
OmegaLog: High-Fidelity Attack Investigation via
Transparent Multi-layer Log Analysis

Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, Adam Bates
University of Illinois at Urbana-Champaign

{whassan3, nouredd2, pdatta2, batesa}@illinois.edu

Abstract—Recent advances in causality analysis have en-
abled investigators to trace multi-stage attacks using provenance
graphs. Based on system-layer audit logs (e.g., syscalls), these
approaches omit vital sources of application context (e.g., email
addresses, HTTP response codes) that can be found in higher
layers of the system. Although such information is often essential
to understanding attack behaviors, it is difficult to incorporate
this evidence into causal analysis engines because of the semantic
gap that exists between system layers. To address that short-
coming, we propose the notion of universal provenance, which
encodes all forensically relevant causal dependencies regardless
of their layer of origin. To transparently realize that vision
on commodity systems, we present OmegaLog, a provenance
tracker that bridges the semantic gap between system and appli-
cation logging contexts. OmegaLog analyzes program binaries to
identify and model application-layer logging behaviors, enabling
accurate reconciliation of application events with system-layer
accesses. OmegaLog then intercepts applications’ runtime logging
activities and grafts those events onto the system-layer provenance
graph, allowing investigators to reason more precisely about the
nature of attacks. We demonstrate that our system is widely
applicable to existing software projects and can transparently
facilitate execution partitioning of provenance graphs without
any training or developer intervention. Evaluation on real-world
attack scenarios shows that our technique generates concise
provenance graphs with rich semantic information relative to
the state-of-the-art, with an average runtime overhead of 4%.

I. INTRODUCTION

System intrusions are becoming progressively more subtle
and complex. Using an approach exemplified by the “low and
slow” attack strategy of Advanced Persistent Threats, attackers
now lurk in target systems for extended periods to extend their
reach before initiating devastating attacks. By avoiding actions
that would immediately arouse suspicion, attackers can achieve
dwell times that range from weeks to months, as was the case
in numerous high-profile data breaches including Target [14],
Equifax [12], and the Office of Personnel Management [13].

Against such odds, advancements in system auditing have
proven invaluable in detecting, investigating, and ultimately
responding to threats. The notion of data provenance has been
applied to great effect on traditional system audit logs, parsing
individual system events into provenance graphs that encode
the history of a system’s execution [17], [26], [51], [32], [36],

[40], [31]. Such provenance graphs allow investigators to trace
the root causes and ramifications of an attack by using causality
analysis. Leveraging this principal capability, causality analysis
has matured from a costly offline investigation tool to a highly-
efficient method of tracing attackers in real-time [31], [16].

Given the importance of threat investigation to system
defense, it is perhaps surprising that prior work on causality
analysis has been oblivious to application-layer semantics.
As an example, consider the execution of the web service
shown in Fig. 1. Fig. 1(a) describes the event sequence of the
example, in which the server responds to two HTTP requests
for index.html and form.html, respectively, yielding the
system log shown in Fig. 1(b). As a normal part of its
execution, the server also maintains its own event logs that
contain additional information (e.g., user-agent strings) shown
in Fig. 1(c), that is opaque to the system layer. State-of-the-art
causality analysis engines, using system audit logs, produce a
provenance graph similar to Fig. 1(d); however, the forensic
evidence disclosed by the application itself is not encoded in
this graph. That is unfortunate, as recent studies [25], [21], [49]
have shown that developers explicitly disclose the occurrence
of important events through application logging. Further, we
observe that the well-studied problem of dependency explosion
[39], [42], [41], which considers the difficulty of tracing
dependencies through high-fanout processes, is itself a result of
unknown application semantics. For example, the dependency
graph in Fig. 1 (d) is not aware that the NGINX vertex can
be subdivided into two autonomous units of work, marked by
the two HTTP requests found in the application event log.

Prior work on log analysis has not provided a generic
and reliable (i.e., causality-based) solution to cross-layer at-
tack investigation. Techniques for execution partitioning miti-
gate dependency explosion by identifying limited and coarse-
grained application states, e.g., when a program starts its
main event-handling loop [39], but require invasive instru-
mentation [39], [41] or error-prone training [39], [40], [42].
Past frameworks for layered provenance tracking [57], [28],
[17], [47] technically support application semantics, but rather
than harness the developer’s original event logs, instead call
for costly (and redundant!) instrumentation efforts. Elsewhere
in the literature, application event logs have been leveraged
for program debugging [24], [59], [60], profiling [65], [64],
and runtime monitoring [48]; however, these approaches are
application-centric, considering only one application’s siloed
event logs at a time, and thus cannot reconstruct complex
workflows between multiple processes. Attempts to “stitch”
application logs together to trace multi-application workflows
[50], [65], [64] commonly ignore the system layer, but also

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24270
www.ndss-symposium.org

- Receives HTTP request
- Reads index.html
- Sends HTTP
- Logs event in access.log

- Receives HTTP request
- Reads form.html
- Sends HTTP
- Logs event in access.log

1. Socket_Read(“10.0.0.1”)
2. FRead(index.html)
3. Socket_Write(“10.0.0.1”)
4. FWrite(access.log)

5. Socket_Read(“10.0.8.1”)
6. FRead(form.html)
7. Socket_Write(“10.0.8.1”)
8. FWrite(access.log)

Nginx

index.html

/var/log/nginx/access.log

form.html

10.0.0.1

10.0.0.1

10.0.8.1

10.0.8.1

1. [16/Apr/2019:20:21:56 +0100] "GET /
index.html HTTP/1.1" 200 3804 "-"
"Mozilla/5.0 (Windows NT 6.0; WOW64;
rv:45.0) Gecko/20100101 Firefox/45.0"

2. [16/Apr/2019:20:21:56 +0100] "GET /
form.html HTTP/1.1" 200 3804 "-"
"Mozilla/5.0 (Windows NT 6.0; WOW64;
rv:45.0) Gecko/20100101 Firefox/45.0"

(a) Execution (b) System Log (c) Application Log (d) System Provenance Graph

Fig. 1: NGINX application execution while two different HTTP requests are being served. (a) Actual execution behavior of NGINX. (b)
System logs generated by whole-system provenance tracker. (c) Application event logs generated by NGINX. (d) Provenance graph generated
using system logs by traditional solutions.

use ad hoc rules and co-occurrence of log events to assume a
causal relationship; this assumption introduces error and could
potentially undermine threat investigations.

In this work, we argue that attack investigation capabilities
can be dramatically improved through the unification of all
forensically relevant events on the system in a single holistic
log. To achieve that vision transparently and effortlessly on
today’s commodity systems, we present OmegaLog, an end-
to-end provenance tracker that merges application event logs
with the system log to generate a universal provenance graph
(UPG). This graph combines the causal reasoning strengths
of whole-system logging with the rich semantic context of
application event logs. To construct the UPG, OmegaLog
automatically parses dispersed, intertwined, and heterogeneous
application event log messages at runtime and associates each
record with the appropriate abstractions in the whole-system
provenance graph. Generating UPG allows OmegaLog to trans-
parently solve both the dependency explosion problem (by
identifying event-handling loops through the application event
sequences) and the semantic gap problem (by grafting applica-
tion event logs onto the whole-system provenance graph). Most
excitingly, OmegaLog does not require any instrumentation on
the applications or underlying system.

Several challenges exist in the design of a universal
provenance collection system. First, the ecosystem of software
logging frameworks is heterogeneous, and event logging is
fundamentally similar to any other file I/O, making it difficult
to automatically identify application logging activity. Second,
event logs are regularly multiplexed across multiple threads in
an application, making it difficult to differentiate concurrent
units of work. Finally, each unit of work in an application will
generate log events whose occurrence and ordering vary based
on the dynamic control flow, requiring a deep understanding
of the application’s logging behavior to identify meaningful
boundaries for execution unit partitioning.

To solve those challenges, OmegaLog performs static
analysis on application binaries to automatically identify log
message writing procedures, using symbolic execution and em-
ulation to extract descriptive Log Message Strings (LMS) for
each of the call sites. Then, OmegaLog performs control flow
analysis on the binary to identify the temporal relationships
between LMSes, generating a set of all valid LMS control flow
paths that may occur during execution. At runtime, OmegaLog
then uses a kernel module that intercepts write syscall and
catches all log events emitted by the application, associating

each event with the correct PID/TID and timestamp to de-
tangle concurrent logging activity. Finally, those augmented
application event logs are merged with system-level logs into
a unified universal provenance log. Upon attack investigation,
OmegaLog is able to use the LMS control flow paths to parse
the flattened stream of application events in the universal log,
partition them into execution units, and finally add them as
vertices within the whole-system provenance graph in causally
correct manner.

The main contributions of this paper are as follows:

? We propose the concept of the universal provenance that
combines the advantages of whole-system provenance with
applications’ innate event-logging activity, providing a trans-
parent and generic solution for the semantic gap problem in
threat investigations.

? We develop robust binary analysis techniques to auto-
matically extract logging behaviors from an application.
Our proof-of-concept implementation, OmegaLog, non-
intrusively collects and integrates applications’ event logs
with the Linux audit logs [5].

? We evaluate OmegaLog for performance, accuracy, and
efficacy. Our results indicate that OmegaLog exhibits low
runtime overheads (4%), is broadly deployable to existing
software projects, and enables semantically rich attack re-
constructions in real-world attack scenarios.

II. MOTIVATION

In this section, we explain the motivation for our approach
by considering a data exfiltration and defacement attack on
an online shopping website. We use this example to illustrate
the limitations of existing provenance tracking systems [17],
[42], [41], [16], [36], [37], [38]. Consider a simple WordPress
website hosted on a web server. Requests to the website are
first received by an HAProxy, which balances load across
different Apache instances running on the web server, while
customer transactions are recorded in a PostgreSQL database.
The administrator has turned on application event logging for
Apache httpd, HAProxy, and PostgreSQL. In addition, the
server is performing system-level logging, e.g., through Linux
Audit (auditd) [5] or Linux Provenance Modules (LPM) [17],
which continuously collect system logs. One day, the adminis-
trator discovers that the online store has been defaced and that
some of the sensitive customer information has been posted to
a public Pastebin website. On average, the shopping website

2

httpd
index.html

httpd

HAProxy

postgresql /var/log/postgresql/query.log

/var/log/httpd/access.log

/var/log/haproxy.log

User.php

Bash

/usr/local/db/datafile

Fig. 2: A whole-system provenance graph showing the SQL injection attack scenario. Diamond, box, and oval vertices represent network
connections, processes, and files, respectively. This graph suffers from both dependency explosion and semantic gap problems, frustrating
attack investigation.

receives tens of thousands of requests per day; among those,
one request was malicious.

A. Investigating with Application Event Logs

To attribute the attack and prepare an appropriate response,
the administrator initiates a forensic inquiry by first inspecting
the application event logs. The administrator finds that the
accounts database table must have been accessed and uses
this as a symptom to initiate attack investigations. The admin
then runs a grep query on PostgreSQL event logs, which
returns the following query log message:

SELECT * FROM users WHERE user_id=123 UNION SELECT
password FROM accounts;

This log message strongly indicates that an attacker ex-
ploited a SQL injection vulnerability in the website, and
also suggests that the attacker was able to retrieve the login
credentials for admin.php which gave attacker privileged site
access.

Limitations of Application Event Logs. At this point, the
administrator is unable to proceed in the investigation using
application event logs alone. It is clear that the HAProxy
and Apache httpd logs contain important evidence such as the
HTTP requests associated with the SQL injection attack, but
re-running of the same grep query on Apache’s logs did not
return any result. The reason is that the attacker used a POST
command to send the SQL query and that command was not
contained in the URL captured in the Apache httpd event log
messages. The investigation has stalled with important ques-
tions left unanswered: 1) What was the IP address associated
with the malicious HTTP request? 2) How were the login
credentials used to deface the website, and what additional
damage was caused? 3) Which PHP file on the site is not
properly sanitizing user inputs, exposing the SQL injection
vulnerability? Those questions reflect an inherent limitation of
application event logs: they cannot causally relate events across
applications and thus cannot trace workflow dependencies.

B. Investigating with System Logs

To proceed, the administrator attempts to perform causality
analysis using a whole-system provenance graph. At this
layer, it is easy to trace dependencies across multiple coor-
dinated processes in a workflow. Because the malicious query
shown above resulted in a read to the PostgreSQL database,
the administrator uses /usr/local/db/datafile.db as a
symptom event and issues a backtrace query, yielding the

TABLE I: Comparison of execution partitioning techniques to solve
the dependency explosion problem.

BEEP [39] MPI MCI WinLog OmegaLogProTracer [42] [41] [38] [40]
Instrumentation Yes Yes No No No
Training Run Yes No Yes No Now/ Workloads
Space Overhead Yes Yes Yes Yes No
Granularity Coarse Fine Coarse Coarse Fine
App. Semantics No No No No Yes

provenance graph shown in Fig. 2. Unfortunately, the admin-
istrator discovers that this technique does not advance the
investigation because of the inherent limitations of system logs.

Limitation of System Logs #1: Dependency Explosion.
The administrator’s backtrace identifies thousands of “root
causes” for the SQL injection attack because of the dependency
explosion problem. The reason is that system-layer provenance
trackers must conservatively assume that the output of a
process is causally dependent on all preceding process inputs
[39], [42], [41], [38]. Although the malicious query string
is known, causal analysis does not allow the administra-
tor to associate the query with a particular outbound edge
of /usr/local/db/datafile.db in the provenance graph.
Even if the administrator restricted most of the dependencies
between Apache httpd and PostgreSQL (e.g., though timing
bounds), admin would again face the same problem when
identifying which input request from HAProxy to Apache httpd
lies on the attack path.

Recent work [39], [42], [40] has introduced execution
partitioning as a viable solution to the dependency explosion
problem. These systems decompose long-running processes
into autonomous “units”, each representing an iteration of
event-handling loop, such that input-output dependencies are
traced only through their corresponding unit. Where event
handling loops do not encode work units, Kwon et al. propose
an inference-based technique for identifying units from system
log traces [38] while Ma et al. propose a framework for
manually annotating source code to disclose meaningful unit
boundaries [41].

Unfortunately, prior approaches suffer from noteworthy
limitations, which we summarize in Table I. Most execution
partitioning systems rely on instrumentation to identify unit
boundaries, requiring either domain knowledge or manual
effort and assuming the right to modify program binaries,
which is not always available [40]. The common requirement

3

of training runs exposes systems like BEEP and Protracer
to the classic code-coverage problem present in any dy-
namic analysis, and inference-based techniques (MCI) may
also struggle with out-of-order events due to the presence of
concurrent or cooperating applications during training runs.
All past approaches introduce additional space overhead in
order to track unit boundaries; fully automated identification
of event loops (BEEP, Protracer) can generate excessive units
that can waste space and CPU cycles [41]. Most notably, prior
approaches do not consider the broader value of application
semantics as forensic evidence outside of the bare minimum
required for the identification of work units.

Limitation of System Logs #2: Semantic Gap. Existing
system-level provenance logs are beneficial in that they offer
a broad view of system activity, but unfortunately they lack
knowledge of application-specific behaviors that are pivotal for
attack reconstruction. In our motivating example, information
such as failed login attempts, HTTP headers, WordPress plugin
behavior, and SQL queries cannot be extracted from system
logs. Such information is present in the siloed event logs
of each application; PostgreSQL maintained a record of all
SQL queries, and HAProxy recorded the headers for all HTTP
requests. However, it is not possible to associate those event
descriptions with the system records reliably in a post-hoc
manner, because of multi-threaded activity and ambiguous or
incomplete information within the application event logs.

Prior work has sought to address the semantic gap prob-
lem through instrumentation-based techniques [57], [28], [55].
Those approaches either statically or dynamically instrument
function calls in the application to disclose function names,
arguments, and return values. However, such instrumentation-
based systems suffer from several limitations: (1) developers
need to specify which functions to instrument, imposing a
domain knowledge requirement; (2) the logging information is
captured on a per-application basis and thus cannot be used to
connect information flow between different applications; and
(3) high-level semantic events may not always be effectively
captured at the function call level.

C. Our Approach

Recent work in application logging [25], [65], [64], [21],
[49] has shown the efficacy of application logs in program
understanding, debugging, and profiling. OmegaLog takes in-
spiration from those efforts, with the goal of better leveraging
event logs during attack investigation. The key insight behind
OmegaLog is that developers have already done the hard work
of encoding high-level application semantics in the form of
event logging statements; these statements not only contain
the relevant forensic information that we require, but also mark
the boundaries of execution units in the program. The insertion
of event logging statements is an organic byproduct of sound
software engineering practices, permitting developers and users
to better understand programs’ runtime behavior. Thus, it is
possible to enrich system logs with application semantics
without further instrumentation or profiling. Moreover, these
applications logs can be used to identify execution units.

Applying that intuition to our motivating example yields
the provenance graph in Fig. 3a, which was generated using
OmegaLog. The administrator can associate the malicious SQL

httpd

HAProxy

postgresql

x.x.x.x

user.php

Bash

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/nginx-2 10/0/30/69/109 200 2750 – – —-
1/1/1/1/0 0/0 {} {} “POST /user.php HTTP/1.0"

 y.y.y.y POST /wordpress/user.php 200 -
HTTP/1.1 200 1568 "-"

Statement: SELECT * FROM users WHERE
user_id=123 UNION SELECT password FROM
accounts;

(a) Investigating SQL injection attack using SQL query that reads
the accounts table.

httpd

HAProxy

x.x.x.x

Index.html

Bash

 y.y.y.y POST /wordpress/wp-admin/admin-ajax.php
200 - http://shopping.com/wordpress/wp-admin/
admin.php?page=file-manager_settings

haproxy[30291]: x.x.x.x:45292 [TIME
REMOVED] app-http-in~app-bd/httpd-2
10/0/30/69/109 200 2750 POST /wordpress/
wp-admin/admin-ajax.php 200 …

(b) Investigating website defacement using a file write event to
index.html as a symptom.

Fig. 3: Graphs generated by OmegaLog for the SQL injection attack.
The parallelograms represent the app log vertices. App log vertex
is annotated with log messages which belong to the corresponding
execution unit of attached process vertex.

query with a specific system call event (read). By performing
execution partitioning on PostgreSQL using OmegaLog’s log-
ging behavior analysis, the administrator is then able to trace
back to system calls issued and received by Apache httpd,
which are also annotated with application events describing
the vulnerable web form. Iteratively, OmegaLog uses execution
partitioning again to trace back to the correct unit of work
within HAProxy to identify the IP address of the attacker. After
finding out how the user data and login credentials were stolen
using SQL injection, the investigator tries to figure out how the
website was defaced by issuing a backward-tracing query on
the index.html file. Using the OmegaLog provenance graph
shown in Fig. 3b, the investigator deduces that the attacker
used a WordPress file manager plugin to change index.html.

III. THREAT MODEL & ASSUMPTIONS

This work considers an attacker whose primary goal is to
exploit a security vulnerability in an application running on
a system and exfiltrate or manipulate sensitive information
present in the system. We make the typical assumptions of
work in this space about the integrity of the operating system,
kernel-layer auditing framework, audit logs and application
event logs, all of which is in our trusted computing base
(TCB) (cf., [39], [42], [41], [36], [30], [38], [58], [16]).
That assumption is made more reasonable through system-
hardening techniques, e.g., [17], [20], designed to mitigate
threats to system logs. Like all prior work on execution
partitioning [39], [42], [41], [38], [29], [32], we also assume
the integrity of applications’ control flows (further discussed in
§X). We consider hardware-layer trojans, side channel attacks,
and backdoors to be out of scope of this paper.

4

IV. APPLICATION LOGGING BEHAVIOUR

Our approach to partition long-running program into exe-
cution units and overcome the dependence explosion problem
depends on the pervasiveness of event-logging behavior in
those applications. Fortunately, the importance of logging in
applications has been widely established [33]. Practically, all
open-source applications print event log messages, offering
four levels of verbosity: FATAL is for an error that is forcing a
shutdown, ERROR is for any error that is fatal to the operation,
INFO is for generally useful information, and DEBUG is for
information that is diagnostically helpful. Note that logging
levels are inclusive; higher levels also print messages that be-
long to lower levels (i.e. FATAL ⊆ ERROR ⊆ INFO ⊆ DEBUG).

However, to partition successful executions of an appli-
cation into its units, we require log messages with verbosity
level of INFO or DEBUG to be present inside event-handling
loops. Unfortunately, such behavior in applications has not
been investigated. In that regard, we studied a large number
of popular open-source applications.

We collected a list of 79 long-running Linux applications
which belong to different categories. Those applications are
written in the C/C++, Java, Python, and Erlang programming
languages. We investigated the source code and man pages
of those applications to identify the event-handling loops and
understand if they print log messages for each meaningful
event. Lee et al. [39] conducted a similar study in 2013 but they
only analyzed the design patterns of open-source applications
and the pervasiveness of event-handling loops as drivers for
execution. They did not however study the logging behavior
of those applications and the presence of log messages inside
event-handling loops.

We summarize our results in Table II. In the column “Apps
with Log Verbosity of”, we show how many of 79 profiled
applications include log statements in their event-handling
loop at verbosity of INFO and DEBUG, and how many of 79
applications do not print meaningful log messages for new
events. We observe that 39 applications print log with both
INFO and DEBUG verbosity levels (IN+DE) inside the event-
handling loops. While 8 applications only log at INFO level and
17 applications only log at DEBUG level.1 We show the intra-
event-handling loop logging behavior of some of the well-
know applications in Figure 4.

During our study, we found 15 applications that do not
have any information about event logs in their source code or
in man pages. We categorized those applications as follows:

• Light-weight Applications: Certain client-server applica-
tions are designed to be light-weight to keep a minimal
resource footprint. Those applications – including thttpd
(Web server) and skod (FTP client) – do not print log
messages for new events.

• GUI Applications: We observe that 12 out of 17 GUI
applications either (1) do not print log messages, or (2) they
print log messages that do not match the expectations of the
forensic investigator. In other words, those log messages
were not meaningful to partition the execution. Ma et

1For web servers such as lighttpd and NGINX, we treat the Access Log as
INFO level log. Moreover, for certain applications that do not have DEBUG
log level, we categorize the Trace Log as DEBUG level log.

TABLE II: Logging behavior of long-running applications.

Category Total Apps with Log Verbosity of
Apps IN+DE INFO DEBUG None

C
lie

nt
-S

er
ve

r

Web server 9 7 1 0 1
Database server 9 7 1 1 0
SSH server 5 5 0 0 0
FTP server 5 4 0 1 0
Mail server 4 3 1 0 0
Proxy server 4 3 1 0 0
DNS server 3 2 0 1 0
Version control server 2 0 1 1 0
Message broker 3 2 0 1 0
Print server 2 1 0 1 0
FTP client 6 0 1 4 1
Email client 3 1 0 1 1
Bittorrent client 4 3 1 0 0
NTP client 3 0 1 2 0

G
U

I Audio/Video player 8 1 0 3 4
PDF reader 4 0 0 0 4
Image tool 5 0 0 1 4

Total 79 39 8 17 15

al. [41] also observed similar behavior for GUI applications
where event-handling loops do not correspond to the high-
level logic tasks. For example, we found that none of the
PDF readers in our study printed log messages whenever
a new PDF file was opened. Such PDF file open event is
forensically important event for threat investigations [41].

Our study suggests that sufficient logging information is
present inside the event-handling loops of long-running appli-
cations. This behavior allows us to automatically identify the
unit boundaries of those programs. For further evaluation, we
only consider the applications shown in Table III. We picked
those applications based on their popularity and category.
Note that we did not pick any subjects from the category of
applications that do not print meaningful log messages for new
events. Moreover, GUI applications usually use asynchronous
I/O with call backs and such programming model is not
currently handled by OmegaLog (described more in §X).

V. DESIGN OVERVIEW

A. Definitions

Whole-System Provenance Graph. A graph generated from
system-level audit logs, in which the vertices, represent the
system subject (processes) and system objects (files and socket
connection), while the edges represent a causal dependency
event. The edges are usually annotated with a timestamp of
the event and the type of event, such as read or execute.

Causality Analysis. Forensic investigators use the whole-
system provenance graph to find the root causes and rami-
fications of an attack by performing backward and forward
causality analysis on the graph, respectively. Given a symptom
of an attack, an investigator can issue a backward-tracing query
on the graph; it will find root cause of the attack by traversing
the ancestry of the symptom event. The investigator can also
issue a forward-tracing query that starts from the root cause
identified in the previous query and returns all the causally
connected events in the progeny of the root cause, explaining
the ramifications of the attack.

5

/* /src/networking.c */
while(...) { //EVENT HANDLING LOOP
 /* Wait for TCP connection */
 cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport);
 serverLog(LL_VERBOSE,"Accepted %s:%d", cip, cport);
 ... /*Process request here*/
 serverLog(LL_VERBOSE, "Client closed connection");}

/* /src/backend/tcop/postgres.c */
static void exec_simple_query(const char *query_string){
 errmsg("statement: %s", query_string);
 ...
}
void PostgresMain(int argc, char *argv[],...){
 ...
 for(;;) { //EVENT HANDLING LOOP
 ...
 exec_simple_query(query_string);
 ...} }

(a) Redis

(b) PostgreSQL

sshpam_err = pam_set_item(sshpam_handle, PAM_CONV,
 (const void *)&passwd_conv);
if (sshpam_err != PAM_SUCCESS)
 fatal("PAM: %s: failed to set PAM_CONV: %s", __func__,
 pam_strerror(sshpam_handle, sshpam_err));

sshpam_err = pam_authenticate(sshpam_handle, flags);
sshpam_password = NULL;
if (sshpam_err == PAM_SUCCESS && authctxt->valid) {
 debug("PAM: password authentication accepted for %.100s",
 authctxt->user);
 return 1;
} else {
 debug("PAM: password authentication failed for %.100s: %s",
 authctxt->valid ? authctxt->user : "an illegal user",
 pam_strerror(sshpam_handle, sshpam_err));
 return 0;
}

(c) OpenSSH

Fig. 4: Logging behavior of different applications inside the event-handling loop. Underlined code represent log printing statements.

Properties of Causality Analysis. The provenance graph
should preserve the following three properties of causality
analysis. Validity means that the provenance graph describes
the correct execution of the system ,i.e., the provenance graph
does not add an edge between entities that are not causally
related. Soundness means that the provenance graph respects
the happens-before relationship during backward and forward
tracing queries. Completeness means that the provenance graph
is self-contained and fully explains the relevant event.

B. Design Goals

The limitations mentioned in §II on prior work motivated
our identification of the following high-level goals:

• Semantics-Aware. Our threat investigation solution must be
cognizant of the high-level semantic events that occurred
within the contexts of each attack-related application.

• Widely Applicable. Our solution must be immediately
deployable on a broad set of applications commonly found
in enterprise environments. Therefore, the solution must
not depend on instrumentation or developer annotations.
Moreover, our techniques should be agnostic to applica-
tions’ system architecture and should apply to proprietary
software, for which source code is usually not available.

• Forensically Correct. Any modifications made to the
whole-system provenance graph by our solution must sup-
port existing causal analysis queries and preserve the prop-
erties of validity, soundness, and completeness.

C. OmegaLog

Fig. 5 presents a high-level overview of the OmegaLog
system, which requires that both system-level logging and
application event logging be enabled. OmegaLog’s function-
ality is divided into three phases: static binary analysis (§VI),
runtime (§VII), and investigation (§VIII). In the static analysis
phase, (1) OmegaLog first analyzes all application binaries
to extract all log message strings (LMSes) that describe event-
logging statements in the code, and then uses control flow
analysis to identify all possible temporal paths of LMS in
different executions of the program. (2) All those LMS
control flow paths are stored in a database that is input to a
log parser to bootstrap interpretation of application events. At
runtime, (3) OmegaLog captures all the application events
and augments them with the application’s PID/TID and a

timestamp of log event through kernel module that intercepts
write syscalls. Simultaneously, (4) OmegaLog collects system
logs from the underlying whole-system provenance tracker
and associates them with the appropriate application events by
using the PID/TID as a disambiguator; and store them into a
unified log. Upon attack investigation, (5) OmegaLog passes
that universal log and the LMS control flow paths database to
a log parser that partitions associated processes in the whole-
system graph by inserting a new app log vertex. This vertex
is connected to the corresponding partitioned process and
annotated with log messages in that particular execution unit
of the process. The semantic-aware and execution-partitioned
graph is called universal provenance graph (UPG), which is
presented to the investigator.

VI. OMEGALOG: STATIC BINARY ANALYSIS PHASE

The static analysis routine profiles application binaries
before their execution. During static analysis, OmegaLog per-
forms several passes over the binary’s control flow graph
(CFG) to identify logging behaviors and generate all possible
LMS paths that are possible during execution of that binary.
Specifically, we leverage the Angr [53] toolchain to build
the CFG, and then introduce new methods to automatically
identify logging procedures in the binary (§VI-A). Next, we
concretize LMS (§VI-B) using the identified logging proce-
dure, and finally we generate all possible LMS control flow
paths that can occur during execution of the binary (§VI-D).
Those steps are also shown in Fig. 5.

As highlighted in earlier work [19], binary analysis imposes
high costs, especially when symbolic execution and emulation
are necessary. In what follows, we describe how OmegaLog
avoids prohibitive analysis costs while profiling application-
logging behaviors. Although, OmegaLog works on application
binaries, for convenience, we explain static analysis procedures
by using source code snippets. Algorithm 1 offers a high-level
overview of our static analysis routines.

A. Identifying Logging Procedures

The ecosystem of event-logging frameworks is diverse and
heterogeneous; to overcome the resulting issues, OmegaLog
identifies logging procedures in a binary by using two heuris-
tics. 1) Applications use either well-known libraries (e.g.,
syslog [27], log4c [6]) or functionally-similar custom
routines to produce, store, and flush log messages to a log

6

Log Parser
& Graph

Generator

1. Identifying Logging Procedures

Log1: “Opened file “%fname””
Log8: “Accepted certificate ID "%s" signed by %s CA”
3. Building LMS Regular Expressions

2. Extracting Log Message Strings (LMS)

logMsg(…);

ap_log_error(…);

App
Binary

1

log4

log1 log2 log3 log5
log1 log5

Universal
Provenance graph

u1 u2i

k

u3

u1
u2

j

Universal
Log

2

3

4

5

Static Binary Analysis Phase Investigation Phase

Runtime Phase

4. Generating LMS Control Flow Paths
Log1: “Opened file “.*””

Symptom

LMS
Paths DB

kernel space

Linux Audit App
Process

Kernel
ModuleAugmented

LMS User space

Whole-system
Provenance

w
rit

e
sy

sc
al

l
in

te
rc

ep
tio

n

syscall

Fig. 5: OmegaLog architecture overview. During the offline phase, OmegaLog first generates control flow graph and extracts log message strings
(LMSes) from application’s binary and then contructs LMS control flow paths. During the runtime phase, OmegaLog combines application
event logs and audit logs together into universal provenance logs. Finally, during the investigation phase, OmegaLog uses LMS control flow
paths to parse universal provenance log into universal provenance graphs.

file. The libraries leverage the I/O procedures of Libc, such
as fprintf or snprintf, to write the log messages to disk.
OmegaLog can thus identify candidate logging procedures
through a backward traversal of the CFG from these proce-
dures call sites. 2) Most applications that create event logs
store messages in the /var/log/ directory by default. Thus,
OmegaLog can differentiate log I/O from other I/O based on
the file path and consider all the procedures that write to
/var/log/ directory as logging procedures. Combining these
two heuristics was sufficient to identify logging behaviors for
applications in our evaluation dataset. Nevertheless, Omega-
Log also provides an interface that sysadmins can use to add
the names of their logging procedures, if the binary does not
follow the aforementioned conventions.

B. Extracting Log Message Strings (LMS)

Once we have identified all the logging procedure names
in the previous step, we assign a unique identifier for each
logging procedure callsite. We need to generate an LMS
that describes the format specifier arguments (template) of
the log message. This step requires OmegaLog to extract
the binary’s full control flow graph and perform symbolic
execution [35] to extract the values of such arguments. We
henceforth refer to this process as concretization. However,
performing a complete symbolic execution over the binary is
a computationally expensive operation that leads to the path
explosion problem, especially for applications with complex
compile-time optimizations. In fact, while experimenting with
the applications listed in Table III, we realized that most
applications are compiled with at least the -O2 compiler
optimization level, which greatly complicated the task of CFG
extraction and symbolic execution. For example, when we used
the Angr toolset, extracting the CFG and performing symbolic
execution on the openssh server binary quickly exhausted 64
GB of memory on our experimental machine and did not return
a conclusive result, even after running for several hours.

To overcome that problem, we first note that our ex-
clusive purpose is to obtain the format specifier arguments
for logging function calls; any symbolic execution operation
that does not serve this purpose is unnecessary. Therefore,
OmegaLog first references the CFG built without symbolic
execution (referred to as a FastCFG in Angr toolset), which is

generated by traversing the binary and using several heuristics
to resolve indirect jumps; that approach greatly reduces the
CFG computational and memory requirements [53]. Using the
FastCFG, we identify the basic blocks that contain function
calls or jumps to logging procedures, and thus we can focus
our attention solely on such blocks. Nevertheless, unlike the
full CFG, the FastCFG does not retain any state about the
binary that would allow OmegaLog to concretize the values of
the logging procedures’ arguments.

To complete our analysis, we introduce an optimized
concretization we refer to as peephole concretization. While
studying the code of the open-source programs shown in
Table III, we observed that for the most part, format specifier
arguments to logging procedures are passed either (1) as direct
constant strings or (2) through constant variables defined near
the procedure call. For example, consider the call to the
debug logging procedure in the OpenSSH application shown
in Fig. 4. The LMS we are interested in extracting is the mes-
sage ‘‘PAM: password authentication accepted for
%.100s’’ passed directly as a constant to the function call. At
the machine instructions level, that observation reflects the fact
that LMSes are typically defined within the same basic block
that ends with the call or jump instruction to the address of
a logging function, or in a nearby preceding block.

Using peephole concretization, we only need to perform
local symbolic execution starting from the basic blocks iden-
tified in the previous step, stopping directly after execut-
ing the call instruction to the target logging procedure. We
show the pseudocode for our peephole concretization step
in Algorithm 1. If the symbolic execution task of a given
basic block b fails to concretize LMS values, OmegaLog
then launches new symbolic execution tasks from each of b’s
predecessors (referred to as b.predecessors() in Algorithm 1).
We refer to the operation of restarting symbolic execution
from a basic block’s predecessors as backtracing. OmegaLog
bounds the computational resources employed for the con-
cretization step by halting symbolic execution after performing
maxBackTrace backtrace operations from a given block b. If
symbolic execution fails to produce concretized LMS values
after maxBackTrace operations, OmegaLog marks the func-
tion as unresolved and thus produces incomplete LMS paths.

7

Algorithm 1: Static Binary Analysis
Func GETLMS(Binary B, Log functions F)

/* Overall process to build the LMS paths */
g ← ANGRGETFASTCFG(B)
C ← EXTRACTCALLSITES(g,F)
/* Concretization step */
V ← PEEPHOLECONCRETIZATION(g, C)
/* Building the LMS paths step */
G ← BUILDLMSPATHS(g,V,F)

Func EXTRACTCALLSITES(cfg, F)
C ← Φ
foreach basic block b ∈ cfg do

/* Check if the basic block jumps into a logging function */
if b.jump target address ∈ F .addresses then

C ← C ∪ {b}
end

end
return C

Func PEEPHOLECONCRETIZATION(cfg, call sites, maxBackTrace)
V ← Φ
V ← {(b, 0) for b ∈ call sites}
while V 6= Φ do

(b, backtrace)← V.pop()
/* L is of the form {(LMS `, call stack cs)} */
L← SYMBOLICEXECUTION(g, v)
if L 6= Φ then

foreach (`, cs) ∈ L do
/* Taking care of context sensitivity */

topBlock ← cs.top()
if (`, topBlock) /∈ V then
V ← V ∪ {(`, topBlock)}

end
end

end
else if backtrace ≤ maxBackTrace then

V ← V ∪ {(v, backtrace + 1) for v ∈
b.predecessors()}

end
end
return V

Func BUILDLMSPATHS(cfg,V,F)
/* E is the set of paths between LMS */
E ← Φ
foreach f ∈ cfg.functions()\{F} do

/* Extract the entry points and external returns */
entries ← f .entry points()
returns ← f .jumps()
E ← E ∪ GETLOCALPATHS(V, f)

end

Our algorithm may yield ambiguous LMS paths in the rare
cases in which the function call can have different format
specifiers based on the sequence of basic blocks that lead to
it (i.e., context sensitivity). We address that challenge during
the peephole concretization step by recording the call stack
that produced each LMS. If two different call stacks produce
different LMS for the logging function call, we create a new
LMS for each call and then associate it with the topmost
basic block on each corresponding function call. That process
will guarantee that we do not miss any LMS and that we do
not over-approximate the reachability between LMSes when
constructing the LMS control flow paths. We note, however,
that making format specifiers to logging procedures context-
dependent is not a frequently observed programming practice;
in fact, we encountered this issue only when processing the
transmission and CUPSD applications.

C. Building LMS Regular Expressions

Finally, once an LMS has been concretized, we can extract
a regex that can be used to match event messages at runtime.
The resulting regex describes the format specifiers in the LMS
that depend on runtime context (e.g., %s, %d, %%s). Each format
specifier is replaced with a suitable regex, e.g., “%d” with
“[0-9]+” and “%s” with “.”. For example, one LMS we
encounter in OpenSSH is

PAM: password from user %.12s accepted.

After extraction, that yields the regex

PAM: password from user .* accepted.

D. Generating LMS Control Flow Paths

After concretizing LMS with selective symbolic execution,
OmegaLog can continue to use the FastCFG to enumerate
the valid sequences of LMS that can appear in a typical
lifecycle of the application. Extraction of all the possible paths
is not a direct application of depth-first traversal (DFS); DFS
renders an under-approximation of the possible paths for the
following reasons. (1) The same basic blocks can be called
from different callees and thus must be traversed multiple
times. (2) Function calls (i.e., call instructions) must be
matched with their appropriate return or jump instructions.
Finally, (3) the applications we study use an abundance of
loops and recursive functions that must be traversed multiple
times in order to avoid skipping over loop paths. Instead, our
approach addresses (1) and (2) by using caching and tempo-
rary nodes, and (3) by using fixed-point iterations. Pseudo-
code for OmegaLog’s control flow path building algorithm
(BUILDLMSPATHS) is given in Algorithm 1.

Instead of traversing the full binary’s CFG, OmegaLog
subdivides the path identification task into several function-
local traversals that generate subgraphs for each function in
the binary. It then links these subgraphs by following call
and return/jump instructions to build the full LMS paths.
For each function f in the binary’s functions (referred to as
cfg.functions() in Algorithm 1), OmegaLog identifies f ’s
entry points, in which control flow passes into the function, and
its exit points, in which control flow crosses the f ’s local body,
creating dummy LMS nodes for these points. Then, OmegaLog
performs a local traversal of f ’s subgraph; starting from f ’s
entry points, we traverse the control flow edges between the
basic blocks that do not leave f ’s address space.

Every time OmegaLog encounters a basic block containing
an LMS, that block is added to the path, and its outgoing
edges are traversed. To accurately capture looping behavior,
we perform a fixed-point iteration over the loop edges until no
further changes occur to the LMS path being built. In other
words, we keep traversing the same loop edge until no further
LMS paths are detected; we then consider the loop edge to
be exhausted and move to the next control flow edge. Finally,
to speed up the traversal, OmegaLog caches processed basic
blocks so that it needs to only traverse them once if multiple
paths coincide. Note that we do not consider any loops that
do not contain any syscalls because such loops do not produce
audit logs and thus cannot be used for execution partitioning.

8

log(“Server started”); // log1
while(...) {
 log(“Accepted Connection”); // log2
 ... /*Handle request here*/
 log(“Closed Connection”); // log3
}
log(“Server stopped”); // log4

log4

log1

log2

log3

log4

log1

Fig. 6: On the right, LMS control flow paths representation is shown
for the code snippet on the left.

After building the function-local subgraphs, OmegaLog
resolves the call and jump instructions in each of them to
complete the full LMS paths. For each function call that is
on an LMS path, OmegaLog injects the callee’s subgraph into
the path by creating links between the caller’s basic block and
the callee’s entry points and between the callee’s exit points
(return blocks and jump instructions targeting the caller) and
the callee’s return basic block. Using that approach, OmegaLog
completes the full LMS paths while also handling recursive
functions by creating self-cycles. Subsequently, OmegaLog
compresses the graph by removing the dummy nodes created
by the BUILDLMSPATHS function and merging their fan-in
and fan-out edges. The resulting compressed graph will then
contain all the detected LMS paths. Fig. 6 shows an example
of LMS control flow paths from a code snippet. The code is
shown on the left, and the corresponding LMS paths are shown
on the right. The backedge from log3 to log2 just shows that
these logs are inside a loop and can appear more than one time.

LMS control flow paths guide OmegaLog to partition
universal provenance log into execution units; however, in
some applications printed LMSes in the event-handling loop
are not precise enough to partition the loop. For example, Redis
event-handling loop shown in Figure 4 prints two LMSes in
each iteration of the event-handling loop. The first LMS is
printed after the accept syscall and if we partition the event-
handling loop based on the both first and second LMSes, then
we will miss that accept syscall in the execution unit and
only capture syscalls that happened in between two LMSes.
However, if we partition the event-handling loop only on the
second LMS then we will generate correct execution units
because there is no syscall after second LMS in the event-
handling loop.

Thus, during LMS control flow paths construction Omega-
Log marks all the LMSes present inside the loops that do not
have any syscalls before or after in that loop. Such marking
helps OmegaLog to make correct execution partitioning of
universal provenance log during investigation phase. If there
is no such LMS inside the loop then OmegaLog keeps track
of either all the syscalls present after the last LMS (loop-
ending LMS) in the loop or all the syscalls present before the
first LMS (loop-starting LMS) in the loop whichever has least
number of syscalls. OmegaLog uses such syscall mappings
during investigation phase to make correct execution units.

E. Discussion of Static Analysis Limitations

Our approach is agnostic to the underlying binary analysis
tool, but in this work, we used Angr tool, which came with its
own set of limitations. Below we discuss these limitations and,
in some cases, how we handled them to recover LMS paths.

False Positives & False Negatives. For more information
on accuracy and completeness of Angr’s recovered CFG, we

refer the reader to [53]. In brief, if Angr mistakenly adds
an edge that should not be in the CFG of an application,
OmegaLog will generate an erroneous LMS path in the LMS
path database. However, since that execution path will never
happen during runtime, OmegaLog will just ignore this false
positive LMS path during UPG construction. In case Angr
misses an edge in a CFG, we have implemented Lookahead
and Lookback matching (described in §VIII), which handle
this case.

Runtime Performance. OmegaLog’s static analysis
runtime performance was significantly impacted by
Angr’s performance of symbolic execution. We introduced
PeepholeConcretization to improve runtime while
preserving the accuracy of LMS path recovery. Note that
static analysis is a one-time, offline cost: once a binary has
been profiled, there is no need to re-analyze it unless it has
been changed. On modestly provisioned workstations, that
task could even be outsourced to more powerful machines.

Binary Restrictions. First, Angr tool can only work on
binaries compiled from C/C++ code. Second, the format
modifier argument to a logging procedure should not be built
dynamically at runtime as an element of a struct, i.e., it
should be a constant string. Third, our binary analysis can only
recover logging functions that are not inlined. However, we did
not encounter inlined logging functions during our evaluation.

VII. OMEGALOG: RUNTIME PHASE

At runtime, OmegaLog performs minimal maintenance of
application and whole-system logs; the LMS control flow
path models are stored in a database (2 in Fig. 5) and are
not consulted until an investigation is initiated. The primary
runtime challenge for OmegaLog is that of reconciling logs
from different layers, which is difficult when considering a
flattened event log of concurrent activities in multi-threaded
applications. To address that, OmegaLog intercepts all write
syscalls on the host using a kernel module and identifies which
write syscalls belong to application event logging using heuris-
tics discussed in §VI. After that it only appends the PID/TID
of the process/thread that emitted the event and along with
the timestamp of the event’s occurrence to the identified log
messages, generating enhanced event log messages.2 Finally,
OmegaLog uses Linux Audit API to add the enhanced event
log message to the whole-system provenance log file, which
provides an ordering for both application- and system-level
events.

VIII. OMEGALOG: INVESTIGATION PHASE

Following an attack, an administrator can query Omega-
Log’s log parser and graph generator modules (5 in Fig. 5)
to construct a UPG chronicling the system- and application-
layer events related to the intrusion.

2Applications that make use of rsyslog facility [8] to write LMS is the one
exception to the rule where LMS writing process’s PID is not equal to the
original application process that produced the LMS. However, in such case
we can easily extract the PID/TID of original application process because
rsyslog use well-defined message format [27] with PID added by default.

9

Algorithm 2: UPG Construction
Inputs : Universal log file Luni;

Symptom event es;
LMS control flow paths Pathslms;

Output : Backward universal provenance graph G
Variables: LMSstate ← Current state of LMS;

eventUnit[Pid] ← events in current unit related to Pid;
endUnit ← flag to partition execution into unit;

endUnit ← false
foreach event e ∈ Luni happened before es do

if ISAPPENTRY(e) then
LMScand = GETLMSREGEX(e)
endUnit = MATCHLMS(LMScand, Pathslms,
LMSstate, eventUnit[Pide], Luni)

end
if endUnit then

eventUnit[Pide].add(e)
Add all events from eventUnit[Pide] to G
endUnit ← false
eventUnit[Pide] ← null

end
else

eventUnit[Pide].add(e)
end

end
return G

A. Universal Provenance

Given application binaries, whole-system provenance logs,
and application event logs, during the investigation phase, we
aim to generate a UPG while preserving the three properties
of causality analysis. Algorithm 2 describes how to construct
the backward-tracing UPG from the universal log file, specif-
ically a backtrace query from an observable attack symptom
event; the approach to building forward-trace graph follows
naturally from this algorithm and is therefore omitted. When
an application event log (an augmented LMS) is encountered
while parsing the universal log (Function ISAPPENTRY in
Algorithm 2), it is necessary to match the event to a known
LMS for the application in our LMS paths. That matching is
performed by the MATCHLMS function as described below.

B. LMS State Matching

This procedure entails matching of a given runtime appli-
cation log entry to its associated LMS in the LMS control
flow paths DB. For each log entry in the universal log, the
matcher identifies all LMS regexes that are candidate matches.
For example, if the event message is

02/15/19 sshd [PID]: PAM: password from user root accepted

the matcher will look for substring matches, and this will solve
the issue of identifying the actual application log entry from
the preamble metadata, e.g., “02/15/19 sshd[PID]:”.

Ranking LMS. An application log entry may match to
multiple LMS regexes in the LMS path DB; this happens
because of the prevalence of the %s format specifier in LMS,
which can match anything. Therefore, OmegaLog performs a
ranking of all the possible candidate matches. We use regex
matching to identify the number of non-regex expressions (i.e.
constants) in each match. Going back to the example, “PAM:
password from user root accepted” will match “PAM:

password from user .* accepted” with a ranking of 5,
which is equal to the number of non-regex word matches.
Finally, the matcher will return the LMS that has the highest
rank or the highest number of non-regex word matches that
reflects the true state among the candidate LMSes.

State Machine Matching. Once the candidate LMS
(LMScand) has been identified for an application log entry,
OmegaLog attempts to match the LMScand to a valid LMS
path in the database. If this is the first event message, we
use a set of heuristics to figure out where we should start
from. However, since the matching process can start anywhere
in the applications lifetime, usually we have to resort to an
exhaustive search over all nodes in the LMS control flow paths.
Once we identified the starting node, we keep state in the
parser that points to the possible transitions in the LMS paths
graph. Upon the next log entry, we search the neighbors of the
previous LMS for possible candidate matches. We rank those
and return the one with the highest rank, and then advance
the parser’s state pointer. If OmegaLog cannot find a match in
the neighboring LMS states, it advances to the lookahead and
lookback matching steps.

Lookahead Matching. When the previous state in the LMS
path is known, we may not find a match in a neighboring
LMS state because for example (1) the application is running
at a different log level, (2) OmegaLog missed the LMS
corresponding to the log message in the static analysis phase
(for example, the function might be inlined, or we could not
concretize its values), or (3) the log message is coming from
a third-party library. We therefore start looking deeper into
the reachable states from the current parser state. If we find
multiple candidates, we again rank them and return the one
with the highest rank. If we do not find one, we then keep
increasing the lookahead up until we hit a certain threshold
that can be set at runtime. If we find a match, we move the
parser to that state and repeat until we match a candidate LMS
at the end of LMS control flow path. At that point, we set the
endUnit flag to true.

As described in §VI, in certain cases LMS may not be able
to correctly partition the execution because there are syscalls
after the loop-ending LMS or syscalls before loop-starting
LMS. During offline analysis, OmegaLog marks such LMS
and keep track of any syscalls that we should expect during
runtime. If we observe such case during state matching pro-
cess, we match those syscalls besides matching LMS and add
those syscalls into the execution unit. Function MATCHLMS
in Algorithm 2 also handles such cases and appropriately sets
the endUnit flag to true.

Lookback Matching. If the above lookahead step fails be-
cause we cannot find the end state in the LMS path, then
we first try to search the heads of loops that are of the form
(while(1), for(;;)) in the LMS control flow path. The
intuition behind loop head identification step is that we might
have hit the start of a new execution unit and thus we would
need to restart from a new stage. If this fails, then we perform
an exhaustive search of LMS that can happen before the current
state in the LMS paths using the same intuition mentioned
before. If in either case, we get a match we set the endUnit
flag to true. Note that fallback matching allows us to generate
execution units even if we have only one log message at start

10

or end of the loop, because we use the next execution unit’s
log message to partition the current execution unit.

IX. EVALUATION

In this section, we evaluate OmegaLog to answer the
following research questions (RQs):

RQ1: What is the cost of OmegaLog’s static analysis routines
when extracting logging information from binaries?

RQ2: How complete is our binary analysis in terms of finding
all the LMSes in an application?

RQ3: What time and space overheads does OmegaLog impose
at runtime, relative to a typical logging baseline?

RQ4: Is the universal provenance graph causally correct?
RQ5: How effective is OmegaLog at reconstructing attacks,

relative to a typical causal analysis baseline?

Experimental Setup. We evaluated our approach against 18
real-world applications. We selected these applications from
our pool of applications discussed in §IV based on popularity
and category. Moreover, most of these applications were used
in the evaluation of prior work on provenance tracking [42],
[41], [38], [39]. For each program, we profile two verbosity
levels, INFO and DEBUG, when considering the above research
questions. Workloads were generated for the applications in
our dataset using the standard benchmarking tools such as
Apache Benchmark ab [1] and FTPbench [2].

All tests were conducted on a server-class machine with an
Intel Core(TM) i7-6700 CPU @ 3.40 GHz and 32 GB of mem-
ory, running Ubuntu 16.04. To collect whole-system prove-
nance logs we used Linux Audit Module3 with the following
syscall ruleset: clone, close, creat, dup, dup2, dup3, execve,
exit, exit group, fork, open, openat, rename, renameat, unlink,
unlinkat, vfork, connect, accept, accept4, bind. OmegaLog’s
offline algorithm accepts a single configuration parameter,
maxBackTrace, that sets the maximum depth of symbolic
execution operations. After experimenting with that parameter,
we found that a value of 5 was enough to guarantee >95%
coverage for 12 of the 18 applications we analyzed, as we
discuss in the following section. In fact, our experiments have
shown that we did not need to increase the symbolic execution
depth beyond 3 basic blocks.

A. Static Analysis Performance

Table III shows how much time it takes to identify and
concretize LMS from application binaries and subsequently
generate LMS path models (Algorithm 1). We first note that
the overhead of building the LMS paths (LMSPs) is reasonable
for a one-time cost, taking 1–8 seconds for most applications,
with a maximum of 3 minutes for PostgreSQL; the increase
for PostgreSQL is due to the larger number of LMS paths
captured by OmegaLog. On the other hand, average time to
generate an LMS column shows the time to generate the
FastCFG and concretize the LMS dominates OmegaLog’s
static analysis tasks, ranging from a minimum of a minute
and a half (Transmission) to a maximum of 1.2 hours
(PostgreSQL). Those two tasks are in fact highly dependent

3We make use of the Linux Audit framework in our implementation.
However, our results are generalizable to other system logs, such as Windows
ETW [4] and FreeBSD DTrace [3].

on Angr’s raw performance. As acknowledged by the Angr
tool developers [11], the static analyzer’s performance is
handicapped because it is written in the Python language with
no official support for parallel execution.

Our results show no direct relationship between the size of
the binary of the application being analyzed and the overall
analysis time. By inspecting the applications’ source code,
we found that OmegaLog’s performance is more informed by
the structure of the code and the logging procedures. We can
see intuitively that as the number of found callsites increases,
the number of peephole symbolic execution steps needed
also increases, thus increasing the total concretization time.
However, that does not generalize to all the applications; for
example, the analysis of NGINX (2044 KB binary) completed
in 13 minutes concretizing 925 LMS while Lighttpd (1212
KB, almost half of NGINX’s binary size) required 32 minutes
concretizing only 358 LMSes.

Upon closer investigation of Lighttpd’s source code, we
found that format specifiers (and thus LMS) were often passed
as structure members rather than as constant strings (which
form the majority of LMS in the case of NGINX). That will trig-
ger the backtracing behavior of the PEEPHOLECONCRETIZATION

algorithm in an attempt to concretize the values of the struct
members, thus increasing the cost of the symbolic execution
operations performed by Angr. Below we show sample code
snippets from Lighttpd that trigger such behavior:

/∗ log function signature: /src/ log.c ∗/
int log error write(server ∗srv, const char ∗filename, unsigned int line ,

const char ∗fmt /∗ our tool looks for fmt ∗/ , ...)
/∗ format specifier passed as struct member: /src/config−glue.c ∗/
if (con−>conf.log condition handling) {

log error write(srv, FILE , LINE , ”dss”,
dc−>context ndx, /∗ the fmt argument ∗/
” (cached) result : ” ,
cond result to string(caches[dc−>context ndx].result)); }

The cases of Lighttpd and NGINX highlight the unpre-
dictability of runtime of OmegaLog’s static analysis when
only the binary size or the number of identified callsites is
considered. Rather, the runtime depends on the structure of
the code and the anatomy of the calls to the log functions.

B. Static Analysis Completeness

We report on OmegaLog’s coverage ratio, which represents
the percent of concretized LMS relative to the count of
identified callsites to logging procedures. As shown in the
last column of Table III, OmegaLog’s coverage is > 95%
for all the applications except PostgreSQL, Transmission,
and wget. We disregard thttpd since it presents a small
sample size in terms of LMS where OmegaLog only missed
1 LMS during concretization. That speaks to OmegaLog’s
ability to consistently obtain most of the required LMSes
and build their corresponding LMS control flow paths. We
show in our experiments, this coverage ratio is sufficient to
enable OmegaLog to perform execution partitioning and aid
the investigation process without loss of precision. In addition,
when LMSes are missing, OmegaLog’s runtime parser can
handle missing log messages through lookahead and lookback
techniques. If OmegaLog fails to concretize an LMS, it is a
reflection of the symbolic execution task’s ability to resolve a
format specifier for a logging procedure.

11

TABLE III: Application logging behavior and performance results of OmegaLog’s static analysis phase. EHL stands for event handling loop;
IN+DE means that both INFO and DEBUG verbosity levels are present in the loop; LMSPs: Log message string paths; Callsites are identified
log statements; and “Cov. %” denotes coverage percentage which is the percentage of concretized LMS to callsites.

Program Binary Log Level Avg. Time (sec) Number of Completeness

Size (kB) inside EHL LMS LMSPs LMS LMSPs Callsites Cov. %

Squid 64,250 IN+DE 831 46 64 157,829 70 91
PostgreSQL 22,299 IN+DE 3,880 258 3,530 4,713,072 5,529 64
Redis 8,296 INFO 495 7 375 34,690 394 95
HAProxy 4,095 IN+DE 144 4 53 13,113 56 95
ntpd 3,503 INFO 2,602 4 490 10,314 518 95
OpenSSH 2,959 IN+DE 734 4 845 11,422 869 97
NGINX 2,044 IN+DE 775 11 923 8,463 925 100
Httpd 1,473 IN+DE 99 2 211 3,910 211 100
Proftpd 1,392 IN+DE 201 4 717 9,899 718 100
Lighttpd 1,212 INFO 1,906 2 349 5,304 358 97
CUPSD 1,210 DEBUG 1,426 3 531 4,927 531 100
yafc 1,007 IN+DE 88 2 57 3,183 60 95
Transmission 930 IN+DE 102 2 178 5,560 227 78
Postfix 900 INFO 97 3 96 2,636 98 98
memcached 673 IN+DE 193 7 64 19,510 69 93
wget 559 INFO 200 3 84 3,923 275 31
thttpd 105 N/A 157 8 4 14,847 5 80
skod 47 N/A 12 0 25 115 25 100

To better understand the conditions of OmegaLog’s per-
formance, we analyzed the source code of PostgreSQL,
Transmission, and wget (64%, 78%, and 31% coverage,
respectively). Our analysis revealed that in all three cases,
symbolic execution was failing for logging procedures that
use GNU’s gettext for internalization (called using the “_”
operator), as shown below:

/∗ Below code from Transmission: /libtransmission/rpc−server.c ∗/
tr logAddNamedError(MY NAME, (”Couldn’t find settings key \”%s\””), str);
/∗ Below code from wget: /src/convert.c ∗/
logprintf (LOG VERBOSE, (”Converting links in %s... ”), file);
/∗ Below code from PostGreSQL: /src/backend/commands/tablecmds.c ∗/
default :

/∗ shouldn’t get here, add all necessary cases above ∗/
msg = (”\”%s\” is of the wrong type”);
break; }

Since gettext is loaded dynamically as a shared library,
Angr is not able to handle it appropriately during symbolic
execution and cannot extract its return value, thus causing the
failure of LMS extraction during the peephole concretization
step. To confirm our findings, we reran the static analysis for
wget and Transmission with the calls to gettext removed
and were able to achieve coverage of 98.18% and 96.03%,
respectively. One approach to addressing that issue using Angr
would be to add hooks for all of gettext’s methods and
return the arguments without changes. That would in turn
provide Angr’s symbolic execution engine with the arguments
for concretization. We plan to address the issue in future work.

C. Runtime & Space Overhead

We measured the runtime overhead of OmegaLog com-
pared to a baseline of application event log collection at the
INFO and DEBUG verbosity with Linux Audit running. We turn
on INFO and DEBUG level based on the application’s logging
behaviour required for execution partitioning. As shown in
Fig. 7, OmegaLog’s average runtime overhead was 4% for
all the applications that had logging inside the event-handling
loop. Some applications, such as Memcached and Proftpd,

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

Httpd
NGINX

Squid

Redis

Transm
ission

OpenSSH

M
em
cached

Proftpd

PostgreSQL

HAProxy

Ntpd
Lighttpd

CUPSD

Postfx

wget
yafc

R
u
n
tim

e

O
v
e
rh
e
a
d

Fig. 7: Runtime overhead for each applications in our dataset that
has logging statement in the event-handling loop.

exhibit high overhead because they are write-intensive ap-
plications; since OmegaLog intercepts every write syscall to
disambiguate PID/TID, we expect to see higher runtime costs
here. However, we argue that the benefits of OmegaLog for
forensic analysis already justify the cost, and will consider
alternative methods for process disambiguation in future work.

OmegaLog incurs space overhead because it records the
PID/TID and timestamp for each application event message
so that it can match the event to the appropriate system-layer
task. At most, that addition requires 12 bytes per LMS entry.
Our experiments confirm that the cost is negligible during
typical use. For example, each unenhanced event message in
NGINX is approximately 8.6 kB. If an NGINX server received
1 million requests per day and each request generated one
event, the original event log would be 860 MB and OmegaLog
would add just 12 MB to that total, around 1% space overhead.

D. Correctness of Universal Provenance Graph

OmegaLog modifies the whole-system provenance graph
by adding app log vertices to generate semantic-aware and
execution-partitioned universal provenance graphs. We de-
scribe three causal graph properties in §V that the univer-
sal provenance graph needs to preserve for correct forensic

12

FTP
sensitive

FTP

 sensitive

(a)

 -FTP session opened
-“USER wlog" 331
-PASS (hidden)" 230
 -USER wlog: Login
successful
- FTP session closed

(b)

Fig. 8: Information theft attack scenario. (a) Provenance graph gener-
ated using a traditional solution, which led to a dependency explosion
problem with no semantic information. (b) Concise provenance graph
generated using OmegaLog with semantic information.

analysis. To ensure the Validity property, we augment LMS
with PID/TID information along with timestamps during the
runtime phase so that we can causally associate application log
vertices with process vertices in the whole-system provenance
graph. To ensure the Soundness property, OmegaLog augments
LMS with timestamps from the same system clock as the
whole-system provenance graph and uses this timestamp as
an annotation from process vertices to application log vertices.
That edge annotation allows OmegaLog to respect the happens-
before relationships while doing backward and forward tracing
on the graph. Finally, since universal provenance graphs do
not remove any causally connected vertices (besides false
provenance introduced by dependency explosion in a manner
consistent with previous work [39], [42]) we achieve the
property of Completeness.

E. Attack Investigation

We now evaluate OmegaLog’s ability to aid in a typical
attack investigation. To do so, we consider two additional sce-
narios as case studies. For each attack scenario, we manually
verified its UPG to check that it preserved the three causality
analysis properties that we discussed in §V. We note that the
result that we presented in the motivating scenario (§II) was
also procedurally generated using OmegaLog.

1) Information Theft Attack: An administrator made a
mistake when configuring an FTP server, allowing users to read
and transfer sensitive files from the server’s directories. The
issue was identified after several days, but the administrator
now needs to identify which files were leaked, if any, to ensure
that company secrets are safe. Using the sensitive files as a
symptom, the administrator runs a backtrace query.

Fig. 8(a) shows the attack investigation results using a
traditional causal analysis solution, which confirms that the
sensitive file was accessed. However, because of dependency
explosion, it is impossible to determine who accessed the
file and where it was transferred to. In contrast, Fig. 8(b)
shows the universal provenance graph produced by OmegaLog.
OmegaLog was able to partition the server into individual units
of work based on event log analysis, removing the dependency
explosion and identifying an IP address to which the sensitive
file was downloaded. However, that information may not
prove precise enough to attribute the attack to a particular
employee or remote agent; fortunately, because OmegaLog
was able to associate the causal graph with event messages
from the FTP server, the administrator is able to attribute
the theft to a specific set of user credentials. Note that while
existing execution-partitioning systems such as ProTracer [42]
and BEEP [39] could eliminate dependency explosion in this

scenario, they would not enable user-level attribution of the
attack.

2) Phishing Email: An employee uses the Mutt email client
to send and receive personal emails on a BYOD workstation.
One day, the employee receives a phishing email that offers
a torrent for downloading a blockbuster movie. Employee
opens the email, downloads the attached .torrent file. After
that employee, used Transmission application to download
the purported movie torrent file. Finally, employee opens the
downloaded movie file but the file is actually malware that
establishes a backdoor on the machine.

An administrator later notices that a suspicious program is
running on the workstation and initiates forensic analysis to
identify its origin. Fig. 9(a) shows the causal graph that the
investigation would yield based on simple auditd. As can
be seen in the graph, the employee has actually opened three
.torrent files with transmission-daemon. It is impossible
to determine which .torrent input file led to the malware
download. Even if out-of-band knowledge is used to identify
the malicious torrent, the administrator will still be unable to
trace back to the phishing email.

Fig. 9(b) shows the UPG produced by OmegaLog. Because
OmegaLog successfully partitioned the Postfix and Trans-
mission processes, the graph does not exhibit dependency
explosion, making it easy to trace from the suspicious process
back to the phishing email. Further, the OmegaLog graph
provides additional documentation of application semantics,
such as the email address of the sender, which may help the
administrator correlate this attack with other intrusions. Such
evidence cannot be provided by existing provenance trackers.

X. DISCUSSION & LIMITATIONS

Control flow integrity (CFI) assumption is a limitation
of OmegaLog; in fact, this is a big problem for almost the
entirety of recent work in provenance-based forensic analysis
space [16], [17], [26], [30], [31], [32], [37], [40], [39], [41],
[38], [42], [28], [45]. OmegaLog assumes CFI of program
execution because violation of CFI makes it impossible to
give assertions about the trace logs of program execution.
For example, execution units emitted from BEEP system [39]
can not be trusted because an attacker can hijack control
flow of the running application to emit misleading bound-
aries, confusing the investigator. Moreover, violations of CFI
assumption enables post-mortem tampering of audit logs or
even runtime control flow bending that causes misleading
application event records to be emitted. Even though the main
focus of our study is improving forensic analysis and solving
CFI problem is ultimately an orthogonal problem to our study
but we envision that future work on provenance will cater CFI
violation problem for accurate forensic analysis.

Provided that an underlying binary analysis tool has gener-
ated a reasonably accurate CFG, there are two considerations
when one is evaluating the generality of OmegaLog. The
first is whether or not the application being profiled includes
logging events at key positions in the CFG such as the event
handling loop. Our survey in §IV demonstrates that this is the
case for mature open source client-server applications. The
second consideration is whether the event logging statements
are correctly identified and extracted by OmegaLog. Our

13

Postfix

Transmission

t2 t1 malware

Postfix Postfix Postfix Postfix Postfix Postfix Postfix

procmail procmail procmail procmail procmail procmail procmail

Mutt

malware.torrent

f2.torrent

f1.torrent

Postfix

procmail

Postfix

Malware.torrent

Transmission

malware

postfix/qmgr[6854]: C9A34520973:
from=<abc@gmail.com>, size=748, nrcpt=1 (queue
active)
Nov 28 11:17:01 localhost postfix/local[18162]:
C9A34520973: to=<xyz@gmail.com>, orig_to=<root>,
relay=local, delay=0.02, delays=0.01/0.01/0/0, dsn=2.0.0,
status=sent (delivered to mailbox)

malware Queued for verification (verify.c:264)
malware Verifying torrent (verify.c:219)
…
malware Piece 733, which was just downloaded, failed its
checksum test (torrent.c:3259)
…
malware State changed from "Incomplete" to
"Complete" (torrent.c:2161)
malware Announcing to tracker (announcer.c:1552)

Mutt

 5< 235 2.7.0 Accepted
SASL protection strength: 0
SASL protection buffer size: 65536
 5> MAIL FROM:<abc@gmail.com>
 5< 250 2.1.0 OK b133sm5372063ioe.73 - gsmtp
5> RCPT TO:<xyz@gmail.com>
 5< 250 2.1.5 OK b133sm5372063ioe.73 - gsmtp
 5> DATA
[5< 354 Go ahead b133sm5372063ioe.73 - gsmtp
5< 250 2.0.0 OK 1509951165 b133sm5372063ioe.73 - gsmtp

(a) (b)

Fig. 9: Phishing email attack scenario. (a) Attack provenance graph generated by traditional solutions. (b) Semantic-aware and execution-
partitioned provenance graph generated by OmegaLog.

evaluation (§IX) demonstrated that we are able to identify
log statements in all the profiled applications based on our
heuristics for event-logging extraction.

OmegaLog assumes at least one log message printed in
the event-handling loop to partition execution. OmegaLog
uses ordered log messages in the universal provenance logs
as a way to partition syscalls and make unit boundaries.
Such an assumption only works for the applications that
use synchronous I/O programming model. For instance, if an
application is using asynchronous I/O and only prints one log
message at the end of the event-handling loop then concurrent
requests will generate multiple syscalls without immediately
printing log message at the end of each request. In such case,
OmegaLog will not be able to correctly partition each request.
One approach to solve this problem is to generate complete
syscall mapping along with LMS paths model inside the event-
handling loop during offline analysis and use this mapping to
divide execution. We leave that as our future work.

Malware binaries may not produce any of the application
logs that are required for execution partitioning. In that case,
OmegaLog treats the whole malware execution as one unit
and does not provide execution partitioning. That is acceptable
since every output and input event from malware execution is
important in forensic analysis.

XI. RELATED WORK

In §II, we described several shortcomings of existing
provenance-tracking systems that OmegaLog addresses. Here
we provide additional discussion of related work.

Application Log Analysis. Application logs contain a wealth
of information that can be useful in aiding software system
maintenance, and thus become an important data source for
postmortem analysis [48], anomaly detection [24], [59], [60],
program verification [52], and security monitoring [46]. Ex-
isting guidelines and practices [66], [34], [25], [21], [49]
indicate the importance of well-designed log messages in
failure diagnosis. Xu et al. [59] analyzed console logs to learn
common patterns by using machine learning and to detect ab-
normal log patterns at runtime. SherLog [61] used application
source code and runtime error log to infer what must or may

have happened during a failed run and provide detailed post
mortem analysis of the error. Similarly, LogEnhancer [62] and
LogAdvisor [66] automatically improves existing log messages
and provides suggestions on where to log in the code in order
to aid in future post-failure debugging. HERCULE [50] uses
expert-written log parsers and rules to first extract log fields
such as IP addresses and then correlate log entries across
application logs based on these fields. Unlike OmegaLog,
HERCULE’s rule-based approach does not accurately capture
causality across applications that use th whole-system layer
and that can ultimately undermine forensic investigations.

Several log analysis systems [56], [63], [44] have been
proposed to reconstruct behaviour of applications running on
Android OS. Unlike OmegaLog, these existing systems are not
transparent as they either require code instrumentation or an
emulator to collect logs for analysis. DroidHolmes [44] and
CopperDroid [56] are single-layer log analysis systems while
OmegaLog is a multi-layer log analysis system. DroidForen-
sic [63] collects logs from different layers for forensic analysis;
however, in its case, the onus is on the user to correlate
and combine logs from different layers. On the other hand,
OmegaLog integrates logs from different layers without user-
involvement using program-analysis techniques.

Application Log Parsing. Automated log parsing allows
developers and support engineers to extract structured data
from unstructured log messages for subsequent analysis. Many
open source tools, such as Logstash [7] and Rsyslog [8]
and commercial tools such as, VMWare LogInsight [10] and
Splunk [9] provide built-in log-parsing modules/recipes for
popular applications such as MySQL and Apache httpd; that
allows users to automatically extract useful information, such
as PID, hostname, and filenames from log messages. For
custom parsing of log messages, those tools provide easy-to-
use, regex-based languages to define parsers.

Distributed System Tracing. End-to-end tracing is required
in distributed systems to enable comprehensive profiling. Ex-
isting tools, such as Dtrace [18], Dapper [54], X-trace [23],
MagPie [15], Fay [22], and PivotTracing [43] instrument the
underlying application to log key metrics at run time. On
the other hand, lprof [65] and Stitch [64] allow users to
profile a single request without instrumenting any distributed

14

application. lprof uses static analysis to find identifiers that can
distinguish output logs of different requests. However, lprof
only correlate logs from the same distributed application. On
the other hand, Stitch requires certain identifiers in the log
messages in order to correlate log messages across different
distributed applications. Finally, both systems capture mere
correlations instead of true causality between application logs
and that can reduce the accuracy of attack reconstruction.

XII. CONCLUSION

In this work, we introduce OmegaLog an end-to-end
provenance-tracking system that uses the notion of univer-
sal provenance to solve the semantic gap and dependency
explosion problem that currently exist in causality analysis
frameworks. Universal provenance combines whole-system
audit logs and application event logs while preserving the
correctness of causality analysis. OmegaLog leverages static
binary analysis to parse and interpret the application event
logs and generates semantic-aware and execution-partitioned
provenance graphs. We implemented our prototype using the
Angr binary analysis framework and the Linux Audit Module.
Evaluation on real-world attack scenarios shows that Omega-
Log’s generated graphs are concise and rich with semantic
information, compared to the state-of-the-art.

ACKNOWLEDGMENT

We thank our shepherd, Yonghwi Kwon, and the anony-
mous reviewers for their comments and suggestions. We also
thank Akul Goyal and Riccardo Paccagnella for feedback on
early drafts of this paper. Wajih Ul Hassan was partially
supported by the Sohaib & Sara Abbasi Fellowship and the
Symantec Graduate Fellowship. This work was supported
in part by the National Science Foundation under contracts
CNS-16-57534 and CNS-17-50024. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of their employers or the sponsors.

REFERENCES

[1] “Apache HTTP server benchmarking tool,” https://httpd.apache.org/
docs/2.4/programs/ab.html.

[2] “Benchmark for ftp servers,” https://pypi.python.org/pypi/ftpbench.
[3] “DTrace,” https://www.freebsd.org/doc/handbook/dtrace.html.
[4] “Event tracing,” https://docs.microsoft.com/en-us/windows/desktop/

ETW/event-tracing-portal.
[5] “The Linux audit daemon,” https://linux.die.net/man/8/auditd.
[6] “Log4c : Logging for C library,” http://log4c.sourceforge.net/.
[7] “Logstash: Collect, Parse, Transform Logs,” https://www.elastic.co/

products/logstash.
[8] “Rsyslogd,” http://man7.org/linux/man-pages/man8/rsyslogd.8.html.
[9] “Splunk Log Management,” https://www.splunk.com/en us/central-log-

management.html.
[10] “VMware vCenter Log Insight,” http://www.vmware.com/ca/en/

products/vcenter-log-insight.
[11] “Speed considerations,” https://github.com/angr/angr-doc/blob/master/

docs/speed.md.
[12] “Equifax says cyberattack may have affected 143 million in

the U.S.” https://www.nytimes.com/2017/09/07/business/equifax-
cyberattack.html.

[13] “Inside the cyberattack that shocked the US government,” ttps://www.
wired.com/2016/10/inside-cyberattack-shocked-us-government/.

[14] “Target Missed Warnings in Epic Hack of Credit Card Data,” https:
//bloom.bg/2KjElxM.

[15] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for
request extraction and workload modelling.” in OSDI, 2004.

[16] A. Bates, W. U. Hassan, K. Butler, A. Dobra, B. Reaves, P. Cable,
T. Moyer, and N. Schear, “Transparent web service auditing via network
provenance functions,” in WWW, 2017.

[17] A. Bates, D. Tian, K. R. B. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the Linux kernel,” in USENIX Security, 2015.

[18] B. Cantrill, M. W. Shapiro, A. H. Leventhal et al., “Dynamic instru-
mentation of production systems.” in USENIX ATC, 2004.

[19] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in USENIX Security,
2014.

[20] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging.” in USENIX Security Symposium, 2009.

[21] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang,
and T. Xie, “Log2: A cost-aware logging mechanism for performance
diagnosis,” in USENIX ATC, 2015.

[22] U. Erlingsson, M. Peinado, S. Peter, M. Budiu, and G. Mainar-Ruiz,
“Fay: Extensible distributed tracing from kernels to clusters,” ACM
Trans. Comput. Syst., vol. 30, 2012.

[23] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:
A pervasive network tracing framework,” in NSDI. USENIX, 2007.

[24] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in ICDM. IEEE,
2009.

[25] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in ICSE Companion. ACM, 2014.

[26] A. Gehani and D. Tariq, “SPADE: Support for provenance auditing in
distributed environments,” in Middleware, 2012.

[27] R. Gerhards, “The syslog protocol,” Internet Requests for Comments,
RFC 5424, 2009.

[28] E. Gessiou, V. Pappas, E. Athanasopoulos, A. D. Keromytis, and
S. Ioannidis, “Towards a universal data provenance framework using dy-
namic instrumentation,” in Information Security and Privacy Research,
D. Gritzalis, S. Furnell, and M. Theoharidou, Eds. Springer Berlin
Heidelberg, 2012.

[29] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“NoDoze: Combatting threat alert fatigue with automated provenance
triage,” in NDSS, 2019.

[30] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer, “Towards
scalable cluster auditing through grammatical inference over provenance
graphs,” in NDSS, 2018.

[31] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. Venkatakrishnan, “SLEUTH: Real-
time attack scenario reconstruction from COTS audit data,” in USENIX
Security, 2017.

[32] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and
W. Lee, “Rain: Refinable attack investigation with on-demand inter-
process information flow tracking,” in CCS. ACM, 2017.

[33] B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1978.

[34] B. W. Kernighan and R. Pike, The practice of programming. Addison-
Wesley Professional, 1999.

[35] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, 1976.

[36] S. T. King and P. M. Chen, “Backtracking intrusions,” in SOSP. ACM,
2003.

[37] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality.” in NDSS, 2005.

[38] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie et al., “MCI: Modeling-based causality
inference in audit logging for attack investigation,” in NDSS, 2018.

[39] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance
via binary-based execution partition,” in NDSS, 2013.

15

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://pypi.python.org/pypi/ftpbench
https://www.freebsd.org/doc/handbook/dtrace.html
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://linux.die.net/man/8/auditd
http://log4c.sourceforge.net/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
http://man7.org/linux/man-pages/man8/rsyslogd.8.html
https://www.splunk.com/en_us/central-log-management.html
https://www.splunk.com/en_us/central-log-management.html
http://www.vmware.com/ca/en/products/vcenter-log-insight
http://www.vmware.com/ca/en/products/vcenter-log-insight
https://github.com/angr/angr-doc/blob/master/docs/speed.md
https://github.com/angr/angr-doc/blob/master/docs/speed.md
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
ttps://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
ttps://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://bloom.bg/2KjElxM
https://bloom.bg/2KjElxM

[40] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for Windows,”
in ACSAC. ACM, 2015.

[41] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in USENIX Security, 2017.

[42] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting,” in NDSS, 2016.

[43] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in SOSP. ACM, 2015.

[44] Z. Meng, Y. Xiong, W. Huang, F. Miao, T. Jung, and J. Huang,
“Divide and conquer: recovering contextual information of behaviors in
android apps around limited-quantity audit logs,” in ICSE: Companion
Proceedings. IEEE Press, 2019.

[45] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “HOLMES: Real-time APT detection through correlation of
suspicious information flows,” in Symposium on Security and Privacy.
IEEE, 2019.

[46] M. Montanari, J. H. Huh, D. Dagit, R. B. Bobba, and R. H. Campbell,
“Evidence of log integrity in policy-based security monitoring,” in DSN.
IEEE, 2012.

[47] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering in
provenance systems,” in ATC, 2009.

[48] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Communications of the ACM, vol. 55, no. 2, 2012.

[49] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry prac-
tices and event logging: Assessment of a critical software development
process,” in ICSE. IEEE, 2015.

[50] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “HERCULE: Attack story reconstruction via
community discovery on correlated log graph,” in ACSAC. ACM,
2016.

[51] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Collecting
high-fidelity whole-system provenance,” in ACSAC, 2012.

[52] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications when
deploying on hadoop clouds,” in ICSE. IEEE Press, 2013.

[53] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,

“SoK: (State of) The Art of War: Offensive techniques in binary
analysis,” in IEEE Symposium on Security and Privacy, 2016.

[54] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale dis-
tributed systems tracing infrastructure,” Google, Inc, Tech. Rep., 2010.

[55] M. Stamatogiannakis, P. Groth, and H. Bos, “Looking inside the black-
box: Capturing data provenance using dynamic instrumentation,” in
IPAW. Springer-Verlag New York, Inc., 2015.

[56] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic reconstruction of android malware behaviors.” in NDSS,
2015.

[57] D. Tariq, M. Ali, and A. Gehani, “Towards automated collection of
application-level data provenance,” in TaPP. USENIX, 2012.

[58] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging
in the internet of things,” in NDSS, 2018.

[59] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP. ACM,
2009.

[60] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved logs,”
ACM SIGOPS Operating Systems Review, vol. 50, no. 2, 2016.

[61] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“SherLog: Error diagnosis by connecting clues from run-time logs,”
in ASPLOS. ACM, 2010.

[62] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving
software diagnosability via log enhancement,” ACM TOCS, vol. 30,
no. 1, 2012.

[63] X. Yuan, O. Setayeshfar, H. Yan, P. Panage, X. Wei, and K. H. Lee,
“Droidforensics: Accurate reconstruction of android attacks via multi-
layer forensic logging,” in AsiaCCS. ACM, 2017.

[64] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-intrusive
performance profiling for entire software stacks based on the flow
reconstruction principle.” in OSDI, 2016.

[65] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A non-intrusive request flow profiler for distributed
systems,” in OSDI, 2014.

[66] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
Log: Helping developers make informed logging decisions,” in ICSE,
2015.

16

	Introduction
	Motivation
	Investigating with Application Event Logs
	Investigating with System Logs
	Our Approach

	Threat Model & Assumptions
	Application Logging Behaviour
	Design Overview
	Definitions
	Design Goals
	OmegaLog

	OmegaLog: Static Binary Analysis Phase
	Identifying Logging Procedures
	Extracting Log Message Strings (LMS)
	Building LMS Regular Expressions
	Generating LMS Control Flow Paths
	Discussion of Static Analysis Limitations

	OmegaLog: Runtime Phase
	OmegaLog: Investigation Phase
	Universal Provenance
	LMS State Matching

	Evaluation
	Static Analysis Performance
	Static Analysis Completeness
	Runtime & Space Overhead
	Correctness of Universal Provenance Graph
	Attack Investigation
	Information Theft Attack
	Phishing Email

	Discussion & Limitations
	Related Work
	Conclusion
	References

