
College of Information and Computer Science
University of Massachusetts Amherst

A Hierarchical Algorithm for
Extreme Clustering

Ari Kobren*, Nicholas Monath*
Akshay Krishnamurthy, Andrew McCallum

Clustering

Clustering
Partition dataset X into clusters C1 … CK

Clustering
Partition dataset X into clusters C1 … CK

Clustering
Partition dataset X into clusters C1 … CK

Clustering

Analysis &
Visualization

[Few, 2014]

[Heer et al, 2014]

Partition dataset X into clusters C1 … CK

Clustering

Feature
Engineering

[Brown et al, 1993]

Partition dataset X into clusters C1 … CK

Analysis &
Visualization

[Few, 2014]

[Heer et al, 2014]

Clustering

Deduplication DBDB
DB

DB

Partition dataset X into clusters C1 … CK

Feature
Engineering

Analysis &
Visualization

[Few, 2014]

[Heer et al, 2014]

[Brown et al, 1993]

Clustering

Image
Segmentation [Martin et al, 2001]

DBDB
DB

DB

Partition dataset X into clusters C1 … CK

Feature
Engineering

Analysis &
Visualization

[Few, 2014]

[Heer et al, 2014]

[Brown et al, 1993]

Deduplication

Extreme Clustering

Extreme Clustering
Large Number of Clusters K
& Large Number of Points N

Extreme Clustering
Large Number of Clusters K
& Large Number of Points N

Speaker Recognition
NIST I-VECTOR Challenge

N = 36,572 Samples
K = 4,958 Speakers

Extreme Clustering
Large Number of Clusters K
& Large Number of Points N

Speaker Recognition
NIST I-VECTOR Challenge

N = 36,572 Samples
K = 4,958 Speakers

Image Clustering

N =14 Million Images
K = 21,000+ Object Classes

Extreme Clustering
Large Number of Clusters K
& Large Number of Points N

Speaker Recognition
NIST I-VECTOR Challenge

N = 36,572 Samples
K = 4,958 Speakers

Image Clustering

Entity Resolution

Author Coreference. N=10M Records, K=1M Authors

N =14 Million Images
K = 21,000+ Object Classes

Extreme Clustering
Large Number of Clusters K
& Large Number of Points N

Speaker Recognition
NIST I-VECTOR Challenge

N = 36,572 Samples
K = 4,958 Speakers

Image Clustering

Entity Resolution

Author Coreference. N=10M Records, K=1M Authors

N =14 Million Images
K = 21,000+ Object Classes

Extreme Clustering
Large Number of Clusters K
& Large Number of Points N

Extreme Clustering

def kmeans(x1...xN,K):
until convergence
for x in x1...xN:
for c in clusters:
if ||c - x|| < min_c:
min_dist = ||c - x||
min_c = x

 assign(x,min_c)
update(clusters)

Large Number of Clusters K
& Large Number of Points N

Extreme Clustering

def kmeans(x1...xN,K):
until convergence
for x in x1...xN:
for c in clusters:
if ||c - x|| < min_c:
min_dist = ||c - x||
min_c = x

 assign(x,min_c)
update(clusters)

Running time of k-means

Large Number of Clusters K
& Large Number of Points N

Extreme Clustering

def kmeans(x1...xN,K):
until convergence
for x in x1...xN:
for c in clusters:
if ||c - x|| < min_c:
min_dist = ||c - x||
min_c = x

 assign(x,min_c)
update(clusters)

Running time of k-means

Large Number of Clusters K
& Large Number of Points N

Extreme Clustering

def kmeans(x1...xN,K):
until convergence
for x in x1...xN:
for c in clusters:
if ||c - x|| < min_c:
min_dist = ||c - x||
min_c = x

 assign(x,min_c)
update(clusters)

Large Number of Clusters K
& Large Number of Points N

Linear in K, O(NK)

Extreme Clustering

def kmeans(x1...xN,K):
until convergence
for x in x1...xN:
for c in clusters:
if ||c - x|| < min_c:
min_dist = ||c - x||
min_c = x

 assign(x,min_c)
update(clusters)

Large Number of Clusters K
& Large Number of Points N

For large K, we’d like to be sublinear.

Existing Approaches

Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low
accuracy

SGD/MiniBatch
 K-Means Very effective,

but does not
scale in K

StreamKM++
BICO Number of

coresets does
not scale with K

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]

Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low
accuracy

SGD/MiniBatch
 K-Means Very effective,

but does not
scale in K

StreamKM++
BICO Number of

coresets does
not scale with K

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]

Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low
accuracy

SGD/MiniBatch
 K-Means

Very effective,
but does not scale

with K

StreamKM++
BICO Number of

coresets does
not scale with K

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]

Existing Approaches

Scales in N Scales in K Non-Greedy In Practice

BIRCH Fast, but low
accuracy

SGD/MiniBatch
 K-Means

Very effective,
but does not scale

with K

StreamKM++
BICO Number of

coresets does not
scale with K

[Zhang et al, 1998]

[Sculley, 2010]

[Ackermann et al, 2012]
[Fichtenberger, et al, 2013]

[Bottou and Bengio, 1995]

Hierarchical Clustering
Advantages for Online Extreme Clustering

xiEfficiency

Hierarchical Clustering

xi

Advantages for Online Extreme Clustering

Top-Down Log-Time Search

Efficiency

[Choromanska et al, 2015]
[Daumé III et al, 2016]

Extreme Multiclass
Classification:

Hierarchical Clustering

Top-Down Log-Time Search

xi

[Choromanska et al, 2015]
[Daumé III et al, 2016]

Extreme Multiclass
Classification:

Advantages for Online Extreme Clustering

Efficiency

Hierarchical Clustering
Advantages for Online Extreme Clustering

Non-greediness

Hierarchical Clustering
Advantages for Online Extreme Clustering

Simultaneously Represent
Multiple Alternative Clusterings

Non-greediness

Hierarchical Clustering
Advantages for Online Extreme Clustering

Simultaneously Represent
Multiple Alternative Clusterings

Non-greediness

Hierarchical Clustering
Advantages for Online Extreme Clustering

Simultaneously Represent
Multiple Alternative Clusterings

Non-greediness

Hierarchical Clustering

Simultaneously Represent
Multiple Alternative Clusterings

Advantages for Online Extreme Clustering

Non-greediness

PERCH
Purity Enhancing Rotations for Cluster Hierarchies

PERCH

Incrementally build hierarchical clustering

Purity Enhancing Rotations for Cluster Hierarchies

PERCH

Incrementally build hierarchical clustering

Route point to nearest neighbor

Purity Enhancing Rotations for Cluster Hierarchies

PERCH

Incrementally build hierarchical clustering

Route point to nearest neighbor

Tree maintenance using rotation operations

Purity Enhancing Rotations for Cluster Hierarchies

Dataset

True Clustering
(labels withheld from clustering algorithm)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

Fast Forward

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

Data structures used for efficiency?

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

Bounding Boxes

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

Fast Forward

PERCH
def perch(x1…xN,T):
 for xi in x1…xN:
 n = nearestNeigh(xi,T)
 v = split(n)
 recursiveRotate(v,T)

PERCH

PERCH

Additional Efficiency Components:

PERCH

Additional Efficiency Components:
Balance Rotations
- Improve tree balance without sacrificing purity
- Speed up nearest neighbor search

PERCH

Additional Efficiency Components:
Balance Rotations
- Improve tree balance without sacrificing purity
- Speed up nearest neighbor search

Collapsed Mode
- Restrict the number of nodes in the tree
- Allows for clustering data that doesn’t fit in memory

PERCH

On separated data, PERCH constructs trees
with dendrogram purity 1.0, even when
using balance rotations and collapsing.

Theoretical Guarantees:

Results

Results

Results

Thanks!

Questions?

https://github.com/iesl/xcluster

https://arxiv.org/abs/1704.01858

https://github.com/iesl/xcluster
https://arxiv.org/abs/1704.01858

