
Learning Sum-Product Networks with Direct and Indirect Variable
Interactions

Amirmohammad Rooshenas PEDRAM@CS.UOREGON.EDU
Daniel Lowd LOWD@CS.UOREGON.EDU

Department of Computer and Information Science, University of Oregon

Abstract

Sum-product networks (SPNs) are a deep prob-
abilistic representation that allows for efficient,
exact inference. SPNs generalize many other
tractable models, including thin junction trees,
latent tree models, and many types of mixtures.
Previous work on learning SPN structure has
mainly focused on using top-down or bottom-up
clustering to find mixtures, which capture vari-
able interactions indirectly through implicit la-
tent variables. In contrast, most work on learning
graphical models, thin junction trees, and arith-
metic circuits has focused on finding direct in-
teractions among variables. In this paper, we
present ID-SPN, a new algorithm for learning
SPN structure that unifies the two approaches.
In experiments on 20 benchmark datasets, we
find that the combination of direct and indirect
interactions leads to significantly better accuracy
than several state-of-the-art algorithms for learn-
ing SPNs and other tractable models.

1. Introduction
Probabilistic graphical models such as Bayesian and
Markov networks have been widely used in many areas
of AI, including computer vision, natural language pro-
cessing, robotics, and more. Their biggest limitation is
that inference is intractable: in general, computing the ex-
act probability of a marginal or conditional query is #P-
complete (Roth, 1996). However, there are many special
cases of graphical models where inference is tractable. For
problems where the quality and efficiency of inference are
important, performing exact inference in a tractable model
may be better than performing approximate inference in an
intractable model, even if the intractable model fits the data

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

slightly better. Tractable models are also useful for approx-
imating intractable models in variational inference. In this
paper, we focus on the problem of learning a tractable prob-
abilistic model over a set of discrete random variables, with
the goal of answering probability queries accurately and ef-
ficiently.

Previous work has considered several different approaches
to representing and learning tractable models, such as
learning thin junction trees (Bach & Jordan, 2001;
Chechetka & Guestrin, 2008; Elidan & Gould, 2008),
exploiting context-specific independencies (Gogate et al.,
2010; Lowd & Domingos, 2008; Lowd & Rooshenas,
2013), and using latent variables (Choi et al., 2011; Lowd
& Domingos, 2005; Meila & Jordan, 2000). Sum-product
networks (SPNs) (Poon & Domingos, 2011) are a class of
tractable models with the capacity to generalize all of these
approaches.

However, previous work with SPNs has focused exclu-
sively on the latent variable approach, using a complex
hierarchy of mixtures to represent all interactions among
the observable variables (Gens & Domingos, 2013; Den-
nis & Ventura, 2012). These SPN structures can be learned
from data by recursively clustering instances and variables.
Clustering over the instances is done to create a mixture,
represented with a sum node. Clustering over the variables
is done to find independencies within the cluster, repre-
sented with a product node. We refer to this approach as
creating indirect interactions among the variables, since all
dependencies among the observable variables are mitigated
by the latent variables implicit in the mixtures.

This type of top-down clustering is good at represent-
ing clusters, but may have difficulty with discovering di-
rect interactions among variables. For example, sup-
pose the data in a domain is generated by a 6-by-6 grid-
structured Markov network with binary-valued variables.
This Markov network can be represented as a junction tree
with treewidth 6, which is small enough to allow for ex-
act inference. This can also be represented as an SPN that
sums out 6 variables at a time in each sum node, represent-

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

ing each of the separator sets in the junction tree. However,
learning this from data requires discovering the right set of
64 (26) clusters that happen to render the other regions of
the grid independent from each other. Of all the possible
clusterings that could be found, happening to find one of
the separator sets is extremely unlikely. Learning a good
structure for the next level of the SPN is even less likely,
since it consists of 64 clustering problems, each working
with 1/64th of the data.

In contrast, Markov network structure learning algorithms
can easily learn a simple grid structure, but may do poorly
if the data has natural clusters that require latent variables
or a mixture. For example, consider a naive Bayes mix-
ture model where the variables in each cluster are indepen-
dent given the latent cluster variable. Representing this as a
Markov network with no latent variables would require an
exponential number of parameters.

In order to get the best of both worlds, we propose ID-
SPN, a new method for learning SPN structures that can
learn both indirect and direct interactions, including con-
ditional and context-specific independencies. This unifies
previous work on learning SPNs through top-down clus-
tering (Dennis & Ventura, 2012; Gens & Domingos, 2013)
with previous work on learning tractable Markov networks
through greedy search (Lowd & Rooshenas, 2013).

On a set of 20 standard structure learning benchmarks,
our ID-SPN method consistently outperforms state-of-the-
art methods for learning both SPNs and tractable Markov
networks. ID-SPN has better test-set log-likelihood than
LearnSPN (Gens & Domingos, 2013) on every single
dataset, and a majority of these differences are statistically
significant. ID-SPN is more accurate than ACMN (Lowd
& Rooshenas, 2013) on 17 datasets. Furthermore, ID-SPN
was always more accurate than two other algorithms for
learning tractable models, mixtures of trees (Meila & Jor-
dan, 2000) and latent tree models (Choi et al., 2011). To
fully demonstrate the effectiveness of ID-SPN at learning
accurate models, we compared it to intractable Bayesian
networks learned by the WinMine Toolkit (Chickering,
2002), and found that ID-SPN obtained significantly better
test-set log-likelihood on 13 out of 20 datasets with sig-
nificantly worse log-likelihood on only 4 datasets. This
suggests that the combination of latent variables and direct
variable interactions is a good approach to modeling prob-
ability distributions over discrete data, even when tractable
inference is not a primary goal.

The remainder of our paper is organized as follows. In Sec-
tion 2, we present background on graphical models and
SPNs. In Section 3, we present ID-SPN, our proposed
method for learning an SPN. We present experiments on
20 datasets in Section 4 and conclude in Section 5.

2. Background
A sum-product network (SPN) (Poon & Domingos, 2011)
is a deep probabilistic model for representing a tractable
probability distribution. SPNs are attractive because they
can represent many other types of tractable probability dis-
tributions, including thin junction trees, latent tree mod-
els, and mixtures of tractable distributions. They have
also achieved impressive results on several computer vision
problems (Poon & Domingos, 2011; Gens & Domingos,
2012).

An SPN consists of a rooted, directed, acyclic graph repre-
senting a probability distribution over a set of random vari-
ables. Each leaf in the SPN graph is a tractable distribution
over a single random variable. Each interior node is either
a sum node, which computes a weighted sum of its chil-
dren in the graph, or a product node, which computes the
product of its children. The scope of a node is defined as
the set of variables appearing in the univariate distributions
of its descendants. In order to be valid, the children of ev-
ery sum node must have identical scopes, and the children
of every product node must have disjoint scopes (Gens &
Domingos, 2013)1. Intuitively, sum nodes represent mix-
ture and product nodes represent independencies. SPNs
can also be described recursively as follows: every SPN
is either a tractable univariate distribution, a weighted sum
of SPNs with identical scopes, or a product of SPNs with
disjoint scopes.

To compute the probability of a complete configuration,
compute the value of each node starting at the leaves. Each
leaf is a univariate distribution which evaluates to the prob-
ability of one variable according to that distribution. Sum
and product nodes evaluate to the weighted sum and prod-
uct of their child nodes in the network, respectively. To
compute the probability of a partial configuration, we need
to sum out one or more variables. In an SPN, this is done
by setting the values of all leaf distributions for those vari-
ables to 1. Conditional probabilities can then be computed
as the ratio of two partial configurations. Thus, computing
marginal and conditional probabilities can be done in lin-
ear time with respect to the size of the SPN, while these
operations are often intractable in Bayesian and Markov
networks with high treewidth.

2.1. Arithmetic Circuits

Arithmetic circuits (ACs) (Darwiche, 2003) are an infer-
ence representation that is closely related to SPNs. Like an
SPN, an AC is a rooted, directed, acyclic graph in which
interior nodes are sums and products. The representational

1Poon and Domingos (2011) also allow for non-decomposable
product nodes, but we adopt the more restrictive definition of
Gens and Domingos (2013) for simplicity.

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

differences are that ACs use indicator nodes and parameter
nodes as leaves, while SPNs use univariate distributions as
leaves and attach all parameters to the outgoing edges of
sum nodes.

Arithmetic circuits are closely related to logical formulas
represented in negation normal form (NNF), except that
NNF formulas use disjunctions and conjunctions rather
than sums and products. We adapt NNF properties defined
by Darwiche (2003) to describe three important AC proper-
ties: i) An AC is decomposable if the children of a product
node have disjoint scopes. ii) An AC is deterministic if the
children of a sum node are mutually exclusive, meaning
that at most one is non-zero for any complete configura-
tion. iii) An AC is smooth if the children of a sum node
have identical scopes.

An AC represents a valid probability distribution if it is
decomposable and smooth. ACs generated by compiling
graphical models are typically deterministic as well. This is
different from most previous work with SPNs, where sum
nodes represent mixtures of distributions and are not de-
terministic. SPNs can be made deterministic by explicitly
defining random variables to represent the mixtures, mak-
ing the different children of each sum node deterministi-
cally associated with different values of a new hidden vari-
able.

We further demonstrate the equivalence of the AC and SPN
representations with the following two propositions.
Proposition 1. For discrete domains, every decomposable
and smooth AC can be represented as an equivalent SPN
with fewer or equal nodes and edges.

We can also show the other direction:
Proposition 2. For discrete domains, every SPN can be
represented as an AC with at most a linear increase in the
number of edges.

The proofs of both propositions can be found in the supple-
mentary materials.

2.2. Learning SPNs and ACs

SPNs and ACs are very attractive due to their ability to rep-
resent a wide variety of tractable structures. This flexibility
also makes it especially challenging to learn their structure,
since the space of possible structures is very large.

Several different methods have recently been proposed for
learning SPNs. Dennis and Ventura (2012) construct a re-
gion graph by first clustering the training instances and then
repeatedly clustering the variables within each cluster to
find smaller scopes. When creating new regions, if a re-
gion with that scope already exists, it is reused. Given the
region graph, Dennis and Ventura convert this to an SPN
by introducing sum nodes to represent mixtures within each

region and product nodes to connect regions to sub-regions.
Gens and Domingos (2013) also perform a top-down clus-
tering, but they create the SPN directly through recursive
partitioning of variables and instances rather than building
a region graph first. The advantage of their approach is that
it greedily optimizes log-likelihood; however, the resulting
SPN always has a tree structure and does not reuse model
components. Peharz et al. (2013) propose a greedy bottom-
up clustering approach for learning SPNs that merges small
regions into larger regions.

Two AC learning methods have been proposed as well.
Lowd and Domingos (2008) adapt a greedy Bayesian net-
work structure learning algorithm by maintaining an equiv-
alent AC representation and penalizing structures by the
number of edges in the AC. This biases the search towards
models where exact inference is tractable without placing
any a priori constraints on network structure. Lowd and
Rooshenas (2013) extend this idea to learning Markov net-
works with conjunctive features, and find that the addi-
tional flexibility of the undirected representation leads to
slightly better likelihoods at the cost of somewhat slower
learning times.

While both classes of learning algorithms work with equiv-
alent representations and learn rich, tractable models, the
types of relationships they discover are very different. The
SPN learning algorithms emphasize mixtures and only con-
sider local modifications when searching for better models.
This results in models that use implicit latent variables to
capture all of the interactions among the observable vari-
ables. In contrast, the AC learning methods are based on
learning algorithms for graphical models without hidden
variables. Instead of searching within the sum-product net-
work structure, they search within the space of graphical
model structures. Some of these operations could lead to
large, global changes in the corresponding AC represen-
tation. For example, a single operation that increases the
model treewidth by one could require doubling the size of
the circuit. (Methods for learning thin junction trees are
similar in their search space, except that ACs can also ex-
ploit context-specific independence to obtain more com-
pact models.)

Each of these directions has its own strengths. Mixture
models are good at representing domains that have nat-
ural clusters, since each cluster can be represented by a
relatively simple mixture component. Thin junction trees
and arithmetic circuits are better when the domain has
conditional or context-specific independencies, since they
can represent direct relationships among the observed vari-
ables. Neither is more expressive than the other: converting
a mixture model to a model with no latent variables typi-
cally results in a clique over all variables, and converting a
thin junction tree to a mixture of trees or other latent vari-

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

+

AC

AC +

* AC

AC

+

λx2

λx1

*

*

θ2

λx1

+

θ1

*

+ λx2

Figure 1. Example of an ID-SPN model. The upper layers are
shown explicitly as sum and product nodes, while the lower lay-
ers are abbreviated with the nodes labeled “AC.” The AC compo-
nents encode graphical models over the observed variables repre-
sented as arithmetic circuits (AC), and may involve many nodes
and edges.

able model could require an exponential number of clus-
ters. In the following section, we propose a method that
combines both approaches in a unified algorithm.

3. ID-SPN
In this section, we describe ID-SPN, our approach to learn-
ing sum-product networks. ID-SPN combines top-down
clustering with methods for learning tractable Markov net-
works to obtain the best of both worlds: indirect interac-
tions through latent cluster variables in the upper levels of
the SPN as well as direct interactions through the tractable
Markov networks at the lower levels of the SPN. ID-SPN
learns tractable Markov networks represented by ACs using
the ACMN algorithm (Lowd & Rooshenas, 2013); how-
ever, this could be replaced with any algorithm that learns
a tractable multivariate probability distribution that can be
represented as an AC or SPN, including any thin junction
tree learner.

For learning an SPN structure, LearnSPN (Gens & Domin-
gos, 2013) recursively performs two operations to create a
tree-structured SPN: partitioning the training data to create
a sum node, representing a mixture over different clusters,
or partitioning the variables to create a product node, rep-
resenting groups of independent variables within a cluster.
The partitioning is chosen greedily to maximize the (regu-
larized) likelihood of the training data. This process contin-
ues recursively, operating on fewer variables and examples
until it reaches univariate distributions which become the

leaves.

ID-SPN performs a similar top-down search, clustering in-
stance and variables to create sum and product nodes, but it
may choose to stop this process before reaching univari-
ate distributions and instead learn an AC to represent a
tractable multivariate distribution with no latent variables.
Thus, LearnSPN remains a special case of ID-SPN when
the recursive clustering proceeds all the way to univari-
ate distributions. ACMN is also a special case, when a
tractable distribution is learned at the root and no clustering
is performed. ID-SPN uses the likelihood of the training
data to choose among these different operations.

Another way to view ID-SPN is that it learns SPNs where
the leaves are tractable multivariate distributions rather
than univariate distributions. As long as these leaf distribu-
tions can be represented as valid SPNs, the overall structure
can be represented as a valid SPN as well. For ease of de-
scription, we refer to the structure learned by ID-SPN as a
sum-product of arithmetic circuits (SPAC). A SPAC model
consists of sum nodes, product nodes, and AC nodes. Every
AC node is an encapsulation of an arithmetic circuit which
itself includes many nodes and edges. Figure 1 shows an
example of a SPAC model.

We can also relax the condition of learning a valid SPN
structure and allow any tractable probabilistic models at
the leaves. In this case, the SPAC model generalizes to a
sum-product of tractable models. Such models may not
be valid SPNs, but they retain the efficient inference prop-
erties that are the key advantage of SPNs. Nevertheless,
we leave this part for future exploration and continue with
SPAC, which has a valid SPN structure.

3.1. Learning

Algorithm 1 illustrates the pseudocode of ID-SPN. The
ID-SPN algorithm begins with a SPAC structure that only
contains one AC node, learned using ACMN on the com-
plete data. In each iteration, ID-SPN attempts to extend the
model by replacing one of the AC leaf nodes with a new
SPAC subtree over the same variables. Figure 2 depicts the
effect of such an extension on the SPAC model. If the ex-
tension increases the log-likelihood of the SPAC model on
the training data, then ID-SPN updates the working model
and adds any newly created AC leaves to the queue.

As described in Algorithm 2, the extend operation first at-
tempts to partition the variables into independent sets to
create a new product node. If a good partition exists, the
subroutine learns a new sum node for each child of the
product node. If no good variable partition exists, the sub-
routine learns a single sum node. Each sum node is learned
by clustering instances and learning a new AC leaf node for

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

Algorithm 1 Algorithm for learning a SPAC.
function ID-SPN(T)
input: Set of training examples, T ; set of variables V
output: Learned SPAC model
n← LearnAC(T, V).
SPAC← n
N ← leaves of SPAC // which includes only n
while N 6= ∅ do
n← remove the node with the largest number of samples in

its footprint from N
(Tji, Vj)← set of samples and variables used for learning n

// footprint and scope of n
subtree← extend(n, Tji, Vj)
SPAC’← SPAC with n replaced by subtree
if SPAC’ has a better log-likelihood on T than SPAC then

SPAC← SPAC’
N ← N∪ leaves of subtree

end if
end while
return SPAC

each data cluster. These AC nodes may be extended further
in future iterations.

As a practical matter, in preliminary experiments we found
that the root was always extended to create a mixture of
AC nodes. Since learning an AC over all variables from
all examples can be relatively slow, in our experiments we
start by learning a sum node over AC nodes rather than a
single AC node.

Every node nji in a SPAC (including sum and product
nodes) represents a probability distribution over a subset of
variables Vj learned using a subset of the training instances
Ti. We use Tji to denote the projection of Ti into Vj , and
refer to it as the footprint of node nji on the training set, or
to be more concise, the footprint of nji.

A product node estimates the probability distribution over
its scope as the product of approximately independent
probability distributions over smaller scopes: P (V) =∏
j P (Vj) where V is the scope of the product node and

Vjs are the scope of its children. Therefore, to create a
product node, we must partition variables into some sets
that are approximately independent. We measure the de-
pendence of two variables with pairwise mutual informa-
tion,

∑
x1∈X1

∑
x2∈X2

C(x1,x2)
|Ti| log C(x1,x2)·|Ti|

C(x1)C(x2)
whereX1

and X2 are a pair of variables, x1 and x2 range over their
respective states, and C(.) counts the occurrences of the
configuration in the footprint of the product node. A good
variable partition is one where the variables within a par-
tition have high mutual information, and the variables in
different partitions have low mutual information. Thus, we
create an adjacency matrix using pairwise mutual informa-
tion such that two variables are connected if their empir-
ical mutual information over the footprint of the product
node (not the whole training set) is larger than a predefined

Algorithm 2 Algorithm for extending SPAC structure.
function extend(n, T , V)
input: An AC node n, set of instances T and variables V used
for learning n
output: A SPAC subtree representing a distribution over V
learned from T
p-success← Using T , partition V into approximately

independent subsets Vj

if p-success then
// Learn a product node
for each Vj do

let Tj be the data samples projected into Vj

s-success← partition Tj into subsets of similar
instances Tji

if s-success then
// Learn a sum node
for each Tji do

nji ← LearnAC(Tji, Vj)
end for
nj ←

∑
i

|Tji|
|Tj |
· nji

else
nj ← LearnAC(Tj , Vj)

end if
end for
subtree←

∏
j nj

else
s-success← partition T into subsets of similar instances Ti

if s-success then
// Learn a sum node
for each Ti do

ni ← LearnAC(Ti, V)
end for
subtree←

∑
i
|Ti|
|T | · ni

else
// Failed to extend n
subtree← n

end if
end if
return subtree

threshold. Then, we find the set of connected variables in
the adjacency matrix as the independent set of variables.
This operation fails if it only finds a single connected com-
ponent or if the number of variables is less than a threshold.

A sum node represents a mixture of probability distribu-
tions with identical scopes: P (V) =

∑
i wiP

i(V) where
the weights wi sum to one. A sum node can also be in-
terpreted as a latent variable that should be summed out:∑
c P (C = c)P (V |C = c). To create a sum node,

we partition instances by using the expectation maximiza-
tion (EM) algorithm to learn a simple naive Bayes mix-
ture model: P (V) =

∑
i P (Ci)

∏
j P (Xj |Ci) where Xj

is a random variable. To select the appropriate number
of clusters, we rerun EM with different numbers of clus-
ters and select the model that maximizes the penalized log-
likelihood over the footprint of the sum node. To avoid
overfitting, we penalize the log-likelihood with an expo-
nential prior, P (S) ∝ e−λC|V | where C is the the number

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

AC

AC

+

AC

+

AC

AC
+

*

AC

AC

*

AC

Figure 2. One iteration of ID-SPN: it tries to extends the SPAC
model by replacing an AC node with a SPAC subtree over the
same scope

of clusters and λ is a tunable parameter. We use the clus-
ters of this simple mixture model to partition the footprint,
assigning each instance to its most likely cluster. We also
tried using k-means, as done by Dennis and Ventura (Den-
nis & Ventura, 2012), and obtained results of similar qual-
ity. We fail learning a sum node if the number of samples
in the footprint of the sum node is less than a threshold.

To learn leaf distributions, AC nodes, we use the ACMN
algorithm (Lowd & Rooshenas, 2013). ACMN learns a
Markov network using a greedy, score-based search, but
it uses the size of the corresponding arithmetic circuit as
a learning bias. ACMN can exploit the context-specific
independencies that naturally arise from sparse feature
functions to compactly learn many high-treewidth distri-
butions. The learned arithmetic circuit is a special case of
an SPN where sum nodes always sum over mutually ex-
clusive sets of variable states. Thus, the learned leaf dis-
tribution can be trivially incorporated into the overall SPN
model. Other possible choices of leaf distributions include
thin junction trees and the Markov networks learned by
LEM (Gogate et al., 2010). We chose ACMN because it
offers a particularly flexible representation (unlike LEM),
exploits context-specific independence (unlike thin junc-
tion trees), and learns very accurate models on a range of
structure learning benchmarks (Lowd & Rooshenas, 2013).

The specific methods for partitioning instances, partition-
ing variables, and learning a leaf distribution are all flexible
and can be adjusted to meet the characteristics of a partic-
ular application domain.

4. Experiments
We evaluated ID-SPN on 20 datasets illustrated in Ta-
ble 1.a with 16 to 1556 binary-valued variables. These
datasets or a subset of them also have been used in (Davis
& Domingos, 2010; Lowd & Davis, 2010; Haaren &
Davis, 2012; Lowd & Rooshenas, 2013; Gens & Domin-
gos, 2013). In order to show the accuracy of ID-SPN, we
compared it with the state-of-the-art learning method for
SPNs (LearnSPN) (Gens & Domingos, 2013), mixtures of
trees (MT) (Meila & Jordan, 2000), ACMN, and latent tree
models (LTM) (Choi et al., 2011). To evaluate these meth-
ods, we selected their hyper-parameters according to their
accuracy on the validation sets.

For LearnSPN, we used the same learned SPN models pre-
sented in the original paper (Gens & Domingos, 2013).
We used the WinMine toolkit (WM) (Chickering, 2002) for
learning intractable Bayesian networks.

We slightly modified the original ACMN codes to incorpo-
rate both Gaussian and L1 priors into the algorithm. The
L1 prior forces more weights to become zero, so the learn-
ing algorithm can prune more features from the split candi-
date list. The modified version is as accurate as the original
version, but it is considerably faster. For ACMN, we used
an L1 prior of 0.1, 1, and 5, and a Gaussian prior with a
standard deviation of 0.1, 0.5, and 1. We also used a split
penalty of 2, 5, 10 and maximum edge number of 2 million.

For LTM, we ran the authors’ code2 with its default EM
configuration to create the models with each provided al-
gorithm: CLRG, CLNJ, regCLRG, and regCLNJ. For MT,
we used our own implementation and the number of com-
ponents ranged from 2 to 30 with a step size of 2. To reduce
variance, we re-ran each learning configuration 5 times.

For ID-SPN, we need specific parameters for learning each
AC leaf node using ACMN. To avoid exponential growth
in the parameter space, we selected the L1 prior Cji,
split penalty SP ji, and maximum edges ME ji of each
AC node to be proportional to the size of its footprint:
P ji = max{P |Tji|

|T | ·
|Vj |
|V | , P

min} where parameter P can
be C, SP or ME . When SPAC becomes deep, Cmin

and SPmin help avoid overfitting and MEmin permits ID-
SPN to learn useful leaf distributions. Since ID-SPN has a
huge parameter space, we used random search (Bergstra &
Bengio, 2013) instead of grid search. In order to create a
configuration, we sampled each parameter uniformly from
a predefined set of parameter values.

For learning AC nodes, we selected C from 1.0, 2.0, 5.0,
8.0, 10.0, 15.0 and 20.0, and SP from 5, 8, 10, 15, 20,
25, and 30. We selected the pair setting of (Cmin,SPmin)
between (0.01, 1) and (1, 2), and ME and MEmin are 2M

2http://people.csail.mit.edu/myungjin/latentTree.html

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

Table 1. Dataset characteristic and Log-likelihood comparison. • shows significantly better log-likelihood than ID-SPN, and ◦ indicates
significantly worse log-likelihood than ID-SPN. † means that we do not have value for that entry.

a) Datasets characteristics b) Log-likelihood comparison
Dataset Var# Train Valid Test ID-SPN ACMN MT WM LearnSPN LTM
NLTCS 16 16181 2157 3236 -6.02 • -6.00 -6.01 -6.02 -6.11 ◦ -6.49
MSNBC 17 291326 38843 58265 -6.04 ◦ -6.04 ◦ -6.07 -6.04 ◦ -6.11 ◦ -6.52
KDDCup 2000 64 180092 19907 34955 -2.13 ◦ -2.17 -2.13 ◦ -2.16 -2.18 ◦ -2.18
Plants 69 17412 2321 3482 -12.54 ◦ -12.80 ◦ -12.95 ◦ -12.65 ◦ -12.98 ◦ -16.39
Audio 100 15000 2000 3000 -39.79 ◦ -40.32 ◦ -40.08 ◦ -40.50 ◦ -40.50 ◦ -41.90
Jester 100 9000 1000 4116 -52.86 ◦ -53.31 ◦ -53.08 ◦ -53.85 ◦ -53.48 ◦ -55.17
Netflix 100 15000 2000 3000 -56.36 ◦ -57.22 ◦ -56.74 ◦ -57.03 ◦ -57.33 ◦ -58.53
Accidents 111 12758 1700 2551 -26.98 ◦ -27.11 ◦ -29.63 • -26.32 ◦ -30.04 ◦ -33.05
Retail 135 22041 2938 4408 -10.85 ◦ -10.88 -10.83 ◦ -10.87 -11.04 ◦ -10.92
Pumsb-star 163 12262 1635 2452 -22.40 ◦ -23.55 ◦ -23.71 • -21.72 ◦ -24.78 ◦ -31.32
DNA 180 1600 400 1186 -81.21 • -80.03 ◦ -85.14 • -80.65 ◦ -82.52 ◦ -87.60
Kosarek 190 33375 4450 6675 -10.60 ◦ -10.84 -10.62 ◦ -10.83 ◦ -10.99 ◦ -10.87
MSWeb 294 29441 32750 5000 -9.73 ◦ -9.77 ◦ -9.85 • -9.70 ◦ -10.25 ◦ -10.21
Book 500 8700 1159 1739 -34.14 ◦ -35.56 ◦ -34.63 ◦ -36.41 -35.89 -34.22
EachMovie 500 4524 1002 591 -51.51 ◦ -55.80 ◦ -54.60 ◦ -54.37 -52.49 †
WebKB 839 2803 558 838 -151.84 ◦ -159.13 ◦ -156.86 ◦ -157.43 -158.20 ◦ -156.84
Reuters-52 889 6532 1028 1540 -83.35 ◦ -90.23 ◦ -85.90 ◦ -87.55 -85.07 ◦ -91.23
20 Newsgroup 910 11293 3764 3764 151.47 ◦ -161.13 ◦ -154.24 ◦ -158.95 ◦ -155.93 ◦ -156.77
BBC 1058 1670 225 330 -248.93 ◦ -257.10 ◦ -261.84 ◦ -257.86 -250.69 ◦ -255.76
Ad 1556 2461 327 491 -19.00 • -16.53 • -16.02 -18.35 -19.73 †

Table 3. Conditional (marginal) log-likelihood comparison, the bold numbers show significantly better values

10% Query 30% Query 50% Query 70% Query 90% Query
Dataset ID-SPN WM ID-SPN WM ID-SPN WM ID-SPN WM ID-SPN WM
NLTCS -0.3082 -0.3157 -0.3138 -0.3193 -0.2881 -0.2940 -0.3393 -0.3563 -0.3622 -0.4093
MSNBC -0.2727 -0.2733 -0.3130 -0.3149 -0.3285 -0.3333 -0.3403 -0.3522 -0.3528 -0.3906
KDDCup 2000 -0.0322 -0.0329 -0.0318 -0.0325 -0.0309 -0.0316 -0.0323 -0.0337 -0.0329 -0.0361
Plants -0.1297 -0.1361 -0.1348 -0.1444 -0.1418 -0.1590 -0.1500 -0.1876 -0.1656 -0.2797
Audio -0.3471 -0.3630 -0.3699 -0.3808 -0.3766 -0.3854 -0.3801 -0.3957 -0.3870 -0.4309
Jester -0.4651 -0.4869 -0.4964 -0.5096 -0.5042 -0.5128 -0.5090 -0.5231 -0.5158 -0.5589
Netflix -0.4893 -0.5079 -0.5254 -0.5366 -0.5349 -0.5451 -0.5416 -0.5637 -0.5507 -0.6012
Accidents -0.1316 -0.1368 -0.1532 -0.2226 -0.1748 -0.3165 -0.1993 -0.4523 -0.2274 -0.5834
Retail -0.0794 -0.0800 -0.0783 -0.0794 -0.0788 -0.0807 -0.0796 -0.0823 -0.0803 -0.0841
Pumsb-star -0.0727 -0.0675 -0.0809 -0.1077 -0.0906 -0.1584 -0.1023 -0.2920 -0.1193 -0.7654
DNA -0.3371 -0.3373 -0.3815 -0.3957 -0.3942 -0.4450 -0.4156 -0.4898 -0.4374 -0.5335
Kosarek -0.0482 -0.0514 -0.0507 -0.0533 -0.0520 -0.0547 -0.0529 -0.0568 -0.0544 -0.0623
MSWeb -0.0294 -0.0300 -0.0305 -0.0318 -0.0307 -0.0328 -0.0317 -0.0350 -0.0326 -0.0375
Book -0.0684 -0.0771 -0.0674 -0.0736 -0.0673 -0.0720 -0.0673 -0.0711 -0.0675 -0.0734
EachMovie -0.0958 -0.1078 -0.0976 -0.1046 -0.0985 -0.1008 -0.0986 -0.1012 -0.1005 -0.1140
WebKB -0.1744 -0.1881 -0.1766 -0.1858 -0.1766 -0.1834 -0.1778 -0.1844 -0.1795 -0.1929
Reuters-52 -0.0911 -0.1015 -0.0889 -0.0963 -0.0896 -0.0954 -0.0905 -0.0968 -0.0920 -0.1054
20 Newsgroup -0.1633 -0.1807 -0.1641 -0.1753 -0.1644 -0.1708 -0.1646 -0.1688 -0.1653 -0.1724
BBC -0.2353 -0.2503 -0.2360 -0.2459 -0.2340 -0.2406 -0.2338 -0.2406 -0.2337 -0.2462
Ad -0.0080 -0.0078 -0.0086 -0.0087 -0.0087 -0.0180 -0.0090 -0.0767 -0.0104 -0.2849
Avg. Time (ms) 159 203 164 621 162 1091 168 1554 171 2021
Max. Time (ms) 286 1219 310 3641 312 6255 319 8682 319 11102

and 200k edges, respectively. We used similar Gaussian
priors with a standard deviation of 0.1, 0.3, 0.5, 0.8, 1.0, or
2.0 for learning all AC nodes.

For learning sum nodes, the cluster penalty λ is selected
from 0.1, 0.2, 0.4, 0.6 and 0.8, the number of clusters from
5, 10, and 20, and we restarted EM 5 times. When there

were fewer than 50 samples, we did not learn additional
sum nodes, and when there were fewer than 10 variables,
we did not learn additional product nodes.

Finally, we limited the number of main iterations of ID-
SPN to 5, 10, or 15, which helps avoid overfitting and con-
trols the learning time. Learning sum nodes and AC nodes

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

Table 2. Statistically significance comparison. Each table cell
lists the number of datasets where the row’s algorithm obtains
significantly better log-likelihoods than the column’s algorithm

ID
-S

PN

L
ea

rn
SP

N

W
M

A
C

M
N

M
T

LT
M

ID-SPN – 11 13 17 15 17
LearnSPN 0 – 0 1 2 10

WM 4 6 – 10 7 13
ACMN 3 7 7 – 9 13

MT 1 7 11 11 – 15
LTM 0 0 3 4 2 –

is parallelized as much as it was possible using up to 6 cores
simultaneously.

We bounded the learning time of all methods to 24 hours,
and we ran our experiments, including learning, tuning, and
testing, on an Intel(R) Xeon(R) CPU X5650@2.67GHz.

Table 1.b shows the average test set log-likelihood of each
method. We could not learn a model using LTM for the
EachMovie and Ad datasets, so we excluded these two
datasets for all comparisons involving LTM. We use • to in-
dicate that the corresponding method has significantly bet-
ter test set log-likelihood than ID-SPN on a given dataset,
and ◦ for the reverse. For significance testing, we per-
formed a paired t-test with p=0.05. ID-SPN has better aver-
age log-likelihood on every single dataset than LearnSPN,
and better average log-likelihood on 17 out of 20 datasets
(with 1 tie) than ACMN. Thus, ID-SPN consistently out-
performs the two methods it integrates. Table 2 shows the
number of datasets for which a method has significantly
better test set log-likelihood than another. ID-SPN is sig-
nificantly better than WinMine on 13 datasets and signifi-
cantly worse than it on only 4 datasets, which means that
ID-SPN is achieving efficient exact inference without sacri-
ficing accuracy. ID-SPN is significantly better than Learn-
SPN, ACMN, MT and LTM on 11, 17, 15, and 17 datasets,
respectively.

We also evaluated the accuracy of ID-SPN and Win-
Mine for answering queries by computing conditional log-
likelihood (CLL): logP (X = x|E = e). For WinMine,
we used the Gibbs sampler from the Libra toolkit3 with
100 burn-in and 1000 sampling iterations. Since the Gibbs
sampler can approximate marginal probabilities better than
joint probabilities, we also computed conditional marginal
log-likelihood (CMLL):

∑
i logP (Xi = xi|E = e). For

WinMine, we reported the greater of CLL and CMLL;
however, CMLL was higher for all but 12 settings. The re-
ported values have been normalized by the number of query

3http://libra.cs.uoregon.edu

variables.

We generated queries from test sets by randomly select-
ing the query variables, using the rest of variables as ev-
idence. Table 3 shows the C(M)LL values ranging from
10% query and 90% evidence variables to 90% query and
10% evidence variables. The bold numbers indicate statis-
tical significance using a paired t-test with p=0.05. ID-SPN
is significantly more accurate on 95 out of 100 settings and
is significantly worse on only 1.

We also report the per-query average time and per-query
maximum time, both in milliseconds. We computed the
per-query average for each dataset, and then report the aver-
age and the maximum of the per-query averages. For Win-
Mine, the per-query average time significantly varies with
the number of variables. The per-query maximum time
shows that even with only 1000 iterations, Gibbs sampling
is still slower than exact inference in our ID-SPN models.

5. Conclusion
Most previous methods for learning tractable probabilistic
models have focused on representing all interactions di-
rectly or indirectly. ID-SPN demonstrates that a combi-
nation of these two techniques is extremely effective, and
can even be more accurate than intractable models. In-
terestingly, the second most accurate model in our exper-
iments was often the mixture of trees model (MT) (Meila
& Jordan, 2000), which also contains indirect interactions
(through a single mixture) and direct interactions (through
a Chow-Liu tree in each component). After ID-SPN, MT
achieved the second-largest number of significant wins
against other algorithms. ID-SPN goes well beyond MT by
learning multiple layers of mixtures and using much richer
leaf distributions, but the underlying principles are similar.
Therefore, rather than focusing exclusively on mixtures or
direct interaction terms, this suggests that the most effec-
tive probabilistic models need to use a combination of both
techniques.

Acknowledgments

This research was partly funded by ARO grant W911NF-
08-1-0242, NSF grant OCI-0960354, and a Google Faculty
Research Award. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of ARO, NSF, or the U.S. Gov-
ernment.

Learning Sum-Product Networks with Direct and Indirect Variable Interactions

References
Bach, F.R. and Jordan, M.I. Thin junction trees. Advances

in Neural Information Processing Systems, 14:569–576,
2001.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13:281–305, 2013.

Chechetka, A. and Guestrin, C. Efficient principled learn-
ing of thin junction trees. In Platt, J.C., Koller, D.,
Singer, Y., and Roweis, S. (eds.), Advances in Neural
Information Processing Systems 20. MIT Press, Cam-
bridge, MA, 2008.

Chickering, D. M. The WinMine toolkit. Technical Report
MSR-TR-2002-103, Microsoft, Redmond, WA, 2002.

Choi, M. J., Tan, V., Anandkumar, A., and Willsky, A.
Learning latent tree graphical models. Journal of Ma-
chine Learning Research, 12:1771–1812, May 2011.

Darwiche, A. A differential approach to inference in
Bayesian networks. Journal of the ACM, 50(3):280–305,
2003.

Davis, J. and Domingos, P. Bottom-up learning of Markov
network structure. In Proceedings of the Twenty-Seventh
International Conference on Machine Learning, Haifa,
Israel, 2010. ACM Press.

Dennis, A. and Ventura, D. Learning the architecture of
sum-product networks using clustering on variables. In
Advances in Neural Information Processing Systems 25,
2012.

Elidan, G. and Gould, S. Learning bounded treewidth
Bayesian networks. Journal of Machine Learning Re-
search, 9(2699-2731):122, 2008.

Gens, R. and Domingos, P. Discriminative learning of sum-
product networks. In Advances in Neural Information
Processing Systems, pp. 3248–3256, 2012.

Gens, R. and Domingos, P. Learning the structure of sum-
product networks. In Proceedings of the Thirtieth Inter-
national Conference on Machine Learning, 2013.

Gogate, V., Webb, W., and Domingos, P. Learning efficient
Markov networks. In Proceedings of the 24th conference
on Neural Information Processing Systems (NIPS’10),
2010.

Haaren, J. Van and Davis, J. Markov network structure
learning: A randomized feature generation approach. In
Proceedings of the Twenty-Sixth National Conference on
Artificial Intelligence. AAAI Press, 2012.

Lowd, D. and Davis, J. Learning Markov network struc-
ture with decision trees. In Proceedings of the 10th IEEE
International Conference on Data Mining (ICDM), Syd-
ney, Australia, 2010. IEEE Computer Society Press.

Lowd, D. and Domingos, P. Naive Bayes models for
probability estimation. In Proceedings of the Twenty-
Second International Conference on Machine Learning,
pp. 529–536, Bonn, Germany, 2005.

Lowd, D. and Domingos, P. Learning arithmetic circuits. In
Proceedings of the Twenty-Fourth Conference on Uncer-
tainty in Artificial Intelligence, Helsinki, Finland, 2008.
AUAI Press.

Lowd, D. and Rooshenas, A. Learning Markov networks
with arithmetic circuits. In Proceedings of the Sixteenth
International Conference on Artificial Intelligence and
Statistics (AISTATS 2013), Scottsdale, AZ, 2013.

Meila, M. and Jordan, M. Learning with mixtures of trees.
Journal of Machine Learning Research, 1:1–48, 2000.

Peharz, R., Geiger, B., and Pernkopf, F. Greedy part-wise
learning of sum-product networks. In Machine Learning
and Knowledge Discovery in Databases, volume 8189
of Lecture Notes in Computer Science, pp. 612–627.
Springer Berlin Heidelberg, 2013.

Poon, H. and Domingos, P. Sum-product networks: A
new deep architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelli-
gence (UAI-11), Barcelona, Spain, 2011. AUAI Press.

Roth, D. On the hardness of approximate reasoning. Arti-
ficial Intelligence, 82:273–302, 1996.

