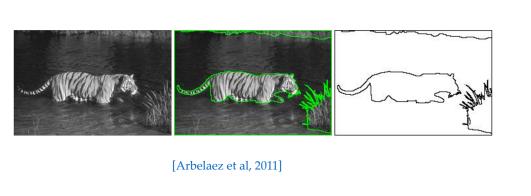
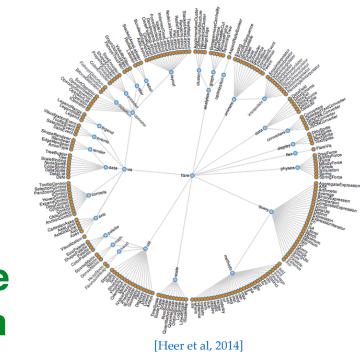
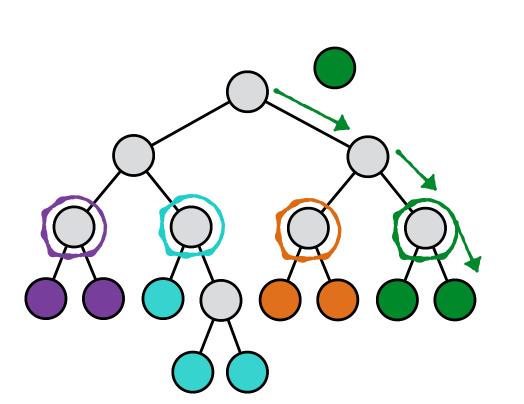
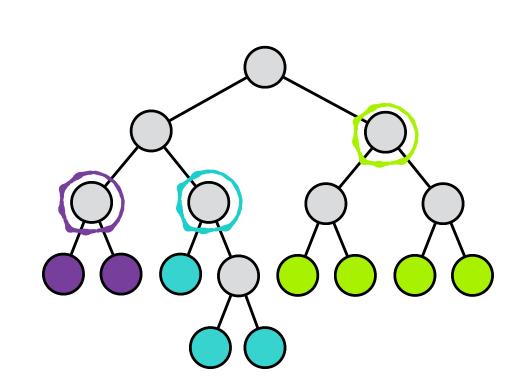

A Hierarchical Algorithm for Extreme Clustering


Ari Kobren*, Nicholas Monath*, Akshay Krishnamurthy, Andrew McCallum University of Massachusetts Amherst


Extreme Clustering

Clustering: partitioning a dataset into a set of disjoint subsets

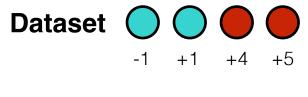


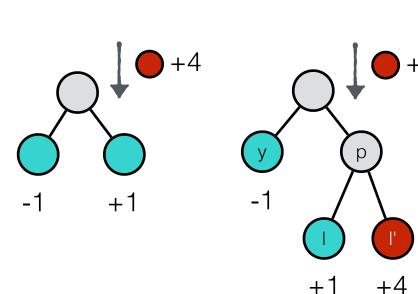

Extreme Clustering: large N and large K

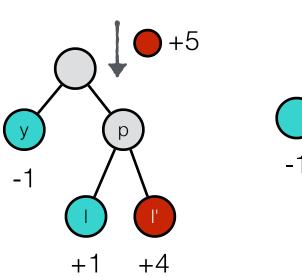
~14M images, ~21k classes

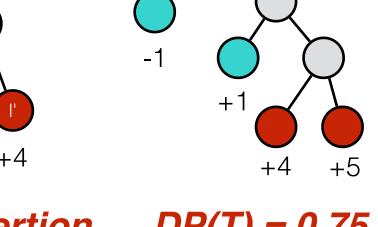
Cluster Trees

- Insert/search scales with log(n)
- Number of clusters unnecessary a priori
- Online updates and construction
- Represents multiple alternative clusterings

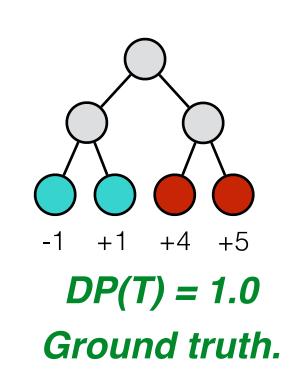

Dendrogram Purity

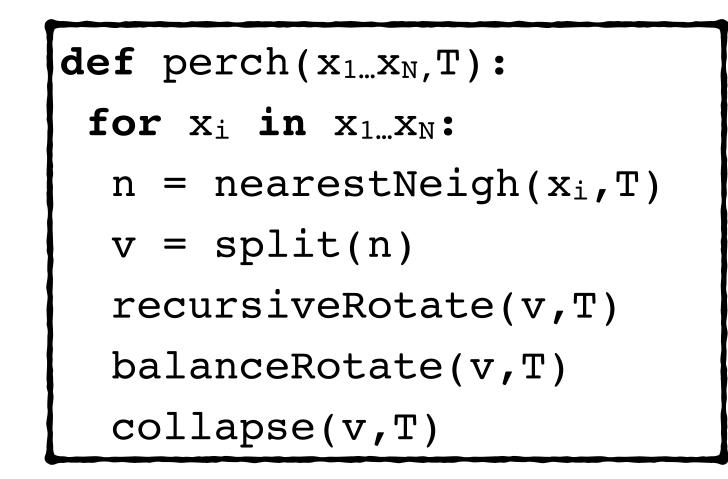

Holistic measure of tree's clustering quality

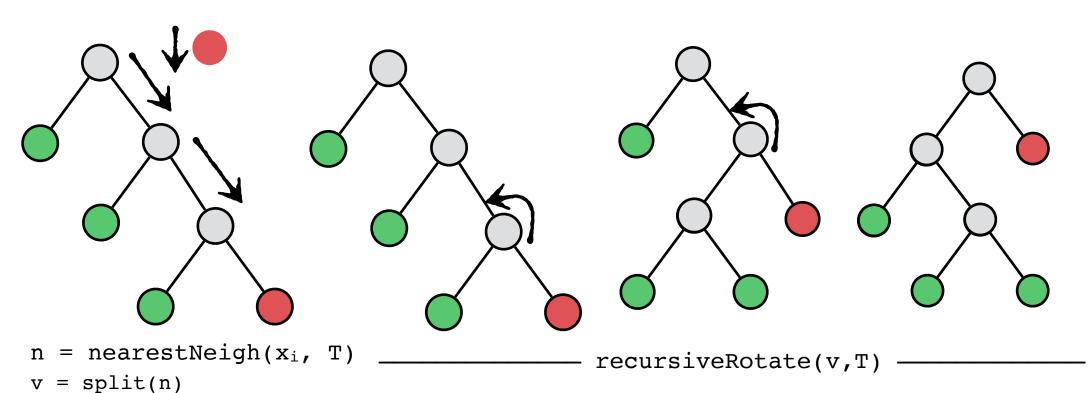

$$\mathtt{DP}(\mathcal{T}) = \frac{1}{|\mathcal{P}^{\star}|} \sum_{k=1}^{K} \sum_{x_i, x_j \in C_k^{\star}} \mathtt{pur}(\mathtt{lvs}(\mathtt{LCA}(x_i, x_j)), C_k^{\star})$$


Greedy Algorithm

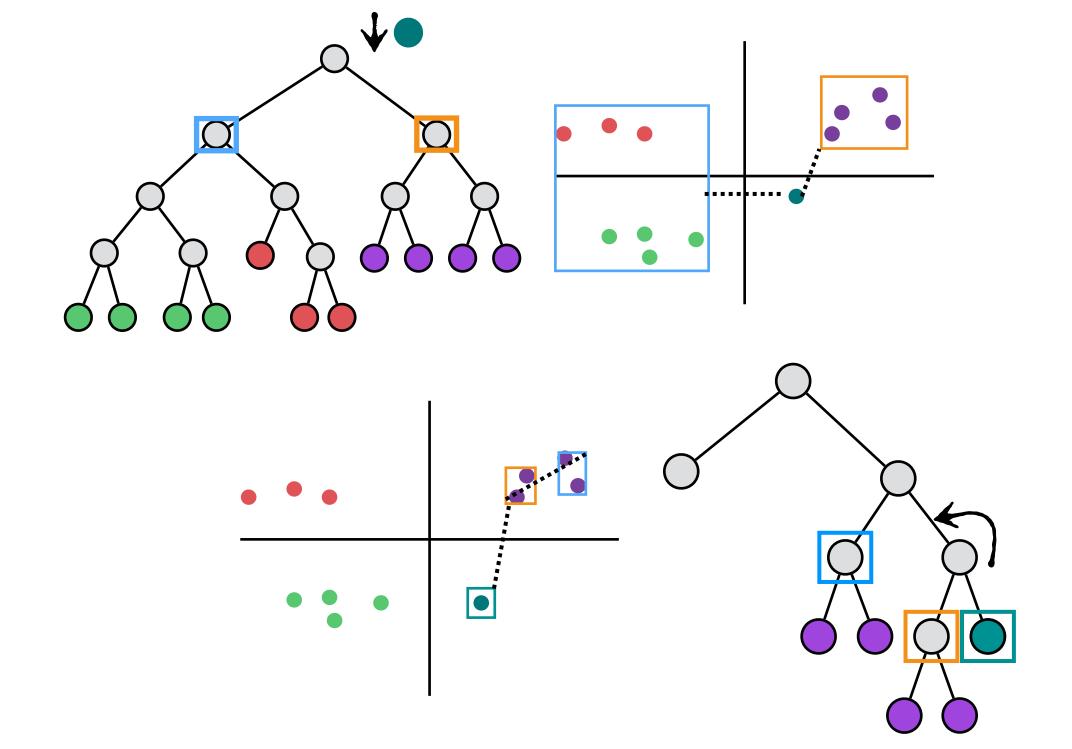
Definition 1 (Masking). A node v with sibling v' and aunt a in a tree \mathcal{T} is **masked** if there exists a point $x \in lvs(v)$ such that $\max_{y \in lvs(v')} ||x - y|| > \min_{z \in lvs(a)} ||\bar{x} - z||$.



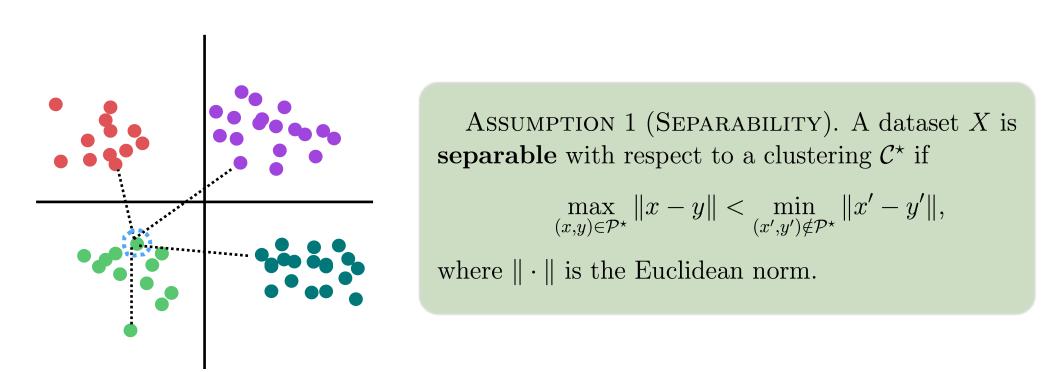



PERCH

Purity Enhancing Rotations for Cluster Hierarchies


Masking-Based Rotations

Alleviate masking via masking-based rotations



Bounding Boxes for Efficient Computation

Nearest Neighbor Search & Rotation Check

Separated Data

Theorem 1. If X is separated w.r.t. \mathcal{C}^* , the greedy algorithm with masking-based rotations constructs a cluster tree with dendrogram purity 1.0.

Beam, Balance & Collapsing

- · For additional speed invoke balance-based rotations
- Collapse mode enforces maximum leaf constraint
- Use approximate nearest neighbor search with beam

PERCH + balance & collapse provably optimal.

Found by A* search only

Found by both A* & Beam

True Nearest Neighbor Found by Beam search only () Collapsed node

Forgotten node

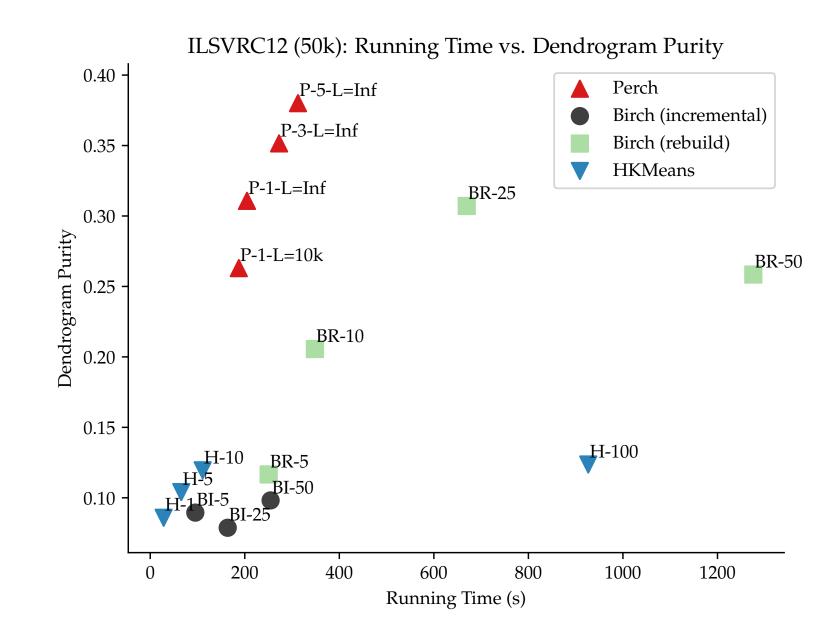
Accuracy Experiments

- Compared 10 algorithms on 9 datasets.
- **Evaluate pairwise F1 and** dendrogram purity.

	Name	Clusters	Points	Dim.
	ImageNet (100K)	17K	100K	2048
	Speaker	4958	36,572	6388
Large	ILSVRC12	1000	1.3M	2048
Data sets	ALOI	1000	108K	128
	ILSVRC12 (50K)	1000	50K	2048
	CoverType	7	581K	54
Small	Digits	10	200	64
Benchmarks	Glass	6	214	10
	Spambase	2	4601	57

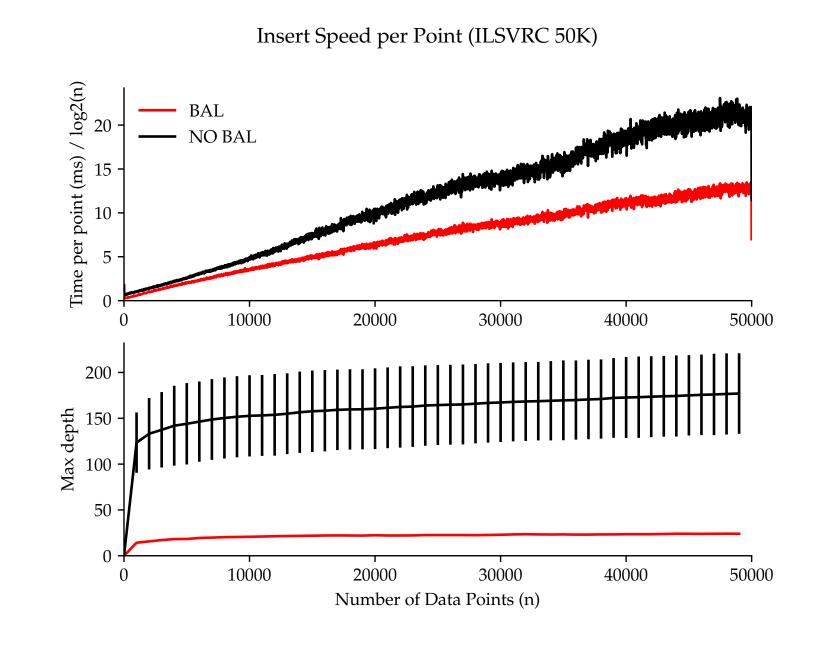
Method	CovType	ILSVRC12 (50k)	ALOI	ILSVRC 12	Speaker	ImageNet (100k)
Perch	0.45 ± 0.004	0.53 ± 0.003	0.44 ± 0.004	_	0.37 ± 0.002	0.07 ± 0.00
Perch-BC	$\textbf{0.45} \pm \textbf{0.004}$	0.36 ± 0.005	0.37 ± 0.008	0.21 ± 0.017	0.09 ± 0.001	0.03 ± 0.00
BIRCH (incremental)	0.44 ± 0.002	0.09 ± 0.006	0.21 ± 0.004	0.11 ± 0.006	0.02 ± 0.002	0.02 ± 0.00
MB-HAC-Com.	_	0.43 ± 0.005	0.15 ± 0.003	_	0.01 ± 0.002	_
MB-HAC-Cent.	0.44 ± 0.005	0.02 ± 0.000	0.30 ± 0.002	_	_	_
HKMmeans	0.44 ± 0.001	0.12 ± 0.002	$\textbf{0.44} \pm \textbf{0.001}$	0.11 ± 0.003	0.12 ± 0.002	0.02 ± 0.00
BIRCH (rebuild)	0.44 ± 0.002	0.26 ± 0.003	0.32 ± 0.002	_	0.22 ± 0.006	0.03 ± 0.00
HAC-Avg	_	0.54	_	_	0.55	_
HAC-Complete	_	0.40	_	_	0.40	_
	(a) Dendrogram purity	for hierarchica	l clustering.		

Method	CoverType	ILSVRC 12 (50k)	ALOI	ILSVRC 12	Speaker	ImageNet (100K)
Perch	22.96 ± 0.7	54.30 ± 0.3	44.21 ± 0.2	_	31.80 ± 0.1	6.178 ± 0.0
Perch-BC	22.97 ± 0.8	37.98 ± 0.5	37.48 ± 0.7	25.75 ± 1.7	1.05 ± 0.1	4.144 ± 0.04
SKM++	23.80 ± 0.4	28.46 ± 2.2	37.53 ± 1.0	_	_	_
BICO	$\textbf{24.53} \pm \textbf{0.4}$	45.18 ± 1.0	32.984 ± 3.4	_	_	_
MB-KM	24.27 ± 0.6	51.73 ± 1.8	40.84 ± 0.5	$\textbf{56.17} \pm \textbf{0.4}$	1.73 ± 0.141	5.642 ± 0.00
DBSCAN	_	16.95	_	_	22.63	_
Kmeans	24.42 ± 0.00	60.40 ± 0.5	39.311 ± 0.3	_	32.185 ± 0.01	_
HAC-Avg	_	_	_	_	40.258	_
HAC-Complete	_	18.28	_	_	44.297	_


Adversarial Orderings

Compare the performance of PERCH and other incremental and online methods as a function of two adversarial arrival orders:

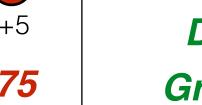
Method	Round.	Sort.	Method	Round.	Sort.
Perch	0.446	0.351	Perch	44.77	35.28
MB-HAC (5K)	0.299	0.464	o-MB-KM	41.09	19.40
MB-HAC (2K)	0.171	0.451	SKM++	43.33	46.67


Speed Experiments

- PERCH-BC: Beam width, collapse threshold
- **BIRCH:** branching factor
- HKMeans: number of iterations per level.

PERCH produces purer trees in less time Others algorithms are faster but low purity

Impact of Balance


Balance rotations improve running time by reducing tree depth.

Conclusion

- PERCH scales well with both N and K
- Also performant on traditional clustering problems
- Provably optimal on separated data

code: http://github.com/iesl/xcluster

paper: http://dl.acm.org/citation.cfm?id=3098079

