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Abstract

Memory reconsolidation is a central process enabling adaptive memory and the perception of a constantly changing reality.
It causes memories to be strengthened, weakened or changed following their recall. A computational model of memory
reconsolidation is presented. Unlike Hopfield-type memory models, our model introduces an unbounded number of
attractors that are updatable and can process real-valued, large, realistic stimuli. Our model replicates three characteristic
effects of the reconsolidation process on human memory: increased association, extinction of fear memories, and the ability
to track and follow gradually changing objects. In addition to this behavioral validation, a continuous time version of the
reconsolidation model is introduced. This version extends average rate dynamic models of brain circuits exhibiting
persistent activity to include adaptivity and an unbounded number of attractors.
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Introduction

Memory reconsolidation (ReC) is a recently proposed process

explaining the update of long-term memories in the brain. Upon

activation, the memory trace enters a state of lability rendering it

subject to alteration and permitting integration of new information

before being restabalized, or reconsolidated. ‘‘Reconsolidation’’

coined by Sara in 2000 [1] has become a widely studied topic in

neuroscience. Recent animal and human experiments [2–7] have

presented overwhelming evidence supporting the existence of ReC

and identified boundary conditions that characterize and limit this

phenomenon [8]. ReC is postulated to strengthen, weaken or

extinct memories and update them with new, relevant informa-

tion. Reconsolidation draws a striking new way of understanding

memory and its roles: from a computer-like reliable log, to an

adaptive and active part of perception.

Recent experiments have also identified reconsolidation as a

possible avenue of treatment for phobias and PTSD by effectively

allowing the erasure of fear memories. These memories come

about through classical conditioning mechanisms that pair

aversive stimuli (unconditioned stimuli – US) with co-occurring,

once neutral stimuli (conditioned stimuli – CS). This coupling is

the basis for anxiety disorders and PTSD. The most common

treatment for fear related disorders is exposure therapy. Exposure

therapy leverages extinction learning mechanisms to create a

second safety memory that competes with and suppresses the fear

response [9,10]. This technique, however, does not fully erase the

fear memory, allowing it to spontaneously reappear [11].

Reconsolidation has been demonstrated as a possible method of

completely erasing fear associations. In several experiments, fear

memories in previously conditioned rats were reactivated,

returning the memory traces to labile states. Protein synthesis

inhibitors or beta-adrenergic receptor antagonists were then

injected into the amygdala, blocking the reconsolidation process.

This process resulted in extinction of fear and was not subject to

spontaneous recovery [4,5,12,13]. Cases of reconsolidation of fear

memories have also been demonstrated in humans. In these

experiments, subjects were exposed to stimuli, which reactivated

the fear memory trace rendering it labile. Rather than pharma-

cological intervention, the normal reconsolidation process was

disrupted with competing information which resulted in the

memory being updated [14,15].

We propose an adaptive memory model that is consistent with

recent findings in ReC. The framework introduces efficient ways

to add, remove, and update attractors. Additionally, memories can

be strengthened, weakened, or extinguished by controlling the

attractor radius.

Our memory model builds on an earlier Kernel Associative

Memory (KAM) model [16,17] that uses a kernel structure to

efficiently compute attractor dynamics. The KAM model is an

extension of the attractor based Hopfield network. It has been

shown that attractor mechanisms are employed by the brain,

notably in the CA3 region of the hippocampus [18]. The KAM

has several advantages over previous Hopfield models including

the number of attractors unbounded and independent of the input

dimension, dynamic rewiring of neurons, and the ability to

accommodate large real-valued inputs and attractors. This paper

derives a ReC algorithm that allows KAM to hold an unbounded

number of now flexible attractors, which we call ReKAM. Our

approach to the modeling of reconsolidation is based on the

principle of robust global update, analogous to psychological

findings such as the gang effect where the update of one attractor

affects neighboring attractors [19]. We also introduce an

approximate ReC algorithm which changes the global updates

to local ones, gaining time efficiency at the cost of precision.
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The relevance of our ReKAM model is demonstrated by

replicating three recently found characteristics of ReC seen in

human behavioral experiments. First, ReKAM imitates a recent

list-learning experiment in which human participants merged new

objects into a previously learned list during retrieval. ReKAM also

demonstrates fear extinction via the controllable attractor radius.

The third experiment follows gradually changing objects resulting

in an evolved representation. Finally, a continuous time version of

ReKAM is introduced which relates the model to neurobiological

studies. This version extends the capabilities of the continuous-

time Hopfield network [20] commonly used to model average

firing rate dynamics [21,22] of adaptive persistent activity.

Previous Reconsolidation Models
Reconsolidation’s significance in explaining the dynamic

properties of healthy memory has led to several mathematical

models proposing to explain the process. The first ReC model [23]

extended the Hopfield model to allow attractors to evolve through

weight decay and Hamming-distance terms. Our ReKAM also

allows attractors to evolve, but since our attractors lie in high

dimensional space, the number of memories is unbounded and

inputs are realistic, thus modeling reconsolidation in a more

relevant and technologically practical way.

The second ReC model to be introduced, called Reconsolida-

tion Attractor Network (RAN) [24], takes the approach that

attractors do not have to lie in input space and hence an

unbounded number of memories are possible. The architecture of

the RAN is layered. Attractors appear in the upper level separate

from the neural flow and input space. Our ReKAM builds on the

same concept of attractors not lying in input space, but it also

draws from Hopfield-like networks for mathematical completeness

of attractor dynamics.

The third model presented in [25] is designed to reproduce

extinction of fear memories. Like the first model, it is also based on

the classical Hopfield network. Attractors can be extinct when an

additional binary variable which represents the anisomycin

(consolidation-inhibiting) drug is set to 0. Our ReKAM is the

only memory model demonstrating all known ReC properties as

opposed to a particular architecture demonstrating only one facet

of the ReC process; it is also the only one that describes

reconsolidation of large memories with real world stimuli.

Modeling with Kernels
Our ReKAM model is based on our KAM architecture [17].

Kernel representations were introduced by Vladimir Vapnik to the

field of Machine Learning when he showed how to transfer input

data to a high-dimensional data space called Q-space (phi-space).

The data is classified in Q-space and then projected back to the

original space resulting in the most efficient, optimal, non-linear

separation. This is achieved by using the kernel property: a scalar

kernel function applied to two inputs is equal to their product in

the Q-space: Q(xi),Q(xj)
� �

~K(xi,xj). This kernel property is the

basis of Support Vector Machines (SVM), regarded as the most

efficient supervised classifiers [26].

Support Vector Clustering (SVC) was introduced in a joint work

by the third author’s research group and Vapnik. SVC is an

unsupervised extension of SVM (for the case when labels are not

available) that groups data into clusters through kernel functions

that mimic high-dimensional organization and projections [27].

In Kernel Associative Memory, we follow similar mathematics.

However, here the Q-space is not abstract. Instead, it is based on

the output of multiple neurons. Mathematically, Mercer kernels

are no longer sufficient. We define the strong Mercer kernels that

provide the condition needed to load an unbounded number of

attractors (See Materials and Methods 4.4). The use of both low-

level and high-level spaces is an effective mathematical way to

describe both the synaptic changes of neurobiological memories as

well as the behavioral effects of cognitive memories.

Model for Reconsolidation based on KAM
The practical advantages of our ReKAM model include an

input space that can be composed of continuous valued vectors

rather than binary ones, a number of attractors that is independent

of the input dimension, and a variable input length where longer

and shorter input vectors are learned with no a priori bound.

Furthermore, attractors are efficiently loaded, deleted, and

updated.

We briefly describe the KAM which is the basis of our ReKAM

model (a complete description is given in [17]. Let X and Y be

matrices whose columns represent the input and output space of

the memories. Memories are defined by the transformation on

these columns through the projective operator. We transfer the

input to the higher Q(X ) space (as explained in previous sectionf),

so that the current transformation is now : B : Q(X )?Y . A

connection matrix S is defined as:

S~½Q(X)�T Q(X)

sij~ Q(xi),Q(xj)
� �

~K(xi,xj),
ð1Þ

Memory loading is defined by

B~YS{1½Q(X)�T : ð2Þ

and recall of input x by the iterations:

yt~YS{1zt;

zt~½Q(X)�T Q(xt);

zt
i~(Q(xi),Q(xt))~K(xi,x

t):

ð3Þ

where the first iteration is initialized with x0~x, each iteration

ends with applying any sigmoid-like activation (bounded mono-

tonically increasing) function coordinate-wise to y: xtz1~f (yt),
and the iterations stop when update is under a chosen threshold.

The KAM can be depicted as a neural network, as explained in

[17].

Results

Model for Reconsolidation and Extinction: ReKAM
Unlike the traditional Hopfield networks, where attractors lie in

input space, our ReKAM’s attractors (stemming from the KAM

architecture, see last subsection in Previous Work) lie in a high

dimensional manifold. While a Hebbian networks’ (e.g., [23])

synaptic matrices compose a linear space, our use of the efficient

pseudo inverse learning method gives rise to Riemannian

manifolds in the attractor space. An unbounded number of

attractors can exist in the higher dimensional space. Between every

two points in a Riemannian manifold there exists at least one

geodesic that has a minimal length of all curves joining the two

points. The geodesic is analogous to the shortest straight line

between two points but in a nonlinear space. Updating an

attractor toward a new input is calculated along a geodesic

between the new input and the given attractor it recalled. Our

ReC algorithm with this manifold makes the memory update

Reconsolidation in Kernel Associative Memory
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global, and capable of representing psychological properties such

as the gang effect. This global update is more expensive, although

more accurate, and we provide another local algorithm which is

faster and just a bit less general. Comparisons between the

architectures are provided both for time analysis (in this section

below) and in the result ‘‘Updating Memories Incrementally’’.

The global geodesic ReC Algorithm. We propose a

memory update algorithm that assumes that every ReC update

has a global effect. Mathematically it is based on geodesic

computation in the Reimannian manifold representing the

memory attractors. The metric structure of this manifold and a

comparison with the special case of the Grassmann manifold are

derived in Materials and Methods (4.1–4.3).

Suppose that we have an initial memory Xt that contains m

patterns (concepts) xt,1,xt,2, . . . ,xt,m. We then obtain Xt1 by

replacing one of the attractor patterns x’t with a new stimulus xt

that recalls it. The distance between Xt and Xt1 can be interpreted

as a measure of the amount of ‘‘surprise’’ that the memory

experiences when it meets a new stimuli. To track these changes,

we build a geodesic cXt1

Xt
joining Xt and Xt1 on the manifold and

take a new point X �t ~cXt1

Xt
(a). Here a[½0,1� is a step parameter

related to the size of a shift during each update. When a~0, the

memory remains at Xt, when a = 1, the memory is changed to

Xt1.

Using the same process, when a stimulus xtz1 appears we can

track the change from Xtz1 to Xtz2. The process the continues for

future stimuli. The algorithm of memory update using geodesics is

shown in Fig. 1. The exact geodesic calculation is described in the

Materials and Methods. Its complexity depends on the optimiza-

tion algorithm used. The dimension of our manifold is d~O(mn).

A ‘‘typical’’ gradient calculation would require O(d2) operations.

The gradient-like minimum search calculation has complexity

O(d2=e) where e is the required tolerance [28]. This leads to

complexity O((mn)2=e) [29]. However, with derivation-free

optimization techniques which do not require explicit gradient

calculations, we can reduce this complexity estimation to O(mn=e).
The Local Approximate ReC Algorithm. The exact

computation of geodesics may be resource consuming especially

for high dimensional data. Here we develop a simplified ReC

algorithm with local rather than global updates to attractors. In

this linear approximation, we simply replace the geodesic with a

straight line in the coordinate space.

This leads to the Approximate-Update algorithm in Fig. 2. The

approximation algorithm’s complexity is O(mn), equivalent to the

derivative-free version of the geodesic algorithm. However, the

approximation algorithm is much easier and faster to implement.

Because it requires only a few operations per element, the

complexity does not depend on the tolerance.

While the approximate algorithm of Fig. 2 shows only one

update per reconsolidation, we can easily construct a version of

this algorithm that updates any desired number of attractors. For

this, we repeat step 3 for the k most relevant attractors with the

largest values of fj where z~S{1z, and use the value aj~afj for

the j-th attractor. This version of the algorithm demonstrates gang

effect properties by updating neighboring attractors.

The approximation error is bounded by the following theorem:

Theorem 1 Let L~r(XI,XF). Denote X� as the solution given by

the geodesic algorithm and X�approx as the solution given by the approximate

algorithm. There then exists a constant C such that

EX�{X�approxEƒCL2

Proof: Let G be a metric tensor on M dependent on

coordinates and G0~G(XI ). The straight line c
0

between XI

and XF is a geodesic in the flat space with a constant metric form

G0. Since M is a twice differentiable manifold, G(X){G0~O(L2)
along the geodesic c that lies between XI and XF . Denote s as the

distance between the starting point XI and a given point X along

the (geodesic) curve. s is called the arc length (see remark 1 below,

[30], or other textbook on Riemannian and differential geometry).

Because c
0

is a secant of the C2 curve c in the coordinate space,

when G(X)~G0, there exists a constant C such that for the given

arc length s, Ec(s){c
0
(s)EƒCs2

ƒCL2

Remark 1 Arc length could also be defined as a parameterization of a

curve x(s) : ½0,L�?Rn such that Vs
dx

ds

����
����~1 .

Controllable Attraction Radius. As part of the ReKAM

architecture we include a mechanism for altering the size of an

attractor’s basin of attraction. This affects the probability of

recalling an attractor. As the attraction radius goes to zero, the

attractor will never be recalled. This is analogous to extinction.

Definition 1 A Kernel K(u,v) is called uniform if it depends only on

the difference u{v

If the kernel network has a uniform kernel, Then the attraction

radius can be controlled. Assign the scaling factor rk to the k-th

attractor. We can then divide the k-th entry of z by rk where z is

the temporary vector used in the recall algorithm of ReKAM.

Figure 1. Algorithm of Geodesic Update.
doi:10.1371/journal.pone.0068189.g001

Reconsolidation in Kernel Associative Memory
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zk~K
x{xk

rk

� �
ð4Þ

This causes the attraction basin to be scaled by 1=rk.

Model Verification with Human Experiments
We verified our model’s ability to describe reconsolidation by

comparing the dynamics of our model to those observed in

humans. The first experiment simulates the effect of reconsolida-

tion on episodic memories. The second demonstrates the model’s

capability to replicate extinction. The third follows memory

changes created by the gradual altering of the associated input.

List Learning. We first replicate a human experiment

investigating reconsolidation of episodic memories [31]. In the

original experiment, participants were split into two groups (A and

B). On Day 1, both groups learned a list of 20 objects (List 1) that

were associated with a blue basket. On Day 2, Both groups learned

a second list of 20 items (List 2). Before learning, group A received

a reminder of List 1 in the form of the blue basket; group B did not

receive any reminder. On Day 3 both groups were tested on their

ability to retrieve List 1. Group A made more errors confusing List

2 items into List 1 than Group B did (Fig. 3). When the experiment

was repeated to test recall of List 2, both groups performed equally

well.

In our simulation, all objects were shown as images, rescaled to

320|240 pixels. Note that the ability of the model to handle large

colored images is already beyond the standard Hopfield model

used in previous work. Images were represented as real-valued

vectors with components x1 . . . xn. We added an indicator variable

x0k to each item, x0k[½0,1� where x0k~0 denotes that the object is

unrelated to the k-th list, and x0k~1 means that the object

belongs to this list with 100% certainty.

For computational efficiency, we took the variant of the

Gaussian kernel:

K(u,v)~ exp {
a

2

Xn

k~0

(uk{vk)2{
bn

2

X2

j~0

(u0j{v0j)
2

 !
ð5Þ

where a and b are tuned to balance between the data vector and

the list indicator components.

In our simulation we modeled the two groups. For each group

we created 40 initial attractors corresponding to the items in both

lists. In group A we gradually shifted the value of x01 of each item

towards 1 when this item was recalled with the blue basket

reminder in the background to simulate the effects of reconsolida-

tion. In group B, these updates were not performed. For both

groups we tested the memory in recall mode inputting 1000 new

vectors per list by taking the attractor and adding uncorrelated

white noise (intensity equaled 10% of data STD). For all query

vectors, we set the x01~0:5 as the initial value.

Using our model, we found an exact correspondence between

our simulation and the human experiment for values of x01~0:75
for Group A and x01~0:25 for Group B (see Table 1).

We next simulated more values of x01 which could arise for

varying levels of reconsolidation due to differing experimental

procedures, memory type, etc. (Fig. 4).
Extinction. Many recent experiments have demonstrated the

effects of fear extinction in both humans and animals – e.g. [32],

[33], [34]. Numerical simulations with Hopfield memory and

Hebbian-like learning were presented in [25]. Our model has a far

larger number of far more detailed memories than previously

modeled.

We propose to model extinction as a reduction in the attractor’s

radius. To demonstrate, we created a kernel network that

memorized 10 images. All images were scaled to 320|240 pixels.

One of the images was randomly chosen to be a ‘‘fear’’ (shock)

memory. In our procedure, the scaling factor for the ‘‘shock’’

attractor was gradually decreased. This process is analogous to the

weakening of the memory occurring through reconsolidation

during extinction training. For each scaling factor value we

Figure 2. Algorithm of Approximate Update.
doi:10.1371/journal.pone.0068189.g002

Figure 3. Results of the original list learning human experiment
[31]. Group A received a reminder cue before learning List 2. This
resulted in the List 1 memory becoming labile and updated by
integrating some of the new items from List 2. Group B did not receive
this reminder and these intrusions were not seen. For our analysis,
results were normalized for each group by dividing the number of items
recalled per list by the total number of items recalled in both lists
together.
doi:10.1371/journal.pone.0068189.g003

Reconsolidation in Kernel Associative Memory
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measured the frequency of retrieval (recall) of the shock memory

on 1000 random inputs (Fig. 5). The decreasing attraction basin

radius effectively extinguishes the fear memory trace as its

probability of recall goes virtually to 0.

Updating Memories Incrementally. In an experiment

testing the incremental changes of gradually morphing memories

[35], participants learned to recognize four faces as ‘‘friends.’’ One

face was morphed incrementally over a period of days. When the

face morphed slowly, participants continually recognized the

morphed face as their original friend. By the end of the process,

the morphed face was recognized as a friend while the original face

was not. The results demonstrated merging of the source and the

new face. However, this effect was only observed when the faces

were changed gradually, demonstrating that the order in which

morphing took place was crucial. A gradual, subtle change was

needed to allow for reconsolidation to occur.

In our previous work [17] we published a numerical experiment

with morphing face images that replicated the previous result

described above. Attractors in the KAM were gradually morphed

following the slowly changing face inputs.

Here we present a similar experiment aimed at examining the

network’s ability to track images varying gradually over time.

Additionally, we compare the performance of the exact and

approximate ReC algorithms for this manipulation. We created a

training set consisting of 9,000 rotated digits. The rotated digits

were created from 100 original MNIST handwritten digits (10 per

class from ‘0’ to ‘9’). Digits were 28|28 pixel grayscale images

which we rotated counterclockwise from 0o to 180o (Fig. 6).

We applied principal-component (PC) preprocessing without

considering any specific handwritten digit optimized feature

extraction techniques. We took the first d~200 PCs which

contain 96.77% of the variance. For computational efficiency, the

kernel we chose was:

K(x,y)~ exp
{a

2R2

Xd

k~1

wk(xk{yk)2

 !
ð6Þ

where R2~
Xd

k~1

wk, and a is a bias parameter. This is a Gaussian

kernel dependent on a weighting metric. The weights were chosen

as:

wk~
STD(xk)

1

Q

XQ

l~1

STDl(xk)

{1

0
BBBB@

1
CCCCA

2

ð7Þ

We also tried:

wk~
1

K

XK

l~1

(Elxk{Exk)2 ð8Þ

Where El and STDl are the expectation and standard deviation

over the l-th class, and Q is the number of classes. Formula (7)

yielded better results.

Evolution of the classification rate over time for the digit

rotation experiment is shown in Fig. 7 with confusion matrices in

Fig. 7. The exact reconsolidation algorithm achieved a recognition

accuracy of 96.4+/20.43%. Results for the local approximate

algorithm were 96.32+/20.26%. The algorithm without reconso-

lidation performed significantly worse (see Fig. 7). The CPU time

was 142 sec for the approximate algorithm and 54.7 min for the

exact geodesic reconsolidation on Intel Centrino Duo 1.4 GHz

CPU with no parallelism, in the Matlab environment. The average

relative error in attractors was

xexact{xapprox

�� ��= xexactk k&1:44:10{2 .

When inputs were shuffled randomly, gradual reconsolidation

was unable to occur. We note that because we are testing on a

handwritten digit dataset, there are variations between each test

digit: while an ideal number 6 rotated 1800 would be equal to an

ideal number 9, this will very rarely be the case with the variable

hand written digits. Results of no reconsolidation for digits rotated

at 1800 (Fig. 8–C) shows that digits such as 0, 1, and 8 remain

mislabeled while, to a human eye, these would seem the same. It is

possible that using a preprocessing technique specifically designed

for hand written digit recognition may allow the system to

Figure 4. Results of our models simulation of reconsolidation
on the list learning experiment for different values of the
reconsolidated parameter x01. x01~0:75 and x01~0:25 exactly
matched the results of Group A and Group B of the human
experiment.
doi:10.1371/journal.pone.0068189.g004

Figure 5. Results of extinction experiment showing the
probability of shock memory retrieval as the attraction radius
multiplier is varied. Each point represents the average of 1000
random input trials as well as their standard deviation. Note that the
scale of the x-axis varies.
doi:10.1371/journal.pone.0068189.g005

Reconsolidation in Kernel Associative Memory
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generalize these specific cases to a greater degree. However, even

under these conditions, the reconsolidation algorithm works

effectively and allows for accurate classification under constantly

changing inputs.

Continuous-time ReKAM Models Firing-Rate Dynamics
Up to here, we described the discrete-time form of associative

recall. We next relate the ReKAM to biology by introducing a

continuous-time version of the kernel memory and comparing it to

other firing-rate models. It is important to note that the nature of

the time (discrete or continuous) is involved only in dynamical

systems of recall, not in the reconsolidation phase. Any step of the

reconsolidation (both exact and approximate) depends only on the

input and the attractors, not on the time. For this reason both the

exact and approximate algorithms of ReC work in continuous

time.

The Hopfield equation for the i-th neuron is:

dxi

dt
~{lixizf

XN

j~1

wijxjzIi

 !
ð9Þ

where xi is the output of the i-th neuron, wij are the elements of

the symmetric synaptic matrix W, Ii are direct external inputs, f is

the activation function, and li is the ‘‘relaxation rate’’ of the i-th

neuron. The Hopfield equation (9) imposes linear and symmetric

neuron-to-neuron interactions in the network which can be

described by the synaptic matrix W. Escalating the model from

discrete neurons to neural field (mean field) gives rise to the

Wilson-Cowan partial integro-differential equation [36]:

Lu

Lt
~{luzf

ð
D

w(x,y)u(y)dyzI(x)

0
@

1
A ð10Þ

If the activation function is simply the Heaviside step function,

equation (10) becomes the Amari field equation [37].

If the network’s activity is a Markov stochastic process (with a

vector x), then the first-order approximation of the average firing

rate dynamics is (see [38]):

Figure 6. Example of rotated digit inputs (A) and corresponding attractors (B) during reconsolidation.
doi:10.1371/journal.pone.0068189.g006

Table 1. Comparing the results of actual human experiment to our model’s simulation.

Human Results

Group A B

List 1 % 60.399 90.180

List 2 % 39.600 9.819

Simulation Results

x01 0.75 0.25

List 1 % 60.287 90.105

List 2 % 39.713 9.895

By normalizing the data by the total number of items recalled over both lists, our simulation matched exactly with Group A and Group B of the human experiment.
doi:10.1371/journal.pone.0068189.t001

Reconsolidation in Kernel Associative Memory
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dxi

dt
~{lxizFi x,Ið Þ : ð11Þ

This equation can have arbitrary dynamics in contrast to (9)

that has a Lyapunov function and converges to attractors.

We propose a continuous-time version of the Kernel Associative

Memory that updates the recall similar to (11):

dxi

dt
~{lxizfi XS{1zzI

� �
ð12Þ

where the components of z are:

zi~K(xi,x):

i~1 . . . m ð13Þ

The continuous ReKAM described by Equations (12) – (13) with a

scalar-product kernel is isomorphic to (9) except for having the

synaptic matrix W calculated by the pseudoinverse rule (not the

Hebbian rule), or, equivalently, orthogonal Hopfield learning.

This continuous memory inherits the Hopfield-like attractor

dynamics but is more biologically relevant: the number of

attractors is independent of the input dimension and rewiring of

the neurons is dynamic. We propose the continuous ReKAM as a

model for firing rate adaptive dynamics in the course of persistent

activity in various networks in the brain.

Discussion

While the existence of reconsolidation in human memory was

once a topic of debate, the accumulation of human experimental

results has led to the mechanism becoming widely accepted in the

field of neuroscience. Reconsolidation has been dissociated from

extinction learning, the latter of which results in a second memory

trace rather than the removal of the old one [39,40]. However, it is

not yet entirely clear when or to what extent reconsolidation

mechanisms will occur in a given situation. Experimental results

have identified numerous boundary conditions involved in

determining whether or not a memory will undergo reconsolida-

tion [39,40].

One such boundary condition is the amount of time between a

memory’s retrieval and the encountering of relevant stimuli. This

time window varies depending on the animal tested [41] and in

humans begins about 10 minutes after retrieval and lasts for

several hours. During this time, the memory is labile and

susceptible to new information or experimental interference. If

the stimulus is encountered outside of this time window,

reconsolidation will not occur. A second boundary condition is

the age and strength of the memory trace, affecting the ease in

which the memory will undergo reconsolidation. A stronger or

older memory may require longer and more frequent reactivation

sessions for reconsolidation to occur. A third condition, the

predictability of reactivation stimulus, also plays a role in whether

or not reconsolidation will occur. If a subject does not correctly

predict a novel response to a stimulus, reconsolidation is more

likely to occur in order to update an incorrect prediction model

[42]. Another boundary condition is the ‘‘trace dominance’’ –

when a memory stabilizes and becomes resistant to reconsolidation

and certain amnesic agents.

It would be possible to extend our model in the future to include

these observed boundary conditions. The addition of variables that

account for time elapsed since retrieval, age of memory, and

strength of memory could be implemented to allow for an accurate

simulation of the boundary conditions that accompany reconso-

lidation. Additionally, a mechanism to account for prediction error

would allow for a representation of the novelty prediction that has

been shown to influence whether or not reconsolidation will occur.

These additions could allow for a more accurate simulation of

reconsolidation as well as a more biological learning model.

We have proposed a mathematical framework of memory

reconsolidation, which demonstrates properties as seen in human

studies: incremental updates, associations, and extinction. Our

ReKAM memory model is far more technologically relevant than

previous ones in that it is able to include real-valued inputs as well

as massively long inputs; the number of memories is independent

of input dimension and hence is practically unbounded. This

results in a model providing both a better functional understand-

ing of reconsolidation and the basis for a powerful technology for

following changes in real world environments.

The mathematical structure has its own beauty: The kernel

associative memory has an underlying structure of a Grassman-like

manifold in the (feature) Q-space. Since it is a curved Riemannian

manifold, reconsolidation is no longer a linear update, but the

creation of geodesics is required. We provided both an exact

Reconsolidation algorithm as well as a more efficient one, which is

local in update and does not require the exact computation of

geodesics. A continuous time version of the memory is introduced

with further biological relevance.

The kernel method opens the door to reconsolidation of

multimodal and dynamical (temporal) memories; this is a subject

of our future research.

Materials and Methods

Defining a Riemannian Structure for the ReC algorithm
We formulate the distance between two kernel associative

networks where both networks have the same kernel and number

of memories. Each network contains a different sets of memory

attractors. In the Q-space each kernel memory is a symmetric

network whose synaptic matrix is a projective operator

C : EQ(x)?EQ(x) : C2~C. We measure the distance between

two projective operators, X and Y (both of finite rank m), as a

Figure 7. Results of the digit rotation experiment. The solid lines
show the average accuracy over all classes for rotations between 00 and
1800. The blue line shows the accuracy while using reconsolidation. The
red line shows the corresponding accuracy while not reconsolidating.
The dotted lines surrounding the solid lines refer to the standard
deviations.
doi:10.1371/journal.pone.0068189.g007
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Frobenius norm X{Yk kfro. Taking into account protectiveness

and self-conjugatedness of X and Y, we have:

X{Yk k2
fro~tr(X{Y)(X{Y)T~ . . .

~tr(XzY{XY{YX)~:::~2(m{trXY)
ð14Þ

For each projective operator C, the singular value decompo-

sition (SVD) leads to the following:

C~VVz~V(VT V){1VT~YYT

For any V defined as above, a matrix A (m|m) is defined as

having elements aij~(vi,vj), the pairwise scalar products of the

memorized vectors. In matrix notation this is represented as:

A~VT V

Since Y : EQ(x)?Rm is an orthogonal operator, then

Y~V(VT V){1=2~VA{1=2

Using this template we represent X and Y as follows: X~WWT ,

W = VS{1=2; Y~HHT , and H~WT{1=2. So,

XY~WWT HHT~WS{1=2VWT{1=2HT~WS{1=2QxyT{1=2HT ,

Here Q is an m|m matrix such that qxy,ik~K(xi,yj). Having a

singular decomposition for XY, we can now compute the distance

as

r(X ,Y )2~2(m{tr(S{1=2QxyT{1=2)): ð15Þ

The above defines a Riemannian structure for the KAM manifold.

Pseudoinverse Memories and the Grassmann Manifold
We next relate the manifold defined by the ReKAM model to

the more well-known and less complex Grassmann manifold. An

associative memory with a pseudoinverse learning rule is described

in [43]. This is a Hopfield-type auto-associative memory defined

originally for bipolar vectors: vk[f{1,1gn
, k~1 . . . m. Suppose

these vectors are columns of n|m matrix V. Then a synaptic

matrix C of the memory is given by:

C~VVz ð16Þ

where Vz is a Moore-Penrose pseudoinverse of V. For linearly

independent columns of V, the pseudoinverse can be computed by

Vz~(VT V){1VT or by using the Greville formulae (see, e.g.,

[44]). The resulting weight matrix C is projective, i.e. C2~C with

rank m.

The Grassmann manifold is a particular type of Riemannian.

The Real Grassman manifold is the manifold of all m-dimensional

subspaces in Rn and is denoted as Gn,m. To define the Grassman

manifold, we first introduce the Stifiel manifold – a set of

orthogonal n|m–matrices Y, YT Y~Im endowed with the

Riemannian metric which is induced by the Euclidean norm in

Figure 8. Confusion matrices for rotating digit experiment showing predicted labels vs true labels where a correct classification
appears along the diagonal. A, B, and C show reconsolidation with 00 , 900 , and 1800 rotations. D, E, and F show results without reconsolidation for
00 , 900 , and 1800 rotations. Warmer (more red) colors refer to higher number values. The reconsolidation algorithm provides stable clustering even
under changing conditions (presented as rotation in this experiment). Without reconsolidation, the memories are unable to track these changes.
doi:10.1371/journal.pone.0068189.g008
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the space of n|m-matrices. Next, we say that two matrices are

equivalent if their columns span the same m-dimensional

subspace. This means that two matrices Y and Y
0

are equivalent

if they are related by right multiplication of an orthogonal m|m

matrix U : Y
0
~YU. The quotient of the Stiefel manifold with

respect to this equivalence relation is called Grassmann Manifold

[45].

For each m-dimensional subspace in Rn there exists a unique

projective matrix C of rank m, and vice versa (see [46]). Therefore

a space of m-ranked projective matrices is a Grassmann manifold

Gn,m. Moreover, the Frobenius norm of the difference of two

projective matrices EX{YEfro gives one possible Riemannian

metric over this manifold.

The Grassman manifold emerges in our model in the special

case of a scalar-product kernel. Other kernels used in our ReKAM

model result in manifolds that can be considered generalizations of

the Grassmann.

Computing Geodesics for the ReC Algorithm
To implement the geodesic update algorithm, we have to

efficiently compute geodesics on the kernel memory manifolds.

Given the metric in explicit form (15) this can be solved as an

optimization problem. Let x1 and x2 be points on manifold M
with metric r. Let a point x lie on the (minimizing) geodesic

segment joining x1 and x2. x divides the segment into two parts

with proportions a : 1{a. Let x’ be a point which lies on the

manifold but not in the geodesics. The process of finding x is

stated as follows:

r(x0,x)zr(x,x1)?min

r(x0,x)~ar(x0,x1)

�
ð17Þ

The geodesic minimizes the sum of two distances (first line). For

the point x on the (minimizing) geodesic, the following inequality

holds:

r(x0,x)zr(x,x1)ƒr(x0,x
0
)zr(x

0
,x1) Vx

0
[M ð18Þ

The Process (17) can be solved numerically using a Gradient

Descent Method (or other first-order unconstrained optimization

method). Its complexity is O(mn=e) for a tolerance e. The constant

here is typically large due to the hardness of gradient computation.

Functions with Mercer Condition
The classical Kernels K(x,y) introduced to the field of Machine

Learning by Vapnik [26] had the Mercer condition. That is, for all

square integrable functions g(x) the kernel satisfied:

ðð
K(x,y)g(x)g(y)§0: ð19Þ

The Mercer theorem states that if K satisfies the Mercer

condition there exists a Hilbert space H with a basis

e1,e2, . . . en . . . and a function Q : Ex?H, Q(x)~
X?
k~1

Qkek, where

Q1,Q2 . . . : Ex?R, such that

K(u,v)~
X?
n~1

anQn(u)Qn(v) ð20Þ

and all anw0. That is, K is a scalar product of Q(u) and Q(v)

General Mercer kernels are not sufficient for creating the

associative memory since our kernel memories require that all

attractors are linearly independent in the feature space. Some

Mercer kernels, such as the basic scalar-product kernel

K(u,v)~vu,vw, do not assure this property. The strong Mercer

kernels defined for our kernel memory [17] provide linear

independence of the attractors in the feature space which enables

correct association.
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