We present the syntactically supervised Transformer (SynST), which achieves faster translation and higher BLEU than competing non-autoregressive neural machine translation models.

SYNST VS. EXISTING SYSTEMS

Gold Parse
Predicted Parse:
Source: Only predicting constituent length (\(k = 1\))
Constituent identity is crucial for quality

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU 2018</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla Transformer</td>
<td>22.78</td>
<td>1.00</td>
</tr>
</tbody>
</table>
| Semi-Autoregressive Transformer
\(k = 2\) | 22.81 | 2.05 |
\(k = 4\) | 16.44 | 3.61 |
\(k = 6\) | 12.55 | 4.86 |
| Latent Transformer* | 22.81 | 2.05 |
As reported in (Kaiser et al. 2018)

SynST:
\(NP1 > VP3\) > Cats sleep a lot
During inference, the model uses its own chunk predictions.

TARGET PARSE CHUNKING

During an in-order traversal, if the subtree rooted at a visited node spans \(k\) tokens, append it to our **chunk sequence**.

ANALYSIS ON IWSLT DEV SET

Constituent identity is crucial for quality

Only predicting constituent length (\(1 > 3\)) rather than type & length (\(NP1 > VP3\)), causes a BLEU drop from 23.8 to 8.2.

Ground-truth syntax yields huge improvements

Conditioning on the ground-truth chunk sequence during inference dramatically **improves BLEU** from 23.8 to 41.5, yielding an upper bound for our approach.

How much does SynST rely on syntax?

Source: Katzen schlafen viel
Predicted Parse: NP1 > VP2
Gold Parse: NP1 > VP3

Target: Cats sleep a lot
Prediction: Cats sleep lots
Parsed Prediction: NP1 > VP2

Future work:

dynamic vs fixed \(k\)

Randomly sampling possible chunk sequences during training by varying \(k\) leads to a **large BLEU improvement** (+1.5) with minimal impact to speedup (drop from 3.8x to 3.1x). Improving parse prediction is an avenue for future research.

SynST’s bottleneck is its parse decoder

A one-layer parse decoder is ~3x faster than a 5-layer version, with only a ~0.5 BLEU drop.

CONTROLLED EXPERIMENTS

Model
WMT En–De
BLEU
Speedup
WMT De–En
BLEU
Speedup
IWSLT En–De
BLEU
Speedup
WMT En–Fr
BLEU
Speedup

<table>
<thead>
<tr>
<th>Model</th>
<th>WMT En–De</th>
<th>WMT De–En</th>
<th>IWSLT En–De</th>
<th>WMT En–Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla Transformer</td>
<td>26.87</td>
<td>30.73</td>
<td>30.00</td>
<td>40.22</td>
</tr>
<tr>
<td>Beam Size = 4</td>
<td>1.00x</td>
<td>1.00x</td>
<td>1.00x</td>
<td>1.00x</td>
</tr>
<tr>
<td>Beam Size = 1</td>
<td>25.82</td>
<td>29.63</td>
<td>28.66</td>
<td>39.41</td>
</tr>
</tbody>
</table>
| Semi-Autoregressive Transformer
\(k = 2\) | 22.81 | 26.78 | 25.48 | 36.62 |
\(k = 4\) | 16.44 | 21.27 | 20.25 | 28.07 |
\(k = 6\) | 12.55 | 15.23 | 14.02 | 24.63 |
| Latent Transformer* | 19.8 | 3.89x | 14.02 | - |
| *As reported in (Kaiser et al. 2018)* |
| Syntactically Supervised Transformer
\(k = 6\) | 20.74 | 4.86x | 23.82 | 33.47 |
| | | | 5.32x | |