A Hierarchical Algorithm for Extreme Clustering

Ari Kobren*, Nicholas Monath* Akshay Krishnamurthy, Andrew McCallum

College of Information and Computer Science University of Massachusetts Amherst

Partition dataset X into clusters C₁... C_K

Partition dataset X into clusters C₁... C_K

Partition dataset X into clusters C₁... C_K

Large Number of Clusters *K* & Large Number of Points *N*

Large Number of Clusters *K* & Large Number of Points *N*

Large Number of Clusters *K* & Large Number of Points *N*

Speaker Recognition NIST I-VEC N = 36,5 K = 4,95

NIST I-VECTOR Challenge

N = 36,572 Samples *K* = 4,958 Speakers

N =14 Million Images K = 21,000+ Object Classes

Large Number of Clusters *K* & Large Number of Points *N*

Speaker Recognition NIST I-VECT N = 36,57 K = 4,958

NIST I-VECTOR Challenge

N = 36,572 Samples *K* = 4,958 Speakers

Image Clustering

N =14 Million Images K = 21,000+ Object Classes

Entity Resolution

A. Banerjee, S. Chassang, E. Snowberg. *Decision Theoretic Approaches to Experiment Design and External Validity.* Handbook of Field Experiments. 2016.

Arindam Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh. *Clustering with Bregman Divergences*. JMLR. 2006.

A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra. *Clustering on the Unit Hypersphere using von Mises-Fisher Distributions.* Journal of Machine Learning Research. 2005

Author Coreference. N=10M Records, K=1M Authors

Large Number of Clusters *K* & Large Number of Points *N*

Speaker RecognitionMNIST I-VECMNKKK4,95

NIST I-VECTOR Challenge

N = 36,572 Samples *K* = 4,958 Speakers **Image Clustering**

N =14 Million Images K = 21,000+ Object Classes

Entity Resolution

A. Banerjee, S. Chassang, E. Snowberg. *Decision Theoretic Approaches to Experiment Design and External Validity.* Handbook of Field Experiments. 2016.

Arindam Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh. *Clustering with Bregman Divergences*. JMLR. 2006.

A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra. *Clustering on the Unit Hypersphere using von Mises-Fisher Distributions.* Journal of Machine Learning Research. 2005

Author Coreference. N=10M Records, K=1M Authors

Large Number of Clusters *K* & Large Number of Points *N*

Large Number of Clusters *K* & Large Number of Points *N*

```
def kmeans(x1...xN,K):
  until convergence
  for x in x1...xN:
   for c in clusters:
      if ||c - x|| < min_c:
      min_dist = ||c - x||
      min_c = x
      assign(x,min_c)
      update(clusters)</pre>
```

Large Number of Clusters *K* & Large Number of Points *N*

```
def kmeans(x1...xN,K):
  until convergence
  for x in x1...xN:
   for c in clusters:
      if ||c - x|| < min_c:
      min_dist = ||c - x||
      min_c = x
      assign(x,min_c)
      update(clusters)</pre>
```

Running time of k-means

Large Number of Clusters *K* & Large Number of Points *N*

def kmeans(x₁...,x_N,K):
 until convergence

```
for x in x<sub>1...</sub>x<sub>N</sub>:
  for c in clusters:
    if ||c - x|| < min_c:
        min_dist = ||c - x||
        min_c = x
    assign(x,min_c)
update(clusters)</pre>
```

Running time of k-means

Large Number of Clusters *K* & Large Number of Points *N*

Linear in K, O(NK)

Large Number of Clusters *K* & Large Number of Points *N*

For large K, we'd like to be sublinear.

	Scales in N	Scales in K	Non-Greedy	In Practice
--	-------------	-------------	------------	-------------

	Scales in N	Scales in K	Non-Greedy	In Practice
BIRCH [Zhang et al, 1998]				Fast, but low accuracy

	Scales in N	Scales in K	Non-Greedy	In Practice
BIRCH [Zhang et al, 1998]				Fast, but low accuracy
SGD/MiniBatch K-Means [Bottou and Bengio, 1995] [Sculley, 2010]				Very effective, but does not scale with K

	Scales in N	Scales in K	Non-Greedy	In Practice
BIRCH [Zhang et al, 1998]				Fast, but low accuracy
SGD/MiniBatch K-Means [Bottou and Bengio, 1995] [Sculley, 2010]				Very effective, but does not scale with K
StreamKM++ BICO [Ackermann et al, 2012] [Fichtenberger, et al, 2013]				Number of coresets does not scale with K

Advantages for Online Extreme Clustering

Advantages for Online Extreme Clustering

Top-Down Log-Time Search

Extreme Multiclass Classification: [Choromanska et al, 2015] [Daumé III et al, 2016]

Advantages for Online Extreme Clustering

Top-Down Log-Time Search

Extreme Multiclass Classification: [Choromanska et al, 2015] [Daumé III et al, 2016]

Advantages for Online Extreme Clustering

Perch

Purity Enhancing Rotations for Cluster Hierarchies

Perch

Purity Enhancing Rotations for Cluster Hierarchies

Incrementally build hierarchical clustering
Purity Enhancing Rotations for Cluster Hierarchies

Incrementally build hierarchical clustering

Route point to nearest neighbor

Purity Enhancing Rotations for Cluster Hierarchies

Incrementally build hierarchical clustering

Route point to nearest neighbor

Tree maintenance using rotation operations

Dataset

True Clustering

(labels withheld from clustering algorithm)

```
def perch(x<sub>1...</sub>x<sub>N</sub>,T):
for x<sub>i</sub> in x<sub>1...</sub>x<sub>N</sub>:
  n = nearestNeigh(x<sub>i</sub>,T)
  v = split(n)
  recursiveRotate(v,T)
```



```
def perch(x<sub>1...</sub>x<sub>N</sub>,T):
for x<sub>i</sub> in x<sub>1...</sub>x<sub>N</sub>:
  n = nearestNeigh(x<sub>i</sub>,T)
  v = split(n)
  recursiveRotate(v,T)
```



```
def perch(x<sub>1...</sub>x<sub>N</sub>,T):
for x<sub>i</sub> in x<sub>1...</sub>x<sub>N</sub>:
  n = nearestNeigh(x<sub>i</sub>,T)
  v = split(n)
  recursiveRotate(v,T)
```


Fast Forward

Data structures used for efficiency?

Bounding Boxes

Fast Forward

Additional Efficiency Components:

Additional Efficiency Components:

Balance Rotations

- Improve tree balance without sacrificing purity
- Speed up nearest neighbor search

Additional Efficiency Components:

Balance Rotations

- Improve tree balance without sacrificing purity
- Speed up nearest neighbor search

Collapsed Mode

- Restrict the number of nodes in the tree
- Allows for clustering data that doesn't fit in memory

Theoretical Guarantees:

On *separated* data, PERCH constructs trees with dendrogram purity 1.0, even when using balance rotations and collapsing.

Results
Results

Results

Method	CovType	ILSVRC12 (50k)	ALOI	ILSVRC 12	Speaker	ImageNet (100k)
PERCH	$\textbf{0.45} \pm \textbf{0.004}$	$\textbf{0.53} \pm \textbf{0.003}$	$\textbf{0.44} \pm \textbf{0.004}$	—	$\textbf{0.37} \pm \textbf{0.002}$	$\textbf{0.07} \pm \textbf{0.00}$
PERCH-BC	0.45 ± 0.004	0.36 ± 0.005	0.37 ± 0.008	$\textbf{0.21} \pm \textbf{0.017}$	0.09 ± 0.001	0.03 ± 0.00
BIRCH (online)	0.44 ± 0.002	0.09 ± 0.006	0.21 ± 0.004	0.11 ± 0.006	0.02 ± 0.002	0.02 ± 0.00
MB-HAC-Com.	_	0.43 ± 0.005	0.15 ± 0.003	_	0.01 ± 0.002	_
MB-HAC-Cent.	0.44 ± 0.005	0.02 ± 0.000	0.30 ± 0.002	_	_	_
HKMmeans	0.44 ± 0.001	0.12 ± 0.002	$\textbf{0.44} \pm \textbf{0.001}$	0.11 ± 0.003	0.12 ± 0.002	0.02 ± 0.00
BIRCH (rebuild)	0.44 ± 0.002	0.26 ± 0.003	0.32 ± 0.002	_	0.22 ± 0.006	0.03 ± 0.00

(a) Dendrogram Purity for Hierarchical Clustering.

Method	CoverType	ILSVRC 12 (50k)	ALOI	ILSVRC 12	Speaker	ImageNet (100K)
PERCH	22.96 ± 0.7	$\textbf{54.30} \pm \textbf{0.3}$	$\textbf{44.21} \pm \textbf{0.2}$	—	$\textbf{31.80} \pm \textbf{0.1}$	$\textbf{6.178} \pm \textbf{0.0}$
PERCH-BC	22.97 ± 0.8	37.98 ± 0.5	37.48 ± 0.7	25.75 ± 1.7	1.05 ± 0.1	4.144 ± 0.04
SKM++	23.80 ± 0.4	28.46 ± 2.2	37.53 ± 1.0	_		—
BICO	$\textbf{24.53} \pm \textbf{0.4}$	45.18 ± 1.0	32.984 ± 3.4			—
MB-KM	24.27 ± 0.6	51.73 ± 1.8	40.84 ± 0.5	$\textbf{56.17} \pm \textbf{0.4}$	1.73 ± 0.141	5.642 ± 0.00
DBSCAN	—	16.95		—	22.63	—

(b) Pairwise F1 for Flat Clustering.

Thanks!

Questions?

