
Workflow Integration Alleviates
Identity and AccessManagement in Serverless Computing

Arnav Sankaran
University

of Illinois at Urbana-Champaign
arnavs3@illinois.edu

Pubali Datta
University

of Illinois at Urbana-Champaign
pdatta2@illinois.edu

Adam Bates
University

of Illinois at Urbana-Champaign
batesa@illinois.edu

ABSTRACT

As serverless computing continues to revolutionize the design and
deployment of web services, it has become an increasingly attractive
target to attackers. These adversaries are developing novel tactics for
circumventing the ephemeral nature of serverless functions, exploit-
ing container reuse optimizations and achieving lateral movement
by “living off the land” provided by legitimate serverless workflows.
Unfortunately, the traditional security controls currently offered by
cloud providers are inadequate to counter these new threats.

In this work, we propose will.iam,1 a workflow-aware access
control model and reference monitor that satisfies the functional
requirements of the serverless computing paradigm. will.iam en-
codes the protection state of a serverless application as a permissions
graph that describes the permissible transitions of its workflows, as-
sociating web requests with a permissions set at the point of ingress
according to a graph-based labeling state. By proactively enforcing
thepermissions requirements of downstreamworkflowcomponents,
will.iam is able to avoid the costs of partially processing unautho-
rized requests and reduce the attack surfaceof the application.We im-
plement thewill.iam framework inGo and evaluate its performance
ascompared to recent relatedworkagainst thewell-establishedNord-
strom “Hello, Retail!” application.We demonstrate that will.iam im-
poses minimal burden to requests, averaging 0.51% overhead across
representative workflows, but dramatically improves performance
when handling unauthorized requests (e.g., DDoS attacks) as com-
pared to past solutions. will.iam thus demonstrates an effective and
practical alternative for authorization in the serverless paradigm.

CCS CONCEPTS

• Security and privacy→Distributed systems security; Infor-
mation flow control;Access control.

KEYWORDS

Serverless Computing; Access Control; Information Flow Control

1will.iam is short forworkflow integration alleviates identity and access management.
IAM is the role-based access control system offered by AmazonWeb Services.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427665

ACMReference Format:

Arnav Sankaran, Pubali Datta, and Adam Bates. 2020. Workflow Integra-
tion Alleviates Identity and Access Management in Serverless Comput-
ing. In Annual Computer Security Applications Conference (ACSAC 2020),
December 7–11, 2020, Austin, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3427228.3427665

1 INTRODUCTION

Projected to exceed $8 billion per year by 2021 [7], serverless com-
puting has experienced rapid growth and is expected to become
the dominant pattern for cloud computing [63]. Also known by
Function-as-a-Service (FaaS), serverless computing abstracts away
the need to manage not only physical hardware but also the need
to manage the life cycle of virtual machines; in serverless, the cus-
tomer is no longer responsible for launching or tearing down virtual
machines, provisioning virtual computer clusters, or management
of software below the application level. This is achieved through the
decomposition of applications into small discrete functions, stateless
microservices that can be orchestrated into high-levelworkflows. As
a result, developers can focus on the core logic of their application,
eliminating the burdens of infrastructure management [73] while
enabling rapid prototyping of services [12].

While serverless is often credited as being intrinsically more se-
cure than prior cloud paradigms [83], in actuality most common
cloud andweb insecurities continue to fester [15]. A large-scale anal-
ysis of open-source serverless projects revealed that upwards of 20%
containedcritical vulnerabilitiesormisconfigurations [1].Numerous
event injection techniques have been demonstrated [2, 6, 10, 71], and
challenges related tocross-tenant side-channels remain in theecosys-
tem [76, 92]. Even though these vulnerabilities were still present,
for a time it was thought that it would be far more difficult to ex-
ploit them due to the stateless and ephemeral nature of serverless
functions. Unfortunately, attackers have proven more than capable
of surmounting these obstacles. For example, they have exploited
the ubiquitously employed “warm container” reuse optimization,
the practice of caching the containers of recently invoked functions
in server memory, to transport toolkits into the application and
establish quasi-persistence [64].

The primary mechanisms made available by cloud providers
for mitigating these threats are role-based access controls (RBAC),
known as Identity and Access Management (IAM) roles in the pop-
ular Amazon Lambda service [38]. Using IAM, cloud customers can
statically assign each function to a role that is associated with a set
of permissions for accessing other functions, datastores, or the open
Internet. Accepting the reality that exploitable vulnerabilities will
continue to exist in the serverless landscape, strict IAM roles can be
configured such that functions are restricted to communicating only

496

https://doi.org/10.1145/3427228.3427665
https://doi.org/10.1145/3427228.3427665

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

with those components necessary to fulfill their task, thus reducing
overprivilege. Unfortunately, there is already ample evidence that
staticRBACalone is insufficient; not only are IAMroles oftenmiscon-
figured [4, 19], but evenwhen correctly defined, attackers are able to
leverage legitimate function transitions tomove laterally through the
application in advancement of their goals [10, 64, 71]. Fundamentally,
this attack is the result of a mismatch of abstractions – application
developers express program logic in the form of inter-functionwork-
flows, yet authorization is performed only within the context of
individual function transitions. As a result, attack opportunities are
not bound by the end-to-end workflows specified by the developer.

In this work, we reconceptualize IAM roles as dynamic, efficient,
and workflow-sensitive. We present will.iam, an access control
framework that, rather than (or in addition to) assigning static per-
missions to functions, performs authentication and role assignment
to web requests at their point of ingress. Carrying this role assign-
ment forward from function to function allows will.iam to bound
attackers to the permissions associated with a legitimate workflow,
dramatically reducing the attack surface of the serverless applica-
tion. will.iam security policies are defined as a directed graph rep-
resentation of the application’s workflows, with the terminal nodes
of the graph encoding permission requirements for traversing the
workflow. As end-to-end determination of permissions for an entire
workflow can frequently be pre-computed at the point of ingress,
we extend will.iam with a proactive authorizationmechanism that
rejects requests that cannot satisfy downstream permission require-
ments. Thus, will.iam provides an intuitive extension to IAM-style
RBAC that satisfies the unique functional requirements of serverless
application security.

In this work, we make the following contributions:

• Workflow-sensitive Access Control. We present the design of a
novel access control model for serverless computing that me-
diates inter-function information flow as requests are processed.
Our approach follows the same design principles as serverless
applications, while simultaneously integrating with the notion of
IAM-style role-based access controls, thus avoiding the need for a
dramatic reconceptualization of security on cloud platforms.

• Thewill.iam framework.We implement our access control model
for the popular OpenFaaS serverless platform.2 As a case study
on the efficacy of our approach, we define and analyze a complete
security policy for the canonical “Hello, Retail!” reference applica-
tion [88]. Our code, policies, and datasets will be made publicly
available upon publication.

• Performance Evaluation.We rigorously evaluate the performance
of will.iam as compared to vanilla OpenFaaS as well as two base-
line access control systems from relatedwork (Trapeze [36], Valve
[47]). We demonstrate that will.iam has much less overhead
compared to Trapeze and Valve, with an average workload over-
head of just 0.51% compared to vanilla OpenFaaS; further, our
performance optimization for proactive authorization of requests
reduces wasted computation by 22% when considering a traffic
profile comprised of 30% unauthorized requests.

2https://www.openfaas.com/

2 BACKGROUND

Commercialized cloud computing began in 2006 with Amazon first
releasingElasticComputeCloud (EC2) [37] andprovided enterprises
access to unlimited backend infrastructure without the burden of
managing it. More recently, serverless computing platforms have
emerged to further abstract away the need to manage the software
stack (virtual machine provisioning, operating system and network-
ing layer patches and upgrades) running below the application layer.
Thus, serverless computing has enabled cloud tenants to focus on
developing the business logic of their applications while the cloud
provider handles load-balancing, auto-scaling of resources and other
management tasks. The tenants are billed according to the resource
usage (CPU, memory and network) when their functions are exe-
cuted.

Serverless application developers implement the business logic as
a set of functions that can be chained together to form task-specific
workflows. These functions often read or write private data stored
in the cloud infrastructure in order to achieve their operational goal
(e.g. serverless data analytics applications [86]). This necessitates
a robust access control mechanism in the serverless platforms to
determine if a function invocation request is properly authenticated
and has the required permissions to access a piece of data. Cloud
platforms offer access control techniques [44, 85] as part of cloud
services (e.g., AWS Identity and Access Management (IAM) [25])
provided by them. Cloud providers generally implement traditional
role-based access control (RBAC) [49] and attribute-based access
control (ABAC) [58] methods in their IAM services [31].3 In server-
less platforms, roles are attached to the functions allowing them to
access other cloud resources (e.g., invoke other functions, access
datastores) according to the access policy and permissions attached
to the role. The roles and permissions should be defined to grant the
least privilege to a function required for its operations.

For a traditional monolithic application deployed on the cloud,
a single IAM authentication per request suffices to verify the entire
application’s adherence to the access policy. However, to enforce the
same level of security in a serverless setting, each component func-
tion of the serverless applicationwill need to perform authentication
and authorization for every request. This quickly becomes infeasible
in a serverless scenario, where a high throughput production-level
application consists of numerous atomic functions each of them re-
quiring various permissions to performspecific data operations. This
leads to increased complexity of IAM policies, additional network
latency for authentication, and high billing cost [33] for the cloud
tenants. The resulting complex policies are often festered with mis-
configurations [4, 19] and create greater opportunity for attackers.
Moreover, attackers can even leverage legitimate function transi-
tions tomove laterally through the application [10, 64, 71] since each
function activation is authorized in isolation, without considering
the historic context (i.e. the series of function activations and per-
missions acquired in the workflow starting at the point of entry) of
the current request. Currently, the static function-level IAM policies
in serverless platforms do not offer an ideal security-performance
trade-off for the tenants.

3For the remainder of this paper, we will use IAM as a generic term to describe
role-based access controls assigned to functions in serverless clouds.

497

https://www.openfaas.com/

Workflow Integration Alleviates Identity and Access Management in Serverless Computing ACSAC 2020, December 7–11, 2020, Austin, USA

f1

Register
Photographer

f3

Assign
Photographer

D1

Photographer
Registry

D2

Photo
Storage

f5

Message
Photographer

f4
Record

Assignment

f6
Receive
Photo f8

Update
Status

f7
Photo

Success

f2
Create Product

in Catalog

f10
Browse Product

Catalog

D4 Credit Card
Registry

D3

Product
Catalog

f9
Purchase
Product

f11
Get Price

f12
Authorize

Credit Card

f13
Publish

Purchase Status

Function
invocation

trigger
Possible

attack path

Data store
read

Cloud data
store

Serverless
function

instances

D

Data store
write

f

f
Application

ingress point

Figure 1: A reference architecture of serverless applicationHello, Retail!.

Workflow Description
f1(WD1) Registration of a

photographer in photographer registry
f2(WD3)→ f3(RD1)→ f4(WD1)→ f5 Creation of a product in

the catalog and assign a photographer
to submit a photo of the product

f6(WD2)→ f7→ f8(WD1) Receive photo from photographer
and update assignment status

f9→ f10(RD2 ;RD3)→
f11(RD3)→ f12(RD4)→ f13

Purchasing
a product listed in the catalog

f10(RD2 ;RD3) Catalog browsing

Table 1: Summary of primary Hello, Retail! workflows, as

presented in Figure 1.

3 MOTIVATION

In this section we describe the limitations of existing IAM policies
in the context of serverless computing with an example application,
Hello, Retail! [88], an open-source event-driven retail application
from Nordstrom Technology. A simplified conceptual architectural
diagram ofHello, Retail! is shown in Figure 1.

The application consists of two types of resources: serverless
functions and datastores. The functions can be triggered by explicit
HTTP requests to an API gateway, other functions, or data store
events (e.g., creation of a new object in a datastore). The functions
which expose public REST endpoints through the API gateway are
designated Application Ingress Points and can be invoked through
HTTP requests originating from the open Internet. The other func-
tions should only be invoked from another function or a data store
event. For example, f1, f2, f6, f9 and f10 are the application ingress
points in this scenario. The internal function f3 can only be executed
with necessary permissions, which are associated with the IAM role
assigned to f2, and thus cannot be invoked directly through HTTP.
Function f7 is invoked by new object creation in datastoreD2 and
is the only function in Figure 1 that has a datastore event trigger.
The functions communicate with datastoresD1,D2,D3 andD4 with
appropriate permissions in order to complete their tasks.

The ingress points mark the beginning of different workflows in
the application. The five primary workflows are described in Table

1. The→ denotes a function invocation. Required datastore commu-
nications are encoded in the parenthesis next to the function, e.g.,
f1(WD1) denotes function f1 writes to datastore D1, whereas RD1
would denote a read from the datastore.

Limitations in existing serverless access control techniques. Server-
less cloud platforms offer access control policy enforcement at the
granularity of functions to ensure proper security of the application.
Each function needs to be configured with the least privilege IAM
roles and policies. For example, function f3 only requires read access
to the photographer registryD1 and function f4 should only be able
to add new assignments toD4, but is barred from accessing existing
records.While these are the obvious permissions to be granted, there
are several implicit permissions (e.g., access to the function source
files stored in a cloud [26]) that if misconfigured can allow attackers
access to the function code [19, 64]. The complex policy evaluation
logic (e.g., [29]) employed by the cloud providers at every function
to authorize a request makes the task of defining IAM policies even
more unintuitive and cumbersome. Even with correctly configured
IAM policies in place, attackers can still leverage leaked cloud access
keys [27, 30, 74] for nefarious purposes, such as a cloud data store
breach [28].

Returning to the example in Figure 1, consider a common sce-
nario [19, 64] in which the IAM role for f3 has been misconfigured,
granting it the ability to invoke any function in the application. The
attacker invokes f2, passing in malcrafted data that exploits a vul-
nerability in f3. After gaining control of f3, they relay commands
to invoke f12, passing a bad argument that causes the entirety of
D4 to be returned to the function and subsequently transmitted to
site visitors by f13. Since traditional IAM authorizes each function
in isolation, it is not clear to the platform that an information flow
has been violated as f13 executes, in spite of the fact that the at-
tacker reaches the credit card registry from a completely disjointed
application workflow. This is what has motivated us to create our
system, will.iam, which associates requests with workflow-level
permissions to reduce serverless applications’ attack surface.

498

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

4 THREATMODEL&ASSUMPTIONS

In thiswork,we consider an attackerwhoseprimarygoal is to exploit
some security vulnerability in a serverless function ormisconfigured
IAM roles to use the function for malicious motives. The abundance
of accidental access key leakage [27, 28, 74] makes it easier for such
attackers to leverage leaked or stolen keys to launder sensitive data
stored in cloud data stores. We assume that the cloud provider em-
ploys an IAM service to define cloud resource access policies to
prevent data breaches. The cloud provider is trusted and will not
mishandle or tamper with the security policies defined by the ten-
ants. We also assume the presence of an API gateway in the cloud
platform to handle external requests originating from the public
internet and a trusted authentication service which properly autho-
rizes ingress requests. Components like IAM and API gateway are
part of the standard cloud design paradigmconfirming the validity of
the assumptions.We further make the assumption that all serverless
functions are invoked through the use of REST API calls or other
forms of Remote Procedure Calls (event triggers, asynchronous call-
backs). This assumption is valid because web and API serving are
the most popular use cases in the serverless paradigm [62].

5 POLICYDESIGN

In this section, we present the design of the access control model
and policy representation. In Section 6, we present additional details
of the will.iam architecture, including how it is integrated into the
cloud platform.

In will.iam, access control roles are assigned to workflows, not
individual functions. In practice, this means that a web request is as-
signedaroleat itspointof ingressand isbound to the role’s associated
permissions throughout its lifecycle in the serverless application.
The security policy is comprised of two components, a Labeling
State and a Protection State. An example policy is given in Figure 2.
The Labeling State specifies the permissions associated with a given
role, while the Protection State specifies the required permissions
to complete a logical routine within the application. Critically, the
Protection State does not describe function-by-function permission
requirements, but instead the end-to-end permission requirements
of the workflow. As we will later show, this allows authorization
to be performed proactively at the earlier stages of a workflow to
reduce the unnecessary use of compute resources.

5.1 Labeling State

We represent the Labeling State as a directed acyclic graph of the
formG=<V ,E>. Eachv ∈V is of the formv=< label ,type >, where
label is an arbitrary string and type ∈ {“token”, “role”, “data”}. Token
vertices correspond to authentication tokens, roles vertices to RBAC
roles, and data vertices to explicit data permissions in the application.
Thepermissible edges inE are constrainedbyvertex types: {token→
role, role→role, role→data}. Each token is associatedwith atmost
one role, each role is associated with zero to many data permissions,
and for space efficiency roles can be hierarchical such that parent
roles encompass all permissions of their children.

The design of our security policy is intentionally vague on the
authentication method that should be employed. This is because au-
thentication is ultimately anorthogonal problem that is best resolved
by the application developers. For example, the developersmaywish

to use a password gateway or an OAuth-based approach for role as-
signment. In our proof-of-concept implementation of will.iam, we
makeuseofa token-basedauthenticationschemewhereclients trans-
mit their token in the "Authorization" HTTP header. The will.iam
framework then hands the token off to an authentication service to
determine the role to be associated with the request. The problem of
web service authentication is well researched (e.g., [43]) so we will
not explore it in greater detail in the remainder of this paper.

5.2 Protection State

The Protection State is also represented as a directed acyclic graph
of the formG=<V ,E>. Eachv ∈V is of the formv=< label ,type >,
where label is an arbitrary string and type ∈ {“ingress”, “function”,
“data”}. Each edge e ∈ E is of the form <vsrc ,vdst ,type >. Ingress
vertices correspond to ingress points of the serverless applications,
functions correspond to individual computation components of the
application,anddataverticescorrespondtorequiredexplicitdataper-
missions. The permissible edges inE are constrained by vertex types:
{inдress → f unction, f unction → f unction, f unction → data}.
Each ingress vertex is linked to at most one function, each func-
tion can link from zero to many intermediate functions, and each
last-level function is linked with zero to many data permissions.

The protection state graph can be used to perform authorization
as follows. A functionvf1 may only invoke the API of a functionvf2
if there exists an edgevf1 →vf2 ; this is comparable to a traditional
IAM role on Amazon Lambda, where only “single hop” transitions
can be specified. Each path from an ingress vertex to a last-level
function vertex encodes a programmed workflow in the application.
The end-to-end workflow is authorized if the request is associated
with a role that carries all of the required permissions encoded by
the children of the last-level function. Thus, in this policy it is pos-
sible to proactively deny a request at the point of ingress if it lacks
a necessary permission, even if that permission is not required until
deep into the function workflow.

Despite their simplicity, functions often complex internal work-
flows, to thepoint that some functionsmayonly conditionally invoke
downstream functions depending on the context of the request. As
a result, it may be that the permission set of a workflow is undecid-
able at the point of ingress. Allowing the request to proceed only
if it contained all possibly necessary permissions would be overly
restrictive; instead, to account for this we introduce a type attribute
to each edge in the Protection State where e .type ∈ {“Mandatory”,
“Conditional”}. If a conditional edge exists in aworkflow,weperform
conditional authorization on the request at the point of ingress in
which only the data permissions required by mandatory paths are
checked. At each intermediary function in the workflow, we then
check to see if any conditional requirements have been resolved,
potentially re-authorizing the request if they have. The request is
only fully authorized to continue once all conditional requirements
have been resolved.

5.3 Example PolicyWalkthrough

Figure 2 depicts an example security policy for a simple and imag-
inary human resources application. The application contains five
functions (onboard-employee, add-employee, add-to-payroll,

499

Workflow Integration Alleviates Identity and Access Management in Serverless Computing ACSAC 2020, December 7–11, 2020, Austin, USA

Authentication Token 1
role:employee

Authentication Token 2 role:admin

Authentication Token 3
role:hr

data:employee-read

data:payroll-write

data:payroll-read

data:employee-write

(a) Labeling State Graph

Ingress Point 1 func:onboard-employee

Ingress Point 2 func:get-employee

Ingress Point 3
func:view-employee-directory

func:add-employee

func:add-to-payroll

data:employee-write

data:payroll-write

data:payroll-read

data:employee-read

(b) Protection State Graph

Figure 2: Examplewill.iam Security Policy. In Figure 2a, trapezoids are authentication tokens, octagons are the roles associated

with those tokens, and diamonds are the permissions associated with those roles. Traversing the graph from a token to

its terminal children specifies the token’s permission set. In Figure 2b, rectangles are application ingress points, ovals are

functions, and diamonds are permissions. Each path between an ingress point and a terminal child represents an application

workflow, with the terminal children of the last function specifying the required permissions of the entire workflow.

get-employee, and view-employee-directory) and two datas-
tores (employee and payroll), each with read and write permis-
sions. Requests can be assigned to one of three roles (employee, hr,
or admin). The employee role only possesses permission to read the
employee datastore, while the admin role is permitted towrite to the
employee datastore and to read and write to payroll. The admin
role possesses all permissions, which is expressed in Figure 2a by
positioning admin as the parent of both the employee and hr roles.

Consider the workflow associated with Ingress Point 3. If a re-
quest is issued that authenticates and is assigned the admin role, it
is possible to make an authorization decision for the entire work-
flow at the point of ingress. This is because the admin role pos-
sesses the payroll-read and employee-read permissions. On the
other hand, if the request is assigned the employee role, it is pos-
sible to proactively deny this request at the point of ingress. This
role technically has the necessary permissions to execute view-
employee-directory, but not the permissions required to execute
get-employee. Allowing the request to execute a portion of the
workflow both wastes computation and expands the attack surface
of the application, and should thus be avoided.

Let us now consider the workflow associated with Ingress Point 1.
Thisworkflowrelates to anemployee-onboarding routineperformed
by theHuman Resources department. The onboard-employee func-
tion calls the add-employee function to register the new employee,
as well as the get-employee function to return the new record for
confirmation. If the employee has already completed and uploaded
their direct deposit paperwork, the employee is added to the pay-
roll system as well, but if not they are permitted to do so at a later
date. As a result, the onboard-employee function contains a condi-
tional dependency to add-to-payroll, which impacts the permis-
sion set of the entire workflow. Therefore, at the ingress point we
can only conditionally authorize the workflow, comparing the role’s
permission set to the mandatory permissions employee-write and

payroll-read. If add-to-payroll is invoked, the mandatory per-
mission set changes to include payroll-write, which must then be
verified.4

6 WILL.IAMARCHITECTURE

In this section, we present the design of the will.iam architecture,
which manages and enforces the security policies described above.

6.1 Overview

A diagram of will.iam is presented in Figure 3. will.iam is com-
prised of three main components: the API gateway, the policy eval-
uation service and the request handler. The API gateway is built
into the FaaS platforms to provide an external route to the deployed
functions. In will.iam, the API gateway is augmented to forward
externally generated requests to the policy evaluation service and
to forward internally generated invocation requests to the proper
function instances. The policy evaluation service is the enforcement
point of the access control policies defined for various serverless
workflows deployed on the cloud. There is a request handler running
in each function-instance (i.e. container) that transparently adjusts
will.iam-specific headers in the invocation request before passing
it to the function, thus making will.iam function-agnostic. These
three components collaborate to enforce access control in serverless
cloud platforms as described in Figure 3.

When an external function execution request arrives at the API
gateway (1) in a FaaS platformwithwill.iam enabled, the request is
forwarded to an authentication server (2) to assign the designated
role to the request as per the authorization header information in
the request (3). Next, the request is passed to the policy evaluation
service (4) to verify whether the assigned role possesses necessary
data permissions to successfully execute the workflow activated by
this request. The policy evaluation service fetches the protection
state associated with the request and the labeling state associated

4Note that, in our simplified example, only the hr role can execute this workflow
regardless of whether the conditional branch is taken.

500

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

FaaS platform layer

Policy Evaluation Service

Request + Role R

5
Labeling

state
database

Fetch data
permissions

Fetch protection
state

Is foo ingress point?

Deny request

Protection
state

database

Permissions P
granted to R

Ingress point foo Traverse PS

Is M in P?

Allow request

Compute mandatory
permissions M

Compute conditional
function invocations F

For each func in F,
compute permissions C
in subtree rooted at func

bar C1
func2 C2
func3
func4

C3
C4

API gateway
Application

User

Incoming
request to foo

Container

Function fooRequest Handler

Authentication
request

Authentication server

Assigned
user role R

1

2 3

Role R

Graph PS rooted at foo

Conditional
permission look-up

table T

External request
handler

Internal request
handler

Start

4

N

Y

YN6

7

8

Forward
proxy

Conditional policy evaluation routine

WRITE

9

10

11
foo output
and call bar

12call bar

Start

Is bar in PS ?

Ybar
invocation

request

Deny request

Allow request

Is bar in table T ?

Is C1 in P ?READ

N

N

Y

Y

N

Container

Function barRequest Handler

13

14

15

16

Mandatory policy evaluation routine Conditional policy evaluation routine

End

End

Figure 3: An overview of the will.iam architecture and its authorization workflow.

with the role and invokes themandatory policy evaluation routine
(5 - 8). This routine accepts the request if it has the data permissions
for executing absolute function invocations in its trajectory through
the workflow and forwards the request to the appropriate function
container (9 - 10).Otherwise the request is denied right at the ingress
point even before any function executes. For each of the subsequent
function invocations in the workflow, the policy evaluation service
fires the conditional policy evaluation routine (11 - 13). If the function
invocation is absolute, then no further processing is necessary and
the request is forwarded to the function container, whereas for a
conditional invocation data permissions required for that particular
invocation are verified before forwarding (14 - 16).

6.2 API Gateway

In FaaS platforms, the API Gateway handles all incoming requests
from the public internet. will.iam extends the API gateway to intro-
duce a centralizedworkflow-aware access control enforcement point
in the lifecycle of an incoming request. Upon receiving an external
request, the will.iam API gateway uses an authentication service to
exchange the request’s authorization token for an IAM role which
can be passed alongwith the request to the policy evaluation service.
The API gateway is also responsible for forwarding pre-approved
internal requests to their destination function containers. Requests
rejected by will.iam generate an unauthorized error, and the API

gateway propagates the error to the userwith necessary information
for debugging purposes following the standard design practice of
FaaS. The API gateway introduces no additional overhead in exe-
cuting its tasks and transmits all access control information in-band
with the requests that flow between the cloud components, thus
avoiding TCP and HTTP overheads.

6.3 Policy Evaluation Service

The policy evaluation service is the centralized access control en-
forcementpoint inwill.iam.This component is designedasaplug-in
with defined interfaces to interact with existing serverless platforms.
In will.iam, the API gateway forwards all externally originated
requests to the policy evaluation service that proactively denies
requests with insufficient permissions from executing the entire
workflow associated with the ingress request. It also enforces ac-
cess control for conditional policy violations in internal function
requests. The policy evaluation service employs the following meth-
ods to achieve its goal.

6.3.1 Mandatory Policy Evaluation. The mandatory policy evalua-
tion routine takes care of denying ingress requests with insufficient
permissions. It reads the Protection State graph to obtain the set of
permissionsM required to execute the workflow, and the Labeling
State graph associatedwith the corresponding IAMrole to obtain the
set of permissionsP granted to the request. IfM⊈P , then the request

501

Workflow Integration Alleviates Identity and Access Management in Serverless Computing ACSAC 2020, December 7–11, 2020, Austin, USA

is immediately rejected because eventually the workflowwill lack
necessary permissions to execute some downstream function. To ac-
count for the conditional function invocations in the protection state
graph, this routine computes the conditional permission look-up
tableT which stores data permissions that will be required by these
invocations for later processing, but does not immediately verify the
presence of the conditional permissions. The accepted requests are
forwarded to the designated function instances.

6.3.2 Conditional Policy Evaluation. All internal function requests
are directed to the conditional policy evaluation routine. It trivially
accepts all absolute function requests, as access permissions for
them had already been verified in the mandatory policy evaluation.
However, for functions present in tableT , this routine determines
whether the workflow should continue to execute or not. It checks
if the required permissionsC by the target function f are satisfied
in P . Requests with unsatisfied permissions are aborted, whereas
accepted requests are forwarded to the gateway for routing to the
correct function instance.

6.4 Request Handler

In serverless platforms, a tiny webserver (i.e., a request handler)
runs inside the function container that accepts function invocation
requests. This request handler parses the incoming request object
and starts execution of the function. will.iam extends the design of
this request handler to remove the in-band headers used bywill.iam
before handing the request off to the function routine. This allows
will.iam to be completely transparent to the function implementa-
tion and easily deployable to existingplatformswithout any function
modification. Additionally, the request handler runs a reverse proxy
for communicating with other functions in the workflow. This re-
verse proxy will readjust the in-band will.iam-specific headers in
the outgoing request and then redirect it to the policy evaluation
service to verify conditional violations.

7 IMPLEMENTATION

We implemented will.iam into the OpenFaaS serverless framework.
OpenFaaS can be deployed on multiple container orchestration plat-
forms, however in this paper we deploy OpenFaaS over Kubernetes.
We primarily modified two components of OpenFaaS, the "gateway"
and "of-watchdog", representing an addition of approximately 400
lines of Go code.

Gateway. The gateway is exposed to the public internet and ac-
cepts incoming requests to functions. We modify the gateway by
adding an extra HTTPmiddleware which modifies the body of the
incoming request as it exits the gateway. This modification handles
exchanging the token specified in the "Authorization" header of the
incoming HTTP request for a policy. The gateway then uses the
policy name and policy graph to build a list of data permissions
granted to the request. The gateway also uses the target function
name, which is specified in the URI path, and the Protection State
graph in order to build the list of data permissions that are absolutely
and conditionally required. If there is an element in the set of ab-
solute permissions that is not in the request’s permission set, the
gateway rejects the incoming request with an unauthorized error. If
there are conditional violations, the gateway encodes the allowed
data permissions for the request into a serialized in-band header

{
" f u n c t i o n s " : {

" product−c a t a l o g −ap i " : {
" p e rm i s s i on s " : [

{
" dataType " : " p roduc tCa t ego ry " ,
" o p e r a t i o n " : " r ead "

}
. . . a d d i t i o n a l p e rm i s s i on s omi t t ed f o r space . . .

] ,
" a b s o l u t eDependenc i e s " : [] ,
" c ond i t i o n a lDep end en c i e s " : []

} ,
. . . a d d i t i o n a l f u n c t i o n s omi t t ed f o r space . . .

} ,
" p o l i c i e s " : {

" cus tomer " : {
" d ependenc i e s " : [

" p u b l i c "
] ,
" p e rm i s s i on s " : [

{
" dataType " : " c red i tCardsName " ,
" o p e r a t i o n " : " r ead "

}
]

} ,
. . . a d d i t i o n a l p o l i c i e s omi t t ed f o r space . . .

}
}

Figure 4: Snippet from an example JSON configuration file

used for definingwill.iam security policies.

and transmits them to the target function. The target function runs
behind a modified version of the of-watchdog component described
below.

The gateway also handles routing of calls between functions in
the Protection State graph. For these intra-function requests, the
in-band header is already encoded into and the gateway checks for
conditional violations before forwarding the request. If a conditional
violation becomes absolute, the gateway rejects the request and the
unauthorized error is sent upstream to the user.

Of-Watchdog. The of-watchdog server is only reachable from
within the OpenFaaS cluster. It handles both receiving incoming
requests from the gateway and passing them onto the function. The
OpenFaaS framework allows functions to receive requests from the
of-watchdog server over standard input or over HTTP.We do not
modify this functionality and our changes are transparent to the
function.

We add extra HTTPmiddleware that removes the in-band header
containing the encoded access control logic from the gateway.We
also modify the watchdog to launch a reverse proxy server that is
bound to a port within the cloud function’s container. When the
HTTPmiddleware removes the in-band header from the request it
stores it in a map so that it can be looked up for the specific request.
The reverse proxy uses this map to retrieve that in-band header
associated with a request and add it back to the request before it is
sent to the gateway as an intra-function request.

Configuration.We require the access control policy writer to pro-
vide a JSON configuration file which provides the required infor-
mation about each function and policy in the access control model.
Figure 4 provides an example configuration file.

502

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

 0

 50

 100

 150

 200

 250

 300

 350

product-photos

product-purchase-publish

product-purchase-get-price

product-purchase-authorize-cc

product-purchase-authenticate

product-photos-success

product-photos-report

product-photos-record

product-photos-receive

product-photos-m
essage

product-photos-assign

product-catalog-builder

product-catalog-api

product-purchase

S
iz
e

(M
B
)

OpenFaaS
WILL.IAM
Trapeze
Valve

Figure 5: Container image build sizes forHello, Retail!.

8 EVALUATION

We evaluate our access control system using Hello, Retail! [88], a
serverless application developed by Nordstrom Technology as a
proof-of-concept approach to an event driven computing model in
the retail industry. As one of the most mature open-source applica-
tions,Hello, Retail! has been used in many past studies of serverless
computing [80], including access control research [36, 47, 59].

We compare the performance of will.iam against two state-of-
the-art serverless information flow control systems, Trapeze 5 [36]
and Valve 6 [47], both of which have been open-sourced by their
respective authors. Trapeze is a language-based approach that traces
information flow at the language level, while Valve is a system-based
approach that, like will.iam, mediates events at the function level.
To compare against these systems,we use themodified version of the
application from Alpernas et al. [36], which replaces AWS-specific
components with open-source components that can be deployed
on top of Kubernetes and OpenFaaS. This is the same modified ver-
sion used in prior work to evaluate these systems providing us with
an apples-to-apples baseline upon which to compare performance.
We also write a complete will.iam security policy forHello, Retail!,
which is provided and discussed in Appendix A.

All experiments were performed on a server-class machine with
an Intel(R) Xeon(R) CPU E5-2683v4 running at 2.10GHz and 135 GB
of RAM. The containerization and orchestration software used was
Docker 19.03.11 and Kubernetes 1.18.3. For the purposes of testing,
the Kubernetes cluster was configured as a single node cluster with
both control plane and user deployed pods being run on the single
master node. All Docker images required for all of the following
tests were pre-pulled in order to minimize the effects of external
networking variations.

8.1 Build Time Performance

The build time and build size overheads, averaged across 30 invo-
cations of each function, are given in Figure 5 and Figure 6. These
figures indicate that will.iam imposes very little overhead at build
time when compared to Vanilla OpenFaaS. Additionally it substan-
tially outperforms both Trapeze andValve. For build size, the slightly

5https://github.com/kalevalp/trapeze
6https://github.com/Ethos-lab/Valve

 0

 50

 100

 150

 200

product-photos

product-purchase-publish

product-purchase-get-price

product-purchase-authorize-cc

product-purchase-authenticate

product-photos-success

product-photos-report

product-photos-record

product-photos-receive

product-photos-m
essage

product-photos-assign

product-catalog-builder

product-catalog-api

product-purchase

T
im
e

(S
)

OpenFaaS
WILL.IAM
Trapeze
Valve

Figure 6: Container image build times forHello, Retail!.

 0

 1

 2

 3

 4

 5

 6

product-photos

product-purchase-publish

product-purchase-get-price

product-purchase-authorize-cc

product-purchase-authenticate

product-photos-success

product-photos-report

product-photos-record

product-photos-receive

product-photos-m
essage

product-photos-assign

product-catalog-builder

product-catalog-api

product-purchase

T
im
e

(S
)

OpenFaaS
WILL.IAM
Trapeze
Valve

Figure 7: Container deployment times forHello, Retail!,

increased container size over Vanilla is due to the additional Go
code that is compiled into the of-watchdog binary for every func-
tion container. However, this addition pales in comparison to the
increased build size of Trapeze and Valve, where many additional
files are copied into the container image. Trapeze needs to copy in
Javascript files that help with securing its key-value store, while
Valve needs to copy in its HTTPS proxy binary. When comparing
build times, there was no meaningful difference between will.iam
and Vanilla OpenFaaS. The slight differences observed here were
due to variances in retrieving npm packages over the Internet during
the build process. In contrast, Trapeze and Valve both took signifi-
cantly longer to build due to the introduction of extensive additional
dependencies to the container. Although these costs are one-time
and can be largely ignored by the customer, they compound when
considering millions of customers if these approaches were to be
adopted at the platform layer, suggesting a significant advantage for
the adoptability of will.iam.

8.2 Orchestration Performance

Orchestration refers to platformmanagement tasks, specifically the
deployment and teardown of containers as functions are requested
to be invoked. We report overheads for deployment and teardown,
averaged across 30 invocations of each function, in Figures 7 and 8,

503

https://github.com/kalevalp/trapeze
https://github.com/Ethos-lab/Valve

Workflow Integration Alleviates Identity and Access Management in Serverless Computing ACSAC 2020, December 7–11, 2020, Austin, USA

 0

 1

 2

 3

 4

 5

 6

 7

 8

product-photos

product-purchase-publish

product-purchase-get-price

product-purchase-authorize-cc

product-purchase-authenticate

product-photos-success

product-photos-report

product-photos-record

product-photos-receive

product-photos-m
essage

product-photos-assign

product-catalog-builder

product-catalog-api

product-purchase

T
im
e

(S
)

OpenFaaS
WILL.IAM
Trapeze
Valve

Figure 8: Container teardown times forHello, Retail!.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

product-catalog-builder

product-catalog-api

product-purchase

T
im
e

(S
)

OpenFaaS
WILL.IAM
Trapeze

Figure 9: End-to-end workflow latency for web requests.

respectively, we did not observe any meaningful pattern of differ-
ences between anyof the benchmarked systems. These resultsmatch
up with our expectations, since the overhead associated with these
operations is dominated by the performance of the orchestration
system rather than the specific containers being handled. In spite
of our results being averaged across many trials, no differences are
observable that are not better explained by noise due to orchestra-
tion scheduling decisions made by kube-scheduler and kubelet.
However, this is sufficient to demonstrate that will.iam does not
impose undue burden on orchestration routines.

8.3 RuntimeWorkflow Performance

Aswill.iammediates activityat theworkflowlevel,wenowcompare
performance of will.iam to Vanilla OpenFaaS and Trapeze using 3
end-to-endHello, Retail!workflows.Wewere unable to includeValve
in these experiments because the authors did not make available
theirHello, Retail! policy along with their source code. Wemeasure
the end-to-end latency of a request for 3 representativeworkflows in
the reference application: Catalog Builder, Catalog API, and Product
Purchase. These correspond to the ingress points f2, f10, and f9 in
Figure 1. They also represent 3 different kinds of workflows: Catalog
Builder makes additional function calls and performs a database
write operation, Catalog API makes no additional function calls but

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im
e

(m
s
)

Bad requests (proportion)

OpenFaaS
WILL.IAM
Trapeze

Figure 10: Concurrent request latency for variable propor-

tions of bad (unauthorized) traffic.

performs a database read operation, and Product Purchase makes
additional function calls and performs a database read operation. For
each system, all requests made in this experiment had all required
permissions to be fully processed.

Results, shown in Figure 9, are averaged over 1000 repetitions of
each workflow. Across all three workflows, we observe almost neg-
ligible overheads imposed by will.iam, averaging 0.51% and in thr
worst case5.2%.Thisoverhead isdue to the searches required todeter-
mine if therequesthas therequiredpermissionsandtheencodingand
decoding of the in-band header. In contrast, Trapeze imposes signifi-
cant overheads on 2 of the 3 flows, specifically in conditions inwhich
many datastore read operations occur. This is because the language-
based Trapeze system transformation to programs incurs latency on
datastore reads for each entry accessed in its key-value store.

Proactive Authorization. The above experiments assumed that all
operations in theworkflowwere authorized, which does not capture
the performance benefits of will.iam’s proactive authorization. To
demonstrate the potential performance savings of this mechanism,
we measured the latency of 100 concurrent requests with increas-
ing proportions of unauthorized (“bad”) traffic being issued to the
ingress point. For this experiment, we make use of the Product Pur-
chase workflow. Each bad request is correctly formatted, but lacks
the required permissions to execute downstream functions after
the ingress point, potentially resulting in wasted computation. If
will.iam’s proactive authorization mechanism is effective, we ex-
pect to see decreased latencies for will.iam as compared to other
systems.

Results are shown in Figure 10, We observe that will.iam greatly
outperforms all of the other systems as the proportion of bad re-
quests increase. This is due to the ability ofwill.iam to preemptively
reject requests with absolute violations at the gateway rather than
allowing the request to be partially processed before being rejected.
The Vanilla system does not have this ability and as a result it’s
average latency decreases with a much smaller slope. Even through
Trapeze does allow for early rejection of requests with incorrect per-
missions, the overhead of the SQL operations is very high, leading
to slow performance even in situations where a large proportion of
the requests can be rejected early.When considering that Cloudflare
estimates the percentage of Internet bot traffic to be 40% [46], much

504

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

of which emanates frommalicious bots, this suggests potential for
significant savings through use of will.iam.While the workloads
used in this experiment were synthetic, we discuss how this result
may inform the use of will.iam as a DDoS defense in Section 9.

9 DISCUSSION

Portability.The access controlmechanismproposed in this paper and
the implementation of the framework inOpenFaaS provides away to
enforce access control with low overhead in a serverless computing
environment. Building the framework into OpenFaaS allows for this
access control system to be deployed on top of Kubernetes and thus
on every major cloud provider’s infrastructure. Additionally this
framework can easily be deployed on an in-house Kubernetes or
Docker Swarm cluster. This portability is due to the fact that we
do not depend directly on any functionality which is specific to a
cloud providers serverless implementation. The entire framework
runs inside of containers and utilizes common technologies for it’s
required functionality. For example, request and responses between
services are serialized to and from JSON and performed over HTTP
and routing between functions and the gateway leverages DNS.

Denial of Service Attacks.will.iam’s ability to determine if a re-
quest will fail ahead of time and reject it at the gateway has the
potential to mitigate targeted denial of service attacks. This is be-
cause the wasted computation we identified above can be seen as a
traffic amplifier; permitting these requests to travel partially through
a complex workflow greatly increases the cost of the attack for the
application owner. For example, inHello, Retail! the function "pur-
chase" depends on "get-price", "authorize-cc", and "publish" in that
order. The first function in that orderingwhich requires a non-public
data permission is "authorize-cc", therefore it is possible for a request
without the proper permissions to invoke multiple functions before
failing. However, when will.iam is used, the upcoming permissions
failurewouldbedetected immediately andcomputational costwould
be incurred only at the gateway. From the DDoS attack on GitHub
[54] in 2018, we can see that bad requests accounted for upwards of
90%of incoming traffic. From the evaluation section abovewecan see
that will.iam access control model greatly outperforms the Vanilla
model when proportion of bad requests is at 90%. Using Amazon
Lambda’s pricing model we determined the cost-saving of will.iam
under a DoS attack to be 64% less than that of the standard serverless
platform.Whilewe do not argue thatwill.iam is a complete solution
for DoS defense, it does prevent an application’s own permissioned
workflows from being weaponized against it.

10 RELATEDWORK

Attacks on serverless platforms. Remote code execution, poor re-
source isolation and covert channels (i.e. VM, container and func-
tion co-location vulnerabilities) [52, 53], reconnaissance attacks
and canonical cloud vulnerabilities [15] are rampant in serverless
platforms [76, 92]. Researchers have demonstrated event injection
attacks [2, 6, 10] and data exfiltration [64, 71] in serverless. Access
control misconfigurations are shown to enable attackers to steal
sensitive informative [4, 19] or launch denial-of-service (or denial-
of-wallet [13, 14]) attacks by exhausting allocated resource limits
and expanding usage bill. Common vulnerabilities and bugs in SDKs,
third-party libraries and platform code [5, 9, 18, 20] plague serverless

functions. Existing security solutions [3, 8, 11, 16, 17, 21–24] each
solve some part of these problems. will.iam adds to the growing set
of defenses against described attacks.

Serverless SecurityResearch. Alpernaset al. proposedTrapeze [36],
a language-based approach to dynamic information flow control.
Trapeze wraps each serverless function in a security shim that inter-
cepts data accesses from shared data stores, external communication
channels (i.e. Internet), and messages exchanged with other func-
tions. Trapeze’s implementation depends on the programming lan-
guage of the function and usage of predefined key-value store func-
tions from the Trapeze library. Trapeze’s secure key-value store suf-
fers high overhead induced by expensive SQL operations. Moreover,
Trapeze completely forgoes serverless warm-start performance op-
timizations and worsens the overhead. The fork-optimized Trapeze
does not work for some API calls and requires effort at the external
API implementation level to enable the cloud function toworkwithin
Trapeze. In contrast,will.iam takes a transparent approach to access
control and is agnostic to function and platform implementation.
will.iam proactively evaluates access control policies at the ingress
point of a serverless application andmakes a decision on acceptance
or rejection of the request even before any function executes leading
to negligible overhead. Another flow-based framework, Valve [47],
assists workflow developers in policy specification and employs a
transparent coarser-grained (i.e. function-level) information flow
control model that restricts unwanted function behavior through
network proxying and taint propagation. We believe that Valve is
complementary to will.iam and will allow developers to better un-
derstand the data flows in their applications to write proper policy
configuration for will.iam. [61] optimizes authentication queries
via caching in order to reduce the overhead of authenticating every
function request. Instead, will.iam leverages the idea of encoding
absolute and conditional information flows within an application
into a graph. This allows will.iam to detect and disallow access
policy violations at the point of ingress.

Baldini et. al. examined several popular platforms and concluded
the lack of proper function isolation is amajor problem [41].Wang et.
al. have measured several metrics like scalability, cold-start latency,
instance lifetime in Google Cloud functions, Microsoft Azure Func-
tions and AWS lambda [92]. They found placement vulnerabilities
and arbitrary code execution bugs in Azure Functions that make the
platform vulnerable to side-channel attacks. Robust access control
can alleviate the damaging effect of such attacks as shown in this
paper. Utilizing Intel’s SGX to build secure containers [40] and cloud
functions [35, 45] to provide better isolation, formal modeling of
serverless platforms [51, 61], and semi-automated troubleshooting
based on log data [75] are some related topics in serverless security
research.

Access Control Models. Cloud platforms typically use federated
identity management [65, 89] for access control which is insuffi-
cient to define expressive policies required in serverless application
workflows. Graph based access control models [68, 81, 91] have used
graphs to express hierarchical nature of user roles. Graph based
frameworks have also been used to augment role based access con-
trol (RBAC) [69, 70] and relation based access control (ReBAC) [60]
systems and have application in operating systems. will.iam lever-
ages the well-researched concepts of graph based access control to

505

Workflow Integration Alleviates Identity and Access Management in Serverless Computing ACSAC 2020, December 7–11, 2020, Austin, USA

propose flexible and dynamic access control model for serverless
platforms.

Serverless computing application and design. Researchers have
predicted the future of serverless computing [39, 62] and have evalu-
ated its efficacy across several domains, including scientific comput-
ing [87], real-time systems [78], publisher-subscriber systems [55],
internet-of-things [82], edge computing [56], and big data process-
ing [42, 72, 93]. While this thread of research confirms the potential
of serverless infrastructure, another thread focusses on improving
the state-of-the-art serverless design. Improving serverless perfor-
mance [34, 50, 57, 76, 79], combining SDN and serverless computing
[32, 90], better serverless programming models [77], serverless pric-
ing models [48], and serverless analytics optimizations [66, 67, 84]
are some active research areas. Our paper adds to this literature by
proposing an improved access control framework design to balance
security-performance trade-off in serverless platforms.

11 CONCLUSIONS

In this paper we propose an access control mechanismwhich allows
for requests to be preemptively rejected before known access control
violations will occur, leading to time, compute, and cost saving. We
implemented the proposed access control mechanism described for
the OpenFaaS ecosystem and compared the implementation against
prior work, Trapeze and Valve. In our evaluation we determined
that there was no meaningful overheads at build time or during
orchestration. We also determined that the runtime overhead was
minimal when compared against prior access control system.When
compared against the Vanilla implementation the average overhead
was 0.51%. Furthermore we demonstrated that when load-testing
the system at bad request proportion of 30%, will.iam outperforms
the Vanilla implementation by 22%.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work is supported
in part byNSF 17-50024 andNSFCNS 19-55228. The views expressed
are those of the authors only.

REFERENCES

[1] 2019. 21% of Open Source Serverless Apps Have Critical Vulnerabilities.
https://www.puresec.io/blog/puresec-reveals-that-21-of-open-source-
serverless-applications-have-critical-vulnerabilities.

[2] 2019. A Deep Dive into Serverless Attacks, SLS-1: Event Injection. https:
//www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/.

[3] 2019. Aqua CloudNative Security Platform. https://www.aquasec.com/products/
aqua-container-security-platform/.

[4] 2019. AWS Lambda Container Lifetime and Config Refresh. https:
//www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-
frederik-willaert/.

[5] 2019. CVE-2019-5736: runc container breakout. https://www.openwall.com/
lists/oss-security/2019/02/11/2.

[6] 2019. Event Injection: Protecting your Serverless Applications.
https://www.jeremydaly.com/event-injection-protecting-your-serverless-
applications/.

[7] 2019. Function-as-a-Service Market by User Type (Developer-Centric and
Operator-Centric), Application (Web & Mobile Based, Research & Academic),
Service Type, Deployment Model, Organization Size, Industry Vertical, and
Region - Global Forecast to 2021. https://www.marketsandmarkets.com/Market-
Reports/function-as-a-service-market-127202409.html.

[8] 2019. FunctionShield. https://www.puresec.io/function-shield.
[9] 2019. Gathering weak npm credentials. https://github.com/ChALkeR/notes/blob/

master/Gathering-weak-npm-credentials.md.

[10] 2019. Hacking a Serverless Application: Demo. https://www.youtube.com/
watch?v=TcN7wHuroVw.

[11] 2019. Intrinsic: Software security, re-invented. https://intrinsic.com/.
[12] 2019. Lambda functions for rapid prototyping. https://developer.ibm.com/

articles/cl-lambda-functions-rapid-prototyping/.
[13] 2019. Many-faced threats to Serverless security. https://hackernoon.com/many-

faced-threats-to-serverless-security-519e94d19dba.
[14] 2019. New Attack Vector - Serverless Crypto Mining. https://www.puresec.io/

blog/new-attack-vector-serverless-crypto-mining.
[15] 2019. OWASP Serverless Top 10. https://www.owasp.org/index.php/

OWASPServerlessTop10Project.
[16] 2019. Protego Serverless Runtime Security. https://www.protego.io/platform/

elastic-defense/.
[17] 2019. Puresec Serverless Security Platform. https://www.puresec.io/.
[18] 2019. ReDoS Vulnerability in "AWS-Lambda-Multipart-Parser" Node Package.

https://www.puresec.io/blog/redos-vulnerability-in-aws-lambda-multipart-
parser-node-package.

[19] 2019. Securing Serverless: Attacking an AWS Account via a Lambda Function.
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-
account-via-a-lambda-function/a/d-id/1333047.

[20] 2019. Securing Serverless – by Breaking in. https://www.infoq.com/
presentations/serverless-security-2018.

[21] 2019. Serverless Security for AWS Lambda, Azure Functions, and Google Cloud
Functions. https://www.twistlock.com/solutions/serverless-security-aws-
lambda-azure-google-cloud/.

[22] 2019. Snyk. https://snyk.io/.
[23] 2019. Sysdig Secure. https://sysdig.com/products/secure/.
[24] 2019. Vandium-node. https://github.com/vandium-io/vandium-node.
[25] 2020. AWS Identity and Access Management (IAM). https:

//aws.amazon.com/iam/
[26] 2020. AWS::Lambda::Function. https://docs.aws.amazon.com/

AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
[27] 2020. Cloud Breach: Compromising AWS IAM Credentials. https:

//rhinosecuritylabs.com/aws/aws-iam-credentials-get-compromised/
[28] 2020. List of AWS S3 Leaks. https://github.com/nagwww/s3-leaks
[29] 2020. Policy Evaluation Logic. https://docs.aws.amazon.com/IAM/latest/

UserGuide/referencepoliciesevaluation-logic.html
[30] 2020. This Is What Happened When I Leaked My AWS Secret Key.

https://alexanderpaterson.com/posts/this-is-what-happened-when-i-leaked-
my-aws-secret-key

[31] 2020. What Is ABAC for AWS? https://docs.aws.amazon.com/IAM/latest/
UserGuide/introductionattribute-based-access-control.html

[32] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke, andM. Stein.
2019. Will Serverless Computing Revolutionize NFV? Proc. IEEE 107, 4 (April
2019), 667–678. https://doi.org/10.1109/JPROC.2019.2898101

[33] Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Economic
and Architectural Impact. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 884–889.
https://doi.org/10.1145/3106237.3117767

[34] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards
High-Performance Serverless Computing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 923–935.
https://www.usenix.org/conference/atc18/presentation/akkus

[35] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.
2019. S-FaaS:TrustworthyandAccountableFunction-as-a-ServiceUsing Intel SGX.
In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop (London, United Kingdom) (CCSW’19). Association for Computing Ma-
chinery, New York, NY, USA, 185–199. https://doi.org/10.1145/3338466.3358916

[36] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,
Thomas Schmitz, and KeithWinstein. 2018. Secure Serverless Computing Using
Dynamic Information Flow Control. Proc. ACM Program. Lang. 2, OOPSLA,
Article 118 (Oct. 2018), 26 pages. https://doi.org/10.1145/3276488

[37] Amazon. 2006. EC2 Beta Announcement. https://aws.amazon.com/about-
aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-
amazon-ec2---beta/

[38] AmazonWeb Services. 2020. Identity and access management for AWS Lambda.
https://docs.aws.amazon.com/lambda/latest/dg/security-iam.html.

[39] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, andMatei
Zaharia. 2009. Above the Clouds: A Berkeley View of Cloud Computing. (2009).

[40] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI

506

https://www.puresec.io/blog/puresec-reveals-that-21-of-open-source-serverless-applications-have-critical-vulnerabilities
https://www.puresec.io/blog/puresec-reveals-that-21-of-open-source-serverless-applications-have-critical-vulnerabilities
https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/
https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/
https://www.aquasec.com/products/aqua-container-security-platform/
https://www.aquasec.com/products/aqua-container-security-platform/
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://www.openwall.com/lists/oss-security/2019/02/11/2
https://www.openwall.com/lists/oss-security/2019/02/11/2
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.puresec.io/function-shield
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md
https://www.youtube.com/watch?v=TcN7wHuroVw
https://www.youtube.com/watch?v=TcN7wHuroVw
https://intrinsic.com/
https://developer.ibm.com/articles/cl-lambda-functions-rapid-prototyping/
https://developer.ibm.com/articles/cl-lambda-functions-rapid-prototyping/
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://www.puresec.io/blog/new-attack-vector-serverless-crypto-mining
https://www.puresec.io/blog/new-attack-vector-serverless-crypto-mining
https://www.owasp.org/index.php/OWASP_Serverless_Top_10_Project
https://www.owasp.org/index.php/OWASP_Serverless_Top_10_Project
https://www.protego.io/platform/elastic-defense/
https://www.protego.io/platform/elastic-defense/
https://www.puresec.io/
https://www.puresec.io/blog/redos-vulnerability-in-aws-lambda-multipart-parser-node-package
https://www.puresec.io/blog/redos-vulnerability-in-aws-lambda-multipart-parser-node-package
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-account-via-a-lambda-function/a/d-id/1333047
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-account-via-a-lambda-function/a/d-id/1333047
https://www.infoq.com/presentations/serverless-security-2018
https://www.infoq.com/presentations/serverless-security-2018
https://www.twistlock.com/solutions/serverless-security-aws-lambda-azure-google-cloud/
https://www.twistlock.com/solutions/serverless-security-aws-lambda-azure-google-cloud/
https://snyk.io/
https://sysdig.com/products/secure/
https://github.com/vandium-io/vandium-node
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://rhinosecuritylabs.com/aws/aws-iam-credentials-get-compromised/
https://rhinosecuritylabs.com/aws/aws-iam-credentials-get-compromised/
https://github.com/nagwww/s3-leaks
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://alexanderpaterson.com/posts/this-is-what-happened-when-i-leaked-my-aws-secret-key
https://alexanderpaterson.com/posts/this-is-what-happened-when-i-leaked-my-aws-secret-key
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://doi.org/10.1109/JPROC.2019.2898101
https://doi.org/10.1145/3106237.3117767
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3338466.3358916
https://doi.org/10.1145/3276488
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://docs.aws.amazon.com/lambda/latest/dg/security-iam.html

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

16). USENIX Association, Savannah, GA, 689–703. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[41] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, and Philippe Suter. 2017. Serverless Computing: Cur-
rent Trends and Open Problems. Springer Singapore, Singapore, 1–20.
https://doi.org/10.1007/978-981-10-5026-81

[42] Daniel Barcelona-Pons, PedroGarcía-López, Álvaro Ruiz, AmandaGómez-Gómez,
Gerard París, and Marc Sánchez-Artigas. 2019. FaaS Orchestration of Parallel
Workloads. In Proceedings of the 5th International Workshop on Serverless
Computing (Davis, CA, USA) (WOSC ’19). Association for Computing Machinery,
New York, NY, USA, 25–30. https://doi.org/10.1145/3366623.3368137

[43] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. 2004. A
Semantics for Web Services Authentication. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice,
Italy) (POPL ’04). Association for Computing Machinery, New York, NY, USA,
198–209. https://doi.org/10.1145/964001.964018

[44] Eric Jason Brandwine. 2017. Permissions decisions in a service provider
environment. US Patent 9,712,542.

[45] Stefan Brenner and Rüdiger Kapitza. 2019. Trust More, Serverless. In Proceedings
of the 12th ACM International Conference on Systems and Storage (Haifa, Israel)
(SYSTOR ’19). Association for Computing Machinery, New York, NY, USA, 33–43.
https://doi.org/10.1145/3319647.3325825

[46] Cloudflare. 2020. What Is Bot Traffic? https://www.cloudflare.com/learning/
bots/what-is-bot-traffic/

[47] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
, and Adam Bates. 2020. Valve: Securing Function Workflows on Serverless
Computing Platforms. In Proceedings of The Web Conference 2020 (WWW ’20),
April 20–24, 2020, Taipei, Taiwan. Association for Computing Machinery, New
York, NY, USA. https://adambates.org/documents/DattaWww20.pdf

[48] Tarek Elgamal. 2018. Costless: Optimizing cost of serverless computing through
function fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 300–312.

[49] David Ferriaolo andRichardKuhn. 1992. Role-based access controls. In Proceedings
of 15th NIST-NCSC National Computer Security Conference. 554–563.

[50] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
https://www.usenix.org/conference/atc19/presentation/fouladi

[51] Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, Fabrizio Montesi, Marco
Peressotti, and Stefano Pio Zingaro. 2019. No More, No Less. In Coordination
Models and Languages, Hanne Riis Nielson and Emilio Tuosto (Eds.). Springer
International Publishing, Cham, 148–157.

[52] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and CongWang. 2019. Hou-
dini’s Escape: Breaking the Resource Rein of Linux Control Groups. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom) (CCS ’19). Association for Computing Machinery, New
York, NY, USA, 1073–1086. https://doi.org/10.1145/3319535.3354227

[53] X. Gao, B. Steenkamer, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang. 2018.
A Study on the Security Implications of Information Leakages in Container
Clouds. IEEE Transactions on Dependable and Secure Computing (2018), 1–1.
https://doi.org/10.1109/TDSC.2018.2879605

[54] GitHub. 2018. GitHub DDOS Incident Report. https://github.blog/2018-03-01-
ddos-incident-report/

[55] Faisal Hafeez, Pezhman Nasirifard, and Hans-Arno Jacobsen. 2018. A
Serverless Approach to Publish/Subscribe Systems. In Proceedings of the
19th International Middleware Conference (Posters) (Rennes, France) (Middle-
ware ’18). Association for Computing Machinery, New York, NY, USA, 9–10.
https://doi.org/10.1145/3284014.3284019

[56] Adam Hall and Umakishore Ramachandran. 2019. An Execution Model for
Serverless Functions at the Edge. In Proceedings of the International Conference
on Internet of Things Design and Implementation (Montreal, Quebec, Canada)
(IoTDI ’19). Association for Computing Machinery, New York, NY, USA, 225–236.
https://doi.org/10.1145/3302505.3310084

[57] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
2016. Serverless Computation with OpenLambda. In 8th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 16). USENIX Association,
Denver, CO. https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/hendrickson

[58] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas. 2015. Attribute-Based Access
Control. Computer 48, 2 (2015), 85–88.

[59] Huang, Xiaowei. 2019. Forensic Analysis in Access Control: a Case-Study of a
Cloud Application. http://hdl.handle.net/10012/15265

[60] Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized Mining of
Relationship-Based Access Control Policies in Evolving Systems. In Proceedings
of the 24th ACM Symposium on Access Control Models and Technologies (Toronto
ON, Canada) (SACMAT ’19). Association for Computing Machinery, New York,
NY, USA, 135–140. https://doi.org/10.1145/3322431.3325419

[61] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal
Foundations of Serverless Computing. Proc. ACM Program. Lang. 3, OOPSLA,
Article 149 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360575

[62] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
CoRR abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.03383

[63] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud Programming Simplified: A Berkeley View on
Serverless Computing. arXiv preprint arXiv:1902.03383 (2019).

[64] Rich Jones. 2019. Gone in 60Milliseconds: Intrusion and Exfiltration in Server-less
Architectures. https://media.ccc.de/v/33c3-7865-gonein60milliseconds.

[65] Bendiab Keltoum and Boucherkha Samia. 2017. A Dynamic Federated Identity
Management Approach for Cloud-Based Environments. In Proceedings of the
Second International Conference on Internet of Things, Data and Cloud Computing
(Cambridge, United Kingdom) (ICC ’17). Association for Computing Machinery,
NewYork,NY,USA,Article104, 5pages. https://doi.org/10.1145/3018896.3025152

[66] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral Stor-
age for Serverless Analytics. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18). USENIX Association, Boston, MA, 789–794.
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless

[67] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfef-
ferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for
Serverless Analytics. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427–444.
https://www.usenix.org/conference/osdi18/presentation/klimovic

[68] M. Koch, L. V. Mancini, and F. Parisi-Presicce. 2001. On the Specification and
Evolution of Access Control Policies. In Proceedings of the Sixth ACM Symposium
on Access Control Models and Technologies (Chantilly, Virginia, USA) (SACMAT
’01). Association for Computing Machinery, New York, NY, USA, 121–130.
https://doi.org/10.1145/373256.373280

[69] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. 2002. A Graph-
Based Formalism for RBAC. ACM Trans. Inf. Syst. Secur. 5, 3 (Aug. 2002), 332–365.
https://doi.org/10.1145/545186.545191

[70] M. Koch, L. V. Mancini, and F. Parisi-Presicce. 2004. Administrative Scope in
the Graph-Based Framework. In Proceedings of the Ninth ACM Symposium on
Access Control Models and Technologies (Yorktown Heights, New York, USA)
(SACMAT ’04). Association for Computing Machinery, New York, NY, USA,
97–104. https://doi.org/10.1145/990036.990051

[71] Andrew Krug and Graham Jones. 2019. Hacking serverless runtimes: Profiling
AWS Lambda, Azure Functions, And more. https://www.blackhat.com/us-
17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-
azure-functions-and-more-6434.

[72] Jörn Kuhlenkamp, SebastianWerner, Maria C. Borges, Karim El Tal, and Stefan Tai.
2019. An Evaluation of FaaS Platforms as a Foundation for Serverless Big Data Pro-
cessing. In Proceedings of the 12th IEEE/ACM International Conference onUtility and
Cloud Computing (Auckland, New Zealand) (UCC’19). Association for Computing
Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3344341.3368796

[73] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A
mixed-method empirical study of Function-as-a-Service software development
in industrial practice. Journal of Systems and Software 149 (2019), 340 – 359.
http://www.sciencedirect.com/science/article/pii/S0164121218302735

[74] B. Reaves M. Meli, M. McNiece. 2019. How Bad Can It Git? Characterizing Secret
Leakage in Public GitHub Repositories. In Proceedings of the Networked and
Distributed Systems Security Symposium (NDSS).

[75] Johannes Manner, Stefan Kolb, and Guido Wirtz. 2019. Troubleshooting
Serverless functions: a combined monitoring and debugging approach.
SICS Software-Intensive Cyber-Physical Systems 34, 2 (01 Jun 2019), 99–104.
https://doi.org/10.1007/s00450-019-00398-6

[76] G. McGrath and P. R. Brenner. 2017. Serverless Computing: Design, Im-
plementation, and Performance. In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW). 405–410.
https://doi.org/10.1109/ICDCSW.2017.36

[77] Dominik Meissner, Benjamin Erb, Frank Kargl, and Matthias Tichy. 2018.
Retro-λ: An Event-sourced Platform for Serverless Applications with Retroactive
Computing Support. In Proceedings of the 12th ACM International Conference on
Distributed and Event-based Systems (Hamilton, New Zealand) (DEBS ’18). ACM,
New York, NY, USA, 76–87. https://doi.org/10.1145/3210284.3210285

[78] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A. Chien. 2019.
Real-Time Serverless: Enabling Application Performance Guarantees. In

507

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/964001.964018
https://doi.org/10.1145/3319647.3325825
https://www.cloudflare.com/learning/bots/what-is-bot-traffic/
https://www.cloudflare.com/learning/bots/what-is-bot-traffic/
https://adambates.org/documents/Datta_Www20.pdf
https://www.usenix.org/conference/atc19/presentation/fouladi
https://doi.org/10.1145/3319535.3354227
https://doi.org/10.1109/TDSC.2018.2879605
https://github.blog/2018-03-01-ddos-incident-report/
https://github.blog/2018-03-01-ddos-incident-report/
https://doi.org/10.1145/3284014.3284019
https://doi.org/10.1145/3302505.3310084
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
http://hdl.handle.net/10012/15265
https://doi.org/10.1145/3322431.3325419
https://doi.org/10.1145/3360575
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://doi.org/10.1145/3018896.3025152
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/373256.373280
https://doi.org/10.1145/545186.545191
https://doi.org/10.1145/990036.990051
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://doi.org/10.1145/3344341.3368796
http://www.sciencedirect.com/science/article/pii/S0164121218302735
https://doi.org/10.1007/s00450-019-00398-6
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1145/3210284.3210285

Workflow Integration Alleviates Identity and Access Management in Serverless Computing ACSAC 2020, December 7–11, 2020, Austin, USA

Proceedings of the 5th International Workshop on Serverless Computing (Davis, CA,
USA) (WOSC ’19). Association for Computing Machinery, New York, NY, USA,
1–6. https://doi.org/10.1145/3366623.3368133

[79] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task
Provisioning with Serverless-Optimized Containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 57–70.
https://www.usenix.org/conference/atc18/presentation/oakes

[80] Matthew Obetz, Anirban Das, Timothy Castiglia, Stacy Patterson, and Ana
Milanova. 2020. Formalizing Event-Driven Behavior of Serverless Applications.
In Service-Oriented and Cloud Computing, Antonio Brogi, Wolf Zimmermann, and
Kyriakos Kritikos (Eds.). Springer International Publishing, Cham, 19–29.

[81] Sylvia Osborn and Yuxia Guo. 2000. Modeling Users in Role-Based Access Control.
In Proceedings of the Fifth ACMWorkshop on Role-Based Access Control (Berlin,
Germany) (RBAC ’00). Association for Computing Machinery, New York, NY,
USA, 31–37. https://doi.org/10.1145/344287.344299

[82] Per Persson and Ola Angelsmark. 2017. Kappa: Serverless IoT Deployment. In
Proceedings of the 2nd International Workshop on Serverless Computing (Las Vegas,
Nevada) (WoSC ’17). Association for Computing Machinery, New York, NY, USA,
16–21. https://doi.org/10.1145/3154847.3154853

[83] Protego. 2020. Is AWS Lambda the Most Secure Application Platform? Probably.
https://www.protego.io/is-aws-lambda-secure/.

[84] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium onNet-
worked SystemsDesign and Implementation (NSDI 19). USENIXAssociation, Boston,
MA, 193–206. https://www.usenix.org/conference/nsdi19/presentation/pu

[85] Mark Ryland. 2016. Identity and access management-based access control in
virtual networks. US Patent 9,438,506.

[86] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López.
2018. Serverless Data Analytics in the IBM Cloud. In Proceedings of the
19th International Middleware Conference Industry (Rennes, France) (Middle-
ware ’18). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3284028.3284029

[87] Tyler J. Skluzacek, Ryan Chard, RyanWong, Zhuozhao Li, Yadu N. Babuji, Logan
Ward, Ben Blaiszik, Kyle Chard, and Ian Foster. 2019. Serverless Workflows for
Indexing Large Scientific Data. In Proceedings of the 5th International Workshop
on Serverless Computing (Davis, CA, USA) (WOSC ’19). Association for Computing

Machinery, NewYork, NY, USA, 43–48. https://doi.org/10.1145/3366623.3368140
[88] NordstromTechnology. 2019. Hello, Retail! https://github.com/Nordstrom/hello-

retail
[89] Ivonne Thomas and Christoph Meinel. 2010. An Identity Provider to Manage

Reliable Digital Identities for SOA and the Web. In Proceedings of the 9th
Symposium on Identity and Trust on the Internet (Gaithersburg, Maryland, USA)
(IDTRUST ’10). Association for Computing Machinery, New York, NY, USA, 26–36.
https://doi.org/10.1145/1750389.1750393

[90] Kailas Vodrahalli and Eric Zhou. [n.d.]. Using Software-defined Caching to Enable
Efficient Communication in a Serverless Environment. ([n. d.]).

[91] He Wang and Sylvia L. Osborn. 2007. Discretionary Access Control with the
Administrative Role Graph Model. In Proceedings of the 12th ACM Symposium
on Access Control Models and Technologies (Sophia Antipolis, France) (SACMAT
’07). Association for Computing Machinery, New York, NY, USA, 151–156.
https://doi.org/10.1145/1266840.1266865

[92] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133–146. https://www.usenix.org/conference/atc18/presentation/wang-liang

[93] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. 2019. Video Processing
with Serverless Computing: AMeasurement Study. In Proceedings of the 29th ACM
Workshop on Network and Operating Systems Support for Digital Audio and Video
(Amherst, Massachusetts) (NOSSDAV ’19). Association for Computing Machinery,
New York, NY, USA, 61–66. https://doi.org/10.1145/3304112.3325608

A HELLO, RETAIL! SECURITY POLICY

In order to configure our access control system for theHelloRetail ap-
plication, we define the graphs for the Labeling State and Protection
State graphs as shown in Figures 11a and 11b, respectively. These
graphs follow the policy definitions laid out in Section 5. As can be
seen in the Protection State graph,Hello, Retail! includes conditional
dependencies that would make it difficult to enforce least privilege
using traditional role-based access controls.

508

https://doi.org/10.1145/3366623.3368133
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/344287.344299
https://doi.org/10.1145/3154847.3154853
https://www.protego.io/is-aws-lambda-secure/
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/3284028.3284029
https://doi.org/10.1145/3366623.3368140
https://github.com/Nordstrom/hello-retail
https://github.com/Nordstrom/hello-retail
https://doi.org/10.1145/1750389.1750393
https://doi.org/10.1145/1266840.1266865
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1145/3304112.3325608

ACSAC 2020, December 7–11, 2020, Austin, USA Arnav Sankaran, Pubali Datta, and Adam Bates

public

data:productPrice-read

data:productCategory-read

data:productCatalog-read

inventory-manager

data:productCategory-write

data:productCatalog-write

data:productPrice-writecustomer

data:creditCardsName-read

photographer

data:photoRegistrationTable-write

data:photoAssignmentTable-write

data:photoAssignmentTable-read

data:storedPhotosTable-write

data:photoRegistrationTable-read

photo-manager

directoradmin

(a) Hello Retail Label State Graph

purchase get-price

authorize-cc

publish

data:productPrice-read

data:creditCardsName-read

api data:productCategory-read

data:productCatalog-read

builder

data:productCategory-write

data:productCatalog-write

data:productPrice-write

photos

assign

message

record

receive

success

report

data:photoRegistrationTable-write

data:photoAssignmentTable-write

data:photoAssignmentTable-read

data:storedPhotosTable-write

data:photoRegistrationTable-read

authenticate

(b) Hello Retail Protection State Graph

Figure 11: Hello Retail State Graphs

509

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Threat Model & Assumptions
	5 Policy Design
	5.1 Labeling State
	5.2 Protection State
	5.3 Example Policy Walkthrough

	6 will.iam Architecture
	6.1 Overview
	6.2 API Gateway
	6.3 Policy Evaluation Service
	6.4 Request Handler

	7 Implementation
	8 Evaluation
	8.1 Build Time Performance
	8.2 Orchestration Performance
	8.3 Runtime Workflow Performance

	9 Discussion
	10 Related Work
	11 Conclusions
	Acknowledgments
	References
	A Hello, Retail! Security Policy

