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def kmeans(x1...xN,K):
until convergence
for x in x1...xN:
for c in clusters:
if ||c - x|| < min_c:
min_dist = ||c - x||
min_c = x

 assign(x,min_c)
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Large Number of Clusters K
& Large Number of Points N

For large K, we’d like to be sublinear.



Existing Approaches



Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low 
accuracy 

SGD/MiniBatch
 K-Means Very effective, 

but does not 
scale in K

StreamKM++
BICO Number of 

coresets does 
not scale with K 

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]



Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low 
accuracy 

SGD/MiniBatch
 K-Means Very effective, 

but does not 
scale in K

StreamKM++
BICO Number of 

coresets does 
not scale with K 

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]



Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low 
accuracy 

SGD/MiniBatch
 K-Means

Very effective, 
but does not scale 

with K

StreamKM++
BICO Number of 

coresets does 
not scale with K 

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]



Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low 
accuracy 

SGD/MiniBatch
 K-Means

Very effective, 
but does not scale 

with K

StreamKM++
BICO Number of 

coresets does not 
scale with K 

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]



Hierarchical Clustering
Advantages for Online Extreme Clustering

xiEfficiency



Hierarchical Clustering

xi

Advantages for Online Extreme Clustering

Top-Down Log-Time Search

Efficiency

[Choromanska et al, 2015]
[Daumé III et al, 2016]

Extreme Multiclass 
Classification:



Hierarchical Clustering

Top-Down Log-Time Search

xi

[Choromanska et al, 2015]
[Daumé III et al, 2016]

Extreme Multiclass 
Classification:

Advantages for Online Extreme Clustering

Efficiency



Hierarchical Clustering
Advantages for Online Extreme Clustering

Non-greediness



Hierarchical Clustering
Advantages for Online Extreme Clustering

Simultaneously Represent 
Multiple Alternative Clusterings

Non-greediness



Hierarchical Clustering
Advantages for Online Extreme Clustering

Simultaneously Represent 
Multiple Alternative Clusterings

Non-greediness



Hierarchical Clustering
Advantages for Online Extreme Clustering

Simultaneously Represent 
Multiple Alternative Clusterings

Non-greediness



Hierarchical Clustering

Simultaneously Represent 
Multiple Alternative Clusterings

Advantages for Online Extreme Clustering

Non-greediness



PERCH
Purity Enhancing Rotations for Cluster Hierarchies



PERCH

Incrementally build hierarchical clustering

Purity Enhancing Rotations for Cluster Hierarchies



PERCH

Incrementally build hierarchical clustering

Route point to nearest neighbor

Purity Enhancing Rotations for Cluster Hierarchies



PERCH

Incrementally build hierarchical clustering

Route point to nearest neighbor

Tree maintenance using rotation operations

Purity Enhancing Rotations for Cluster Hierarchies



Dataset



True Clustering
(labels withheld from clustering algorithm)
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Data structures used for efficiency?
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Additional Efficiency Components:
Balance Rotations
- Improve tree balance without sacrificing purity
- Speed up nearest neighbor search

Collapsed Mode
- Restrict the number of nodes in the tree
- Allows for clustering data that doesn’t fit in memory
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On separated data, PERCH constructs trees
with dendrogram purity 1.0, even when 
using balance rotations and collapsing.

Theoretical Guarantees:
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Thanks!

Questions?

https://github.com/iesl/xcluster

https://arxiv.org/abs/1704.01858

https://github.com/iesl/xcluster
https://arxiv.org/abs/1704.01858

