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Abstract
Most of the modern and top-performing Software Transactional
Memory implementations use blocking designs, relying on locks to
ensure an atomic commit operation. This approach revealed better
in practice, in part due to its simplicity. Yet, this approach may have
scalability problems when we move into many-core computers.

In this paper we present and discuss the implementation of a
new scalable and efficient commit algorithm for the Java Versioned
Software Transactional Memory (JVSTM), a multi-version STM
implementation that uses a global lock to commit write transac-
tions.

The new commit algorithm allows commits to proceed in par-
allel during the validation phase, and reduces the critical region of
a commit to a minimum by resorting to helping from threads that
would otherwise be waiting to commit. Instead they help in the
write-back of previous committing transactions. We evaluate the
new algorithm with three benchmarking applications, and show it
to scale well up to 172 cores, the maximum number of physical
cores available on the machine used for the tests. We analyze also
how the new commit algorithm affects the overall performance of
the applications.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Algorithm, transaction, commit, scalability

Keywords JVSTM, transactional memory

1. Introduction
Since the seminal work on Transactional Memory [12] and Soft-
ware Transactional Memory (STM) [14], there has been a boom
in related research, which has led to several proposals for STM
implementations, each with their own set of characteristics. One
such implementation is the Java Versioned Software Transactional
Memory (JVSTM) [3], which was specifically designed to opti-
mize the execution of read-only transactions. In the JVSTM, read-
only transactions have very low overheads, and they never con-
tend against any other transaction. In fact, read-only transactions
are wait-free [11] in the JVSTM.
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JVSTM’s design goals stem from the observation and develop-
ment of real-world domain-intensive web applications. These ap-
plications have rich and complex domains, both structurally and
behaviorally, leading on one hand to very large transactions, but
having also a very high read/write ratio. These characteristics have
been observed over several years of use of the JVSTM in the
FénixEDU project in a production environment [2, 4]. This web
application executes concurrent transactions to process the user re-
quests, and the number of read-only transactions represents, on av-
erage, over 95% of the total number of transactions executed.

The design of the JVSTM allows it to excel in read-intensive
workloads [2], but raises doubts on its applicability to other types
of workloads, where writes dominate. Even though during the exe-
cution of a write-transaction reads and writes of transactional loca-
tions are wait-free, the commit of these transactions serialize on a
global lock, thereby having the potential of impairing severely the
scalability of a write-intensive application.

In this paper we address this problem by presenting and dis-
cussing the implementation of a new scalable and efficient commit
algorithm for the JVSTM that is able to maintain the exact same
properties for reads, as before. This new commit algorithm allows
commits to proceed in parallel during the validation phase, and re-
duces the critical region of a commit to a minimum by resorting to
helping from threads that would otherwise be waiting to commit.
We evaluate the new algorithm with three benchmarking applica-
tions, and show it to scale well up to 172 cores, the maximum num-
ber of physical cores available on the machine used for the tests.
We analyze also how the new commit algorithm affects the overall
performance of the applications.

In the following section we give an overview of the key aspects
of the JVSTM that are relevant to understand the new commit
algorithm. Then, in Section 3 we describe the new algorithm, and
in Section 4 we evaluate its performance using three benchmarking
applications. Section 5 provides a discussion on properties of the
algorithm and related work. We conclude in section 6.

2. JVSTM overview
JVSTM supports transactions using a Multi-Version Concurrency
Control (MVCC) method. Each transactional location uses a Ver-
sioned Box (VBox) [3] to hold the history of values for that location,
as exemplified in Figure 1. A VBox instance represents the identity
of the transactional location, and contains a body with the list of
versions. Each element (VBoxBody) in the history contains a version
number, the value for that version, and a reference to the previous
state of that versioned box.

A transaction reads values in a version that corresponds to the
most recent version that existed when the transaction began. Thus,
reads are always consistent and read-only transactions never con-
flict with any other, being serialized in the instant they begin, i.e., it
is as if they had atomically executed in that instant. Conversely,
write-only transactions are serialized at commit-time (when the
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Figure 1. A transactional counter and its versions.

changes are atomically made visible) and, thus, they never con-
flict as well. Read-write transactions (write transactions for short)
require validation at commit-time to ensure that values read during
the transaction are still consistent with the current commit-time,
i.e., values have not been changed in the meanwhile by another
concurrent transaction.

During a transaction, the JVSTM records each transactional
access (either a read or a write) in the transaction’s local log (in
the read-set or in the write-set, respectively). During commit, if
the transaction’s read-set is valid, then its write-set is written-back,
producing a new version of the values, which will be available
to other transactions that begin afterwards. The following pseudo-
code shows the abstract commit algorithm of write transactions (the
commit of read-only transactions simply returns).

commit() {
GLOBAL_LOCK.lock();
try {

if (validate()) {
int newTxnumber = globalCounter + 1;
writeBack(newTxNumber);
updateGlobalCounter(newTxNumber);

}
} finally {

GLOBAL_LOCK.unlock();
}

}

The global lock provides mutual exclusion among all commit-
ting write transactions, which is important to ensure atomicity be-
tween validating the read-set and writing-back the write-set. Also,
the version number is provided by a unique global counter that
changes only inside the critical region.

The commit operation sets a linearization point when it updates
the global counter. After that point, the changes made by the trans-
action are visible to other transactions that start. When a new trans-
action starts, it reads that number to know which version it will use
to read values.

Also, observe that a read from a transactional location is usually
very fast, for the following reasons:

1. No synchronization mechanism is required to read from a VBox.
The only synchronization point occurs at the start of the transac-
tion, when it reads the most recent committed version number;

2. The list of versions is always ordered by decreasing version
number. The commit operation keeps the list ordered, because
it always writes to the head of the list a version number that is
higher than the previous head version;

3. The required version tends to be at the head of the list, or very
near to it. If it is not at the head, then it is because after this
transaction started, another transaction has already committed
and written a new value to that same location (recall the ex-
pected low number of write transactions, and that a transaction
always starts in the most recent version available ).

2.1 The need for a new commit algorithm
In many cases, the time spent by a write transaction in the critical
region at commit time is very short when compared to the time
it takes to actually execute an entire transaction. Moreover, the
JVSTM was initially developed to support heavy-read applications,

in which the number of read-only transactions corresponds to more
than 95% of the total number of transactions executed. The other
5% seldom overlap in time, even more so, if we only consider the
time of the commit operation. These facts put together justified the
use of the global-lock approach, with good performance results.
Nevertheless, there are reasons to implement an alternate solution.

The rate of execution of write transactions affects performance.
Locks do not scale. Different applications have different work-
loads regarding read and write operations and may execute many
write transactions in a short period of time, especially in the case
of CPU-intensive applications. This may highly increase the prob-
ability of having more than one write transaction trying to commit
concurrently. Whereas this may not be an issue for machines with
a limited number of cores, many-core machines are an emerging
reality and the number of cores available at an affordable price is
growing. Thus, it is reasonable to assume that in a many-core ma-
chine the high contention on the global lock will degrade perfor-
mance significantly.

Contention in multi-processing increases the probability of restarts
due to conflicts, and reduces the overall throughput. It is easy
to understand that when more transactions run concurrently, the
probability of conflicts increase. But it is not so obvious that this
situation may be aggravated when running N transactions in less
that N processors.

As we saw, a write transaction has a conflict if some value that
it read was already changed when it tries to commit. So, intuitively,
the probability of conflict increases with the length of the transac-
tion and the number of concurrent transactions, but it should not
depend on the number of available processors, because having less
processors should slow down all transactions proportionally and,
thus, maintain the probability of having transactions committing
during the execution of another transaction. Yet, this intuition is
valid only if all transactions proceed without interference. Once a
transaction may have to wait for a lock, things change.

The JVSTM’s commit operation uses a fair locking policy. This
means that each transaction will obtain the lock in the order that
it was requested. When a write transaction (T1) commits, it tries
to get the lock. If another transaction (T0) already has it, then T1

has to wait. The more transactions there are, then the less processor
time T0 will have to finish and release the lock. Thus, there is a
higher probability that other write transactions (T2, . . . , Tn) will
queue up for the lock as well, because they will be given processor
time to execute, whereas T1 is still waiting. Suppose that when
T1 finally gets the lock, it fails validation, releases the lock, and
restarts. Releasing the lock and restarting is generally much faster
than committing T2, thus T1 will typically restart with the version
number of T0’s commit (the most recent at the time of restart). So,
in practice, the length of T1, during which other transactions may
commit and therefore conflict with T1, has effectively increased
from its normal executing length by the amount of time that it had
to wait for the lock.

This occurs because the re-execution of T1, on average, will
see more transactions committing than its first execution. It is not
certain that using an unfair lock would reduce the probability of
restarts, simply because then T2, . . . , Tn would still be able to get
ahead of T1 in the race to commit.

3. Scalable commit algorithm
In this section we describe a new commit algorithm that we devel-
oped to replace the existing lock-based implementation. Conceptu-
ally, the algorithm contains the same steps as before: (1) validate
the read-set; (2) write-back the write-set; and (3) make the commit
visible to other transactions. In the following sections we explain
how each step is accomplished in the new algorithm.



3.1 Validation
In the lock-based commit algorithm, validation explicitly checks
that the most recent version of each value in the read-set is still the
same version that was read during the transaction (snapshot valida-
tion). The insight is that validation can also be performed by check-
ing the write-sets of all transactions that have committed versions
greater than the one this transaction started with (incremental vali-
dation). Suppose that T1 started in version v1. For any transaction
Ti that committed a version greater than v1, then if any element
in the write-set of Ti is in the read-set of T1, T1 cannot commit,
because of a conflict.

Of course that, using this lock-free validation, while T1 is val-
idating itself, other transactions can also be validating themselves
to commit. We need to order the commits in such a way that each
transaction can finish validation and be sure that it is valid to com-
mit.

To do so, we use and extend the functionality of the Active
Transactions Record, which already exists in the JVSTM. This
structure was created to manage garbage collection of old versions
of the transactional locations. In brief, it holds a list of transac-
tion records deemed to be active. Each record keeps information
about a write transaction that already committed, namely the com-
mit version and the values that were modified. A record is active if
that committed version of the values is still accessible by any other
transaction. Inactive records can safely be garbage collected, be-
cause they represent inaccessible versions. The implementation is
a singly-linked list of records, with each record holding a reference
to the next most recent record. To support the incremental valida-
tion, we extend the list to also include valid, but not yet fully com-
mitted records. Thus, a transaction that can get an entry in this list
effectively establishes its commit order (and, as such, its commit
version). The code depicted in Figure 2 shows how a transaction
concurrently validates its read-set in a lock-free way.

validateCommitAndEnqueue() {
ActiveTxRecord lastValid = this.activeTxRecord;
do {

lastValid = validate(lastValid);
this.commitTxRecord = new ActiveTxRecord(lastValid.txNumber+1,

this.writeSet);
} while (!lastValid.trySetNext(this.commitTxRecord));

}

Figure 2. The lock-free validation algorithm.

Each write transaction has two transaction records: the activeTx-
Record, which points to the record that represents the version in
which the transaction started; and, the commitTxRecord, which is
the record that is created to represent the transaction’s own commit.

To be valid, a transaction needs to check its read-set against
the write-set of each record from the activeTxRecord onward.
This is what the validate method does: It checks all records from
the lastValid onward and it returns the last successfully vali-
dated record (or throws a CommitException if validation fails at
any point). Next, the new commitTxRecord is created with an in-
cremented commit version number, and the transaction’s write-set.
The trySetNext is a compare-and-set operation that atomically sets
the commitTxRecord as the next valid record after the lastValid.
This is a tentative operation that only succeeds if the next record is
still unset. Otherwise, this means that another transaction has won
the race for that position, in which case validation resumes from the
last known valid record. Thus, commit order is defined by the order
in which transaction records enter the Active Transactions Record
list. All transactions that are in the process of committing must first
gain a position in this list. Even if not all transactions are already
written-back, being in this list enables future committing transac-

tions to check their validity against all those that are already queued
for a sure commit.

Notice that this validation algorithm is lock-free, because even
though a single transaction may continuously fail to get a commit
position, this implies that the transactional system as a whole must
be making progress, i.e., other transactions are in fact validating
and queueing their commit records. Additionally, if no commits
occur between the start and commit of a transaction, then validation
is not necessary, because that transaction’s activeTxRecord is the
most recent one and is already valid, so the committing transaction
only needs to queue up its commit record.

3.2 Write-back
After a successful validation, a transaction obtained a commit ver-
sion, which is represented by the commit record that was placed in
the commit queue. Figure 3, shows an example of a possible state
of the Active Transactions Record. Transactions 9 and 10 have al-
ready committed1, whereas transactions 11 to 13 are valid but not
yet written-back. At this time, any transaction that starts, will start
in version 10, because it is the most recent committed version. We
also show the two transaction records in use by transaction 12 (thus,
assuming that transaction 12 started before transaction 10 had com-
mitted).

next:

COMMITTED

#9

next:

COMMITTED

#10

next:

VALID

#11

next:

VALID

#12

next:

VALID

#13

null

lastCommittedRecord (global)

activeTxRecord (of tx 12) commitTxRecord (of tx 12)

Figure 3. An example snapshot of the Active Transactions Record.

Writing-back consists of creating a new VBoxBody in the corre-
sponding VBox, for each value in the write-set of the transaction,
with the version obtained during validation. Taking into account
that each value is written to a different location, each write can be
done in parallel. One could even consider the concurrency between
any two valid transactions that need to write-back values to differ-
ent locations, but this is not so simple: Within each VBox we need
to maintain the list of versions ordered, to keep the reads fast. If
two valid transactions try to commit different values to the same
location, then they need to be ordered according to their commit
version. This poses a difficulty, because it is expensive to com-
pute whether two valid transactions will write-back to the same
transactional location. This problem did not exist in the lock-based
version, simply because only one transaction could be in the write-
back phase, at any given time.

The easiest way to ensure that write-backs to the same loca-
tion are performed in order is to write-back only one transaction at
a time, beginning with the oldest valid transaction that is yet un-
committed. Each valid transaction will help the oldest valid trans-
action to write-back, up to, and including, itself. This way, instead
of blocking, transactions waiting to commit can be helpful and in-
crease the overall write-back throughput. This behavior is shown in
the code depicted in Figure 4.

After validation, transactions run the ensureCommitStatus

method. This method starts by accessing the globally available
lastCommittedRecord to get the next record to commit. When the
helpCommit method returns, it is guaranteed that the transaction
corresponding to recToCommit has been committed.

The maximum number of transactions that can help to write-
back is naturally limited by the number of processors available.

1 The commit status of a write transaction is given by its commit record.



ensureCommitStatus() {
ActiveTxRecord recToCommit = lastCommittedRecord.getNext();
while (recToCommit.txNumber <= this.commitTxRecord.txNumber) {

if (!recToCommit.isCommitted()) {
helpCommit(recToCommit);

}
recToCommit = recToCommit.getNext();

}
}

helpCommit(ActiveTxRecord recToCommit) {
WriteSet writeSet = recToCommit.getWriteSet();
boolean lastOne = writeSet.helpWriteBack(recToCommit.txNumber);
if (lastOne)

finishCommit(recToCommit);
else

waitUntilCommitted(recToCommit);
}

boolean helpWriteBack(int newTxNumber) {
int block = nextBlock.getAndIncrement(); //atomic counter
while (block < N_BLOCKS) {

writeBackBlock(block, newTxNumber);
if (blocksDone.incrementAndGet() == N_BLOCKS) { //atomic counter

return true;
}
block = nextBlock.getAndIncrement(); //atomic counter

}
return false;

}

Figure 4. The method that ensures the correct execution order
of all pending write-back operations together with the helping
methods.

If we happen to have more transactions committing than CPUs
available, it is simply better to put the extra transactions “on hold”,
and let the others do the work. The processors will already be
occupied, writing-back as fast as possible.

To avoid contention between concurrent helping transactions we
split the values to write-back into several buckets, of approximately
the same size each. Any transaction can help to write-back, by pick-
ing a unique bucket and writing-back the values in that bucket.
Writing to each location can proceed without synchronization, as
no other thread will be writing to the same location. This is guar-
anteed, because the write-set does not contain duplicates, and only
one write-set is written-back at any given time, even though several
buckets of the same write-set can be written-back in parallel.

Ideally, we use as many buckets as the number of available
processors to maximize parallelism, unless it causes the size of
each bucket to be very small. Writing-back a single value is very
fast and, usually, it does not make sense to have a transaction help
with that. Therefore, we use a minimum value for the bucket size,
which can lead to less buckets than the number of processors, but
that, in practice, works better.

The write-set itself holds the buckets, so helpCommit delegates
the write-back operation to the write-set, configuring it with the
version number to use. The helpWriteBack method will write-back
as many buckets as possible (one at a time), and return whether
this helping transaction was the last to finish writing-back a bucket.
Such transaction will have the responsibility of finishing the com-
mit of the transaction being helped. Observe that any helping trans-
action Tj will finish the commit of another transaction Ti only if
Tj happens to be the last one to finish the write-back of a bucket of
Ti. Moreover, unless i = j, in which case the transaction is helping
itself, Ti is necessarily in front of Tj , in commit order. Finishing a
commit entails publicizing the changes globally, and it can be done
only after all values are in place.

If the helpWriteBack method returns false, then all buckets are
already taken by some other helping transaction and they are still

being written-back. This transaction cannot help any further and
it will have to wait until others finish their part. For a transaction
that actually helped, and taking into account that bucket sizes are
uniformly distributed, then the other helping transactions will, on
average, finish almost at the same time, so the wait is expected to be
short. If a transaction did not help at all, then it is because there are
more committing transactions than buckets, and this implies that
the available processors are already fully occupied, so waiting is
acceptable.

The current implementation of the waitUntilCommitted method
uses an exponential back-off algorithm. The method cyclically
checks the commit status of the given record, sleeping for some
random time within an increasing interval, until it sees the record
committed. We have tested with other implementations, but this
solution yielded the best performance for the waiting procedure,
based on experimental results. We also developed alternative com-
mit algorithms that allowed for a complete nonblocking write-back,
but they all entailed some penalty to the readers of transactional lo-
cations, which would make those solutions unsuitable to keep our
goal of not affecting the read operations.

The only synchronization required is, thus, between the helping
transactions in two points: (1) when they pick a unique bucket to
write-back; and, (2) when they signal the completion of a bucket,
to identify the last writer. For this, we use two atomic counters
nextBlock and blocksDone. The helpWriteBack method, of the
WriteSet class, presents the use of the two counters.

Each write-set instance contains an array of N BLOCKS blocks.
The number of blocks may vary from one write-set instance to
another, but never changes during commit. Both counters are ini-
tially set to zero. The getAndIncrement method atomically ensures
a unique block index, for each invocation. If the index is within
valid limits, that block is written-back. After writing-back a block
the blocksDone counter is incremented. If the finished block is the
last, then the method returns true. Otherwise, it gets another block
index to write-back. When the block index exceeds the limit the
method returns false, signaling to the invoker there is nothing else
that can be done. The writeBackBlock method has no synchroniza-
tion, and it does the actual work of copying the values from the
given write-set block to their public location.

The atomic increment of the blocksDone counter ensures a
happens-before relation between other helping transactions that
have already incremented this counter, and this transaction, which,
in turn, ensures that all values previously written-back are now vis-
ible by the transaction incrementing the counter. This is important,
because the last helping transaction to write-back will perform the
final commit of the helped transaction and, as such, we need to en-
sure that all values written-back are effectively seen by transactions
that start after committing the helped transaction.

One way to reduce the waiting performed by a committing
transaction that is no longer able to help (because all buckets are
already taken) is to start writing-back the write-set of a following
record. This can be safely done as long as the write-set of that
record does not intersect the write-set of any previous record that
is still not written-back. An example of an STM that uses this
approach is RingSTM [15], which is able to intersect write-sets
efficiently because it uses Bloom filters to represent the write-
sets (note that false positives in the intersection operation do not
affect correctness). Given that intersecting write-sets is a relatively
expensive operation in our implementation and that the waiting is
expected to be short, we did not experiment with this approach in
our current design.

3.3 Validation revisited
As mentioned in Section 3.1, validation of a transaction T can
be performed in two different ways: (1) A snapshot validation



atomically checks if T ’s read-set is still up to date with the current
global state (this corresponds to the original validation used in the
lock-based commit); and (2) an incremental validation checks each
write-set committed since T started and looks for an intersection
with T ’s read-set (the validation that we introduced in the new
commit algorithm).

Either validation technique has advantages and shortcomings,
performance-wise. Snapshot validation depends solely on the size
of the read-set. The time it takes to validate a read set is propor-
tional to its size. Conversely, incremental validation is independent
of the size of the read-set. This holds true as long as the lookup
function that searches whether any given element is contained in
the read-set can be executed in constant time. Incremental vali-
dation depends on the size and number of all the other write-sets
committed while the transaction executed.

From our experience, read-sets are, on average, several times
larger than write-sets, although this difference is highly dependent
on each application’s read and write patterns. So, incremental vali-
dation will tend to perform better when the average size of a read-
set to validate is greater than the average size of the list of write-
sets to iterate multiplied by their average write-set size. Whereas
the size of the write-set is application dependent, the length of the
write-set list to iterate grows with the number of write transactions.
As the number of concurrent transactions increases, so does the
cost of the incremental validation. To tackle this problem we have
made a modification to the validation procedure, in which we mix
the two techniques. This is presented in the following code snippet.

validate() {
ActiveTxRecord lastSeenCommitted = helpWriteBackAll();
snapshotValidation();
validateCommitAndEnqueue(lastSeenCommitted);

}

Before any actual validation takes place, a transaction helps to
write-back all pending commits already queued. The helpWrite-

BackAll method is similar to the ensureCommitStatus method,
except that it helps to commit all queued records and it returns the
last one that it helped to commit. Then a snapshot validation is
performed. Notice that there is no synchronization and, therefore,
it is possible that concurrent commits occur. However, the list of
committed versions for each transactional location surely contains
at least all the commits up to the version of the lastSeenCommitted

record. Thus, validation is performed up to that point.
Still, if validation succeeds, we must check for any newer com-

mits and ensure a valid commit position. So, we run the incre-
mental validation, but this time only from the lastSeenCommitted

record onwards. The validateCommitAndEnqueue method is ad-
justed to receive the starting record, instead of defaulting to
activeTxRecord.

Even though this algorithm may be slower for a low number of
transactions, it will scale much better, because it keeps the list of
write-sets to check small. Moreover, the initial step in which the
transaction helps to write-back, is not wasted work, as this would
have to be done by some transaction anyway.

3.4 Finishing a commit
After the write-back operation is completely finished, making the
changes globally visible is a trivial operation with two steps: (1)
set the commit flag in the commit record; and, (2) set the global
lastCommittedRecord to be the record just committed. This is done
in the finishCommit method, as shown:

finishCommit(ActiveTxRecord recToCommit) {
recToCommit.setCommitted();
lastCommittedRecord = recToCommit;

}

In this new version of the commit algorithm, the linearization
point is step (1), which sets a volatile Boolean variable to true.
Updating the global reference to the last committed record is just
a helping operation to reduce the search effort of new transactions.
The finishCommit operation has no synchronization, so it is possi-
ble that thread interleaving causes some late thread to actually set
the lastCommittedRecord reference back to a previously commit-
ted record, when there is already a more recent committed record.
For this reason, whenever a new transaction begins, it obtains the
most recent version from the lastCommittedRecord, and then it it-
erates forward, looking for the most recent committed record. Re-
call that a record enters the list immediately after validation suc-
ceeds, whereas in the lock-based algorithm, the list was only up-
dated in mutual exclusion, after each successful commit.

4. Evaluation
To evaluate the scalability of the new commit algorithm, we tested
it using three benchmarking applications. For each one, we tested
the average commit time per transaction, and the overall application
performance, using from 1 up to 256 concurrent transactions, with
both the old and the new versions of the commit algorithm. These
tests were executed on an Azul Systems’ Java Appliance with
172 cores, running a custom Java HotSpot(TM) 64-Bit Tiered VM
(1.6.0 07-AVM 2.5.0.5-5-product).

The first benchmark (Array) is a micro-application that we
developed. It is highly configurable, and very useful to stress test
the JVSTM, but it does not implement any real-world behavior.
It allows us to configure several execution parameters, such as
the number of transactions to execute, how many of them can
run concurrently, the number of reads and writes per transaction,
the number of read-only transactions, write transactions, and so
forth. It creates an array of integer transactional locations, and each
transaction can read and write values to random positions of the
array. This benchmark is useful, because the results that it provides
are unaffected by complex application logic, and as such, they are
more sensitive to changes inside the JVSTM.

The other two benchmarks are often used in STM performance
tests and they implement real-world workloads: Lee-TM [16] and
STMBench7 [10]. The former implements Lee’s routing algorithm
for automatic circuit routing and it measures how long it takes to
lay down tracks on a circuit board. The latter provides a shared data
structure, consisting of a set of graphs and indexes, which models
the object structure of complex applications, and it measures the
throughput of a set of concurrent operations that change the shared
data. Testing with real-world scenarios is important, because they
provide a quantitative measure of the expected influence that the
changes in the JVSTM can produce in real applications.

We present the results of the tests in Figures 5 and 6. For the
Array benchmark we ran to completion 104 write transactions, each
transaction executed 103 reads and 10 writes, randomly distributed
over an array of 106 positions. Lee’s algorithm was applied to
the memory circuit board from [1]. The STMBench7 ran with
structural modifications disabled, a write-dominated workload, and
with long traversals disabled.

Figure 5 shows the average commit times per transaction, for
each benchmark. The number of threads in the horizontal axis,
indicates the number of concurrent transactions allowed to run
(each transaction runs in a different thread). Note that the test
machine has 172 cores, so above that value multi-processing is
implied, whereas there is hardware support for real parallelism in
the tests running with up to 128 threads (i.e., unless contented,
transactions can run at full speed). Also, observe that the vertical
axes use a logarithmic scale.

An excellent result for the new algorithm is that, within each
benchmark, the commit times have almost no variation for any
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Figure 5. Average commit time per thread.
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Figure 6. Overall performance of the applications.

number of threads, showing that the new commit algorithm scales
well, at least up to the number of threads that we tested. With
the old algorithm, performance degrades, because the higher con-
tention for the commit lock introduces an increasing waiting time
in the commit operation. The point where it starts to degrade varies
with the benchmark, because the percentage of time spent com-
mitting varies when compared to the time of the whole transac-
tion. The Array has the shortest transactions, so the commit takes a
larger percentage of the time, thus increasing the probability of con-
tention. On the downside, the new algorithm is slower for a smaller
number of threads, mostly due to the more expensive mixed valida-
tion algorithm. Still, the new algorithm outperforms the old in all
benchmarks for a larger number of threads. For the single-threaded
executions, the difference between the old and new versions effec-
tively shows the added cost of the new algorithm. Whereas for a re-
duced number of concurrent transactions the additional complexity
may not be worth it, we see that for a large number (approximately
above 100), it starts to pay off.

We are also interested in measuring the influence of the im-
proved commit on the overall performance of applications. For Ar-
ray and Lee-TM we measured the time to complete the tasks, and
for STMBench7 we measured the number of operations per sec-
ond performed over a period of two minutes. Figure 6 shows mixed
results for the three benchmarks. In Array, the effects of the scal-
able commit are clearly visible. The old version does not scale be-
yond 16 threads, exactly the point where the commit time starts to
increase greatly. This application is highly concurrent, its transac-
tions are short, and the time spent committing represents a signif-
icant part of the transactions’ total time. Considering Lee-TM, the
differences are insignificant. The application performs many long
transactions that write only a few memory locations, which cause
the commit time to have little relevance on the overall result. For
STMBench7, throughput actually decreases for both versions as we
increase the number of threads, with the old version performing
slightly better up to 32 threads. For a higher number of threads, the

new algorithm performs a little better, but this application executes
many conflicting operations that write to many locations, unfortu-
nately causing a reduction in throughput for both versions.

We conclude that, even though there may exist significant im-
provements in the average commit-time of a transaction, they might
have only little consequences in the overall performance of real-
world workloads, mostly because the duration of the commit is
much shorter than the remainder of the application, and for a low
number of threads, the probability of two transactions being in the
commit phase at the same time is reduced.

The new algorithm is best suited to situations where there is
an increased probability of concurrent commits. Such situations
depend on the combination of the application’s workload and a
large enough number of concurrent transactions. With the micro-
benchmark Array we were able to simulate such situations.

We speculate that with a growing number of cores available,
the degradation caused by the global commit lock will become
more noticeable, and, consequently, the new commit algorithm will
become more suitable. Finally, we verify that even though the new
algorithm is better suited for many-core scenarios, it may also be
used in place of the old one with little performance penalty for low
thread counts.

5. Discussion and related work
Even though the initial proposals for STMs used nonblocking de-
signs (from lock-free to obstruction-free), their implementation
presented large overheads, making them less performing in prac-
tice than simpler blocking designs [7]. So, most, if not all, of the
most recent and current top-performing STMs block some threads
to ensure exclusive access to some critical region during certain op-
erations (e.g., TL2 [6], RingSTM [15], TinySTM [8], NOrec [5]),
typically the commit operation.

The original JVSTM followed a similar approach, using a global
lock to ensure exclusive access to the commit operation of write



transactions. Unlike other approaches, however, in the JVSTM
read-only transactions are not affected by this approach, and they
are wait-free.

Using a single global lock has the advantage of being simple
to implement and very fast when the lock is uncontended, but has
the disadvantage, as we discussed already, of preventing concurrent
commits that could proceed in parallel because the committing
transactions accessed unrelated data.

STMs such as TL2 allow such concurrent commits by acquiring
locks for all the transactional locations accessed by the transaction
(and later releasing them once the commit is concluded), but this
approach has overheads that are typically proportional to the size
of the read-set (R) plus the size of the write-set (W ).

Another problem of these blocking designs is the duration of
the critical region, which depends on what needs to be done within
that region. The original JVSTM validates the transaction and does
the write-back of the write-set with the lock held, thereby spending
time that is proportional to R + W in the critical region. Likewise
for TL2 that needs to validate the transaction after acquiring the
locks.

Our new commit algorithm is still blocking, but allows for con-
current commits without incurring into the overheads of acquiring
locks as in other designs, and reduces the critical region to a mini-
mum.

In our design, validation is lock-free and is done outside the
critical region. Moreover, a thread is blocked only when it needs
to wait for the end of the write-back of a previous transaction, but
given that we have helping in the write-back, where we may have
all of the cores doing the write-back concurrently, the duration of
the critical region is highly reduced. Note that the coordination of
the helping process is done through a lock-free algorithm, also.
NOrec [5] uses a similar lock-free validation mechanism, but it
does not allow any concurrent commits, thus limiting scalability.
RingSTM [15], on the other hand, supports concurrent commits,
but only insofar as the write-sets do not overlap. If this occurs, the
committing transactions have to write-back serially, and there is no
helping mechanism installed.

The design of our helping mechanism allows us to dispense
with more expensive locking behavior, because it maintains the
sequential ordering of the write-back of all valid transactions.

Besides, it maintains intact the properties of the original JVSTM
design in what regards read-only transactions, as well as the behav-
ior of reads and writes to transactional locations during the exe-
cution of a transaction. Only the commit of write transactions was
changed. There are other proposed STM designs that include help-
ing mechanisms [9, 13], but they incur performance penalties in the
reads.

To the best of our knowledge, our commit algorithm is unique
in this regard, being the first to use helping to reduce the time
of the commit of a transaction, by doing the commit of a single
transaction concurrently by as many cores as those available on the
system,

6. Conclusion
In face of the widespread growth of parallel computational power,
the concern for the development of scalable applications is gaining
relevance. In this paper we have presented how the JVSTM can be
improved with a new scalable and efficient commit algorithm.

Because we had access to a test machine with a high number
of real cores, we were able to obtain results that provide high
levels of confidence about the real scalability of the algorithm.
We are confident on the algorithm’s ability to scale to an even
higher number of cores and we expect, in the future, to be able
to experimentally confirm this assumption.

Regarding the effects on the overall performance of applica-
tions, there were mixed results, showing that execution patterns and
domain-specific logic have a great influence on the outcome, due to
the variation on the relative time that is spent in the commit opera-
tion, when compared with the entire transaction. These results, on
the other hand, reveal that the simple approach used in the original
JVSTM goes a long way without showing real problems, thereby
reinforcing the idea of choosing simple designs whenever possible.
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