mod � for some constant 	 between


��� and 
�	��
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