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Abstract
We present Selective Multi-Versioning (SMV), a new STM that re-
duces the number of aborts, especially those of long read-only
transactions. SMV keeps old object versions as long as they might
be useful for some transaction to read. SMV is able to do this while
still allowing reading transactions to be invisible by relying on au-
tomatic garbage collection to dispose of obsolete versions. SMV is
most suitable for read-dominated workloads, for which it achieves
much better performance (up to 100% more throughput) than a
single-version STM; its throughput is also up to 50% higher than
that of an STM that keeps a constant number of versions per object,
while also requiring 30% less memory. SMV is scalable, and its
advantage increases with the number of concurrent threads. How-
ever, SMV is less ideal for read-write workloads. We discuss some
possible extensions and future research directions for investigating
STMs with the goal of achieving “the best of both worlds”.

1. Introduction
Transactional memory [9, 20] is an increasingly popular paradigm
for concurrent computing in today’s and tomorrow’s multi-core ar-
chitectures. Most transactional memory implementations today are
software toolkits, or STMs for short. A fundamental tenant of virtu-
ally all STMs is speculatively allowing multiple transactions to pro-
ceed concurrently, before it is known whether there are any data de-
pendencies among them. This optimistic approach inevitably leads
to aborting transactions in some cases; in particular, when such de-
pendencies render their speculative execution inconsistent, (e.g.,
not linearizable). When many transactions contend on the same
data objects, aborts may become frequent, which has a devastating
effect on performance [2]. Reducing the number of aborts is thus
an important challenge for STMs. In this paper, we focus precisely
on this challenge.

While some aborts are unavoidable, existing STMs tend to be
over-conservative, and also abort transactions that could have been
committed without violating consistency. Such unnecessary aborts
often stem from coarse-grained inconsistency detection based on
conflicts [6, 7, 10], where two transactions are said to conflict if
both access the same data object, and at least one of these accesses
is a write. Note, however, that a conflict does not always entail an
inconsistency. Consider, for example, the following scenario: trans-
action T1 reads an object o1, then it pauses and another transaction
T2 updates objects o1, o2 and commits. Assume that now T1 at-
tempts to read o2. Reading the value written by T2 would violate
correctness, since T2 cannot be serialized before T1. But despite
the conflict, T1 may still be able to commit consistently by reading
the previous version of o2, pre-dating the one written by T2.

More generally, a read-only transaction can always commit by
reading a consistent snapshot [3] of the objects it accesses, e.g.,
object values that reflect updates by the transactions that committed
before it began and no partial updates by concurrent transactions.
Then why do such transactions abort? Simply because they cannot

find the old object versions needed for such a consistent snapshot.
In fact, most leading STMs [5–7, 10] keep only one version of each
object. As we show below, this causes many transactions to abort,
in particular in read-dominated workloads, where single-version
STMs can abort up to 70% of the transactions.

Keeping multiple versions per object, a practice called multi-
versioning [4], can mitigate this effect; (in the example above,
keeping two versions of o2 avoids the abort of T1). Nevertheless,
efficient use of multiple versions in STMs is far from trivial. Most
notably, it raises the challenge of garbage collection (GC): since an
STM cannot keep the previous object versions forever, the question
is when and how old object versions can be removed.

Ideally, one would like to keep versions that are still useful to
some potential readers, and remove ones that are obsolete. Yet pre-
vious works on multi-versioned STMs did not succeed in doing so
(see Section 2). Interestingly, this shortcoming stems, in part, from
a seemingly unrelated consideration: previous work has noted the
practical importance of making read operations invisible [6, 17],
i.e., having no effect on shared memory. But we observe that if
read-only transactions are invisible, then other transactions have
know way of telling whether there still exist read-only transactions
that might read the old version! So it appears that combining invis-
ible reads with effective garbage collection is impossible.

To circumvent this apparent paradox, we use the automatic
GC facility available in managed memory systems. Such systems
use dedicated GC threads, which have access to all the threads’
private memories. Thus, even operations that are invisible to other
transactions are visible to the garbage collector.

In Section 3, we present Selective Multi-Versioning (SMV), a
new STM algorithm with invisible read operations that uses old
object versions to reduce aborts. SMV provides wait-free termina-
tion for (almost) all read-only transactions – they neither block nor
abort. SMV keeps old object versions as long as there are trans-
actions that can safely read them, while ensuring that all obsolete
object versions become garbage collectible (GCable), i.e., can be
reclaimed by the automatic GC service. For infrequently-updated
objects, SMV typically holds exactly one version.

In Section 4 we present a preliminary evaluation of SMV. We
implement SMV in Java within the STMBench7 [8] benchmark
suite. We compare SMV to a TL2-style algorithm – a single-
versioned STM whose basic operation is like that of TL2 [5]; and
to a k-versioned variant of the same algorithm, which keeps k pre-
vious versions per object, similarly to LSA [17]. We evaluate the
algorithms on a 32-core machine by running up to 32 threads. Our
findings show that SMV is most suitable for read-dominated work-
loads with long-running transactions. For example, with 32 threads,
the throughput of SMV is more than double that of the TL2-style
algorithm, and a 50% higher than those of 4- and 8-versioned al-
gorithms. This is thanks to the much higher commit ratio of SMV:
97% compared to 54% and 76% with the other algorithms. At
the same time, SMV may consume as much as 30% less memory
than the studied multiversioned algorithm. Moreover, SMV scales
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better than the other algorithms, and its advantage becomes more
pronounced when we increase the number of concurrent threads,
as conflicts become more likely.

Indeed, in read-dominated workloads, SMV can reap substantial
benefits from avoiding aborts of long-running transactions. As ex-
plained above, aborts are avoided thanks to keeping old object ver-
sions. However, keeping this information may incur a large over-
head in workloads with many (short) update transactions. In order
to evaluate this overhead, we examine the performance of SMV in
read-write workloads with frequent updates. Although in this sce-
nario SMV still reduces the abort rate compared to the other algo-
rithms, its throughput is inferior to theirs.

In Section 5, we discuss some future research directions, includ-
ing possible extensions that may reduce SMV’s overhead in work-
loads with frequent short writes. These ideas were not yet evalu-
ated; we defer their detailed study to a later (and more complete)
version of this work.

In summary, SMV reduces the number of aborts in STMs by
storing object versions as long as they might be useful. It achieves
a simple design by relying on existing automated GC mechanisms.
Though SMV reduces the abort rate in all workloads, this translates
to performance benefits only in read-dominated ones, where many
aborts are avoided and the overhead for keeping multiple versions
is low. The question of whether this tradeoff is inherent or “the best
of both worlds” is attainable remains open. We outline some ideas
for further investigation of this question.

2. Related Work
As noted above, most existing STMs are single-versioned. Of these,
SMV is most closely related to TL2 [5], from which we borrow the
ideas of invisible reads, commit-time locking of updated objects,
and a global version clock for consistency checking. In a sense,
SMV may be seen as a multi-versioned extension of TL2.

Among multi-versioned STMs, the closest to SMV is LSA [17].
LSA, as well as its snapshot-isolation variation [18], implements a
simple solution to garbage collection: it keeps a constant number
of versions for each object. However, this approach leads to storing
versions that are too old to be of use to any transaction on the
one hand, and to aborting transactions because they need older
versions than the ones stored on the other. The number of versions
kept defines a tradeoff between the two; the authors of [17] use 8.
In contrast, SMV keeps versions as long as they might be useful
for ongoing transactions, and makes them GCable by an automatic
garbage collector as soon as they are not. For infrequently updated
objects, SMV typically keeps a single version.

Other previous suggestions for multi-versioned STMs (includ-
ing our own) [2, 12, 14] were based on cycle detection in the
conflict graph, a data structure representing all data dependencies
among transactions. Cycle detection incurs a high cost (quadratic
in the number of transactions), which is clearly not practical. More-
over, it requires reads to be visible in order to detect future conflicts,
which can be detrimental to performance. Our earlier work [12]
specified complex GC rules as to when old versions can be re-
moved. However, the algorithm was too complex to be amenable to
practical implementation, and did not specify when these GC rules
ought to be checked. Aydonat and Abdelrahman [2] propose to keep
each version as long as there exist transactions that were active at
the time it was created, but the authors do not specify how this rule
can be implemented efficiently. Other theoretical suggestions for
multi-versioned STMs ignored the issue of GC altogether [14]. In
contrast, in this paper we present a simple algorithm, which imple-
ments invisible reads, and exploits the automatic GC available in
languages with managed memory.

Another approach for increasing concurrency of conflicting
transactions was presented by Ramadan et al. [16]. This work

presents an implementation of the dependence-aware transactional
memory (DASTM), in which the conflicting transactions commit
according to their conflict serialization order. For example, if a
transaction Tr reads an object written by an active transaction Tw

(W→R conflict), then Tr should read the value written by Tw and
the commit/abort of Tr is postponed till the commit/abort of Tw.
DASTM accepts every conflict-serializable transactional interleav-
ing and in this way DASTM, similarly to SMV, has the goal of
increasing concurrency. The main difference is that in DASTM
some transactions are actually paused till the termination of con-
flicting transactions, while in SMV the transactions progress inde-
pendently. DASTM technique of reading the values of uncommit-
ted transactions might cause cascading aborts. Additionally, reads,
which are invisible in SMV must be visible in DASTM because the
transaction should know all its conflicting predecessors.

3. Selective Multi-Versioning Algorithm
We present Selective Multi-Versioning, a new object-based STM
algorithm. Section 3.1 presents the principle underlying SMV’s de-
sign. The data structures used by SMV are described in Section 3.2.
Section 3.3 presents the basic algorithm, and Section 3.4 discusses
some practical optimizations.

3.1 Design Principles
SMV’s main goal is to reduce aborts in read-dominated workloads,
especially ones with long transactions. SMV is based on the fol-
lowing design choices:

Invisible reads. Read operations can only modify the reading
transaction’s private memory, and do not affect global memory.
Invisible reads have been argued to be important for performance,
especially in multi-core systems, where updates to global memory
cause caches to thrash [6, 17].

Multi-versioning for reads. Read-only transactions usually com-
mit in a wait-free manner. We achieve this by allowing read-only
transactions Ti to observe a consistent snapshot corresponding to
Ti’s start time. The optimization we present in Section 3.4 may
“give up” on some long running transactions, hence this property
only “usually” holds.

Managed garbage collection based on real-time order. Old ob-
ject versions are removed once there are no longer live read-only
transactions that can consistently read them. To achieve this with
invisible reads, SMV relies on the omniscient garbage collection
mechanism available in managed memory systems. Thus, SMV
needs only to ensure that unneeded data is GCable, i.e., it is not
referenced by any live memory object. Note that this approach man-
dates that object handles will not point to old versions, in order to
render old versions GCable.

Global version clock. Like TL2 [5] and LSA [17], SMV uses
a global version clock to detect conflicts. Each transaction reads
the clock when it begins, and update transactions increment the
clock upon commit. Each object is tagged with the version clock of
the transaction that wrote it. Though the global version clock is a
contention-point, many practical optimizations were introduced to
reduce the overhead associated with it [5, 19]. Such optimizations
are orthogonal to our work, and are therefore beyond the scope
of this paper. In a companion paper [15], we prove that global
contention is essential for any multi-versioned STM that performs
garbage collection based on real-time order (more formally, such
an STM cannot be disjoint access parallel [11]).

3.2 Overview of Data Structures
As usual in object-based STMs, objects are accessed via object
handles. An object handle includes a pointer to the memory lo-
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cation of the current version of the data, as well as a versioned
lock [5], i.e., a variable holding the global version number associ-
ated with the transaction that wrote the data and a lock bit.

In order to facilitate garbage collection, object handles in SMV
point only to the latest (current) version of each object. Pointers to
older object versions are kept in a different data structure, namely
a list of time points, as we explain below.

Global version numbers are generated using a global version
clock. However, unlike previous implementations of such clocks [5,
17], SMV maintains the version clock as a linked list of time points,
rather than a scalar variable. Upon commit, an update transaction
adds a new time point (succeeding the current time point) at the end
of the list. For example, when the current global version is 100, a
committing update transaction adds a time point holding 101, and
adds a pointer to it from the time point holding 100.

The variable curPoint points to the time point added by the
latest committed update transaction. When a read-only transaction
begins, it keeps, (in its local variable startTP), a pointer to the
current time point. The pointer is cleared upon commit, making
old time points at the head of the list GCable.

Old object versions are pointed to by the time points associated
with the transactions that over-wrote them: A committing transac-
tion Tw creates a new time point and a pointer from this time point
to the previous version of every object in its write set before di-
verting the object handle to the new version. Reading transactions,
in turn, traverse the time points, starting from StartTP, to find old
versions. Old versions become GCable once the time points point-
ing to them do, i.e., when all active transactions are newer than the
transaction that over-wrote them.

Figure 1 illustrates the commit of an update transaction Tw that
writes to object o1. In this example, Tw and a read-only transaction
Tr both start at time 9, and hence Tr points to this time point. The
previous update of o1 was associated with version 5. When Tw

commits, it adds time point 10, which points to version 5 of o1,
and changes o1’s object handle to point to the new data, which is
associated with version 10. Assume Tr then wants to read object
o1. Tr determines that it cannot read the latest version because its
version (10) is later than Tr’s start time. Hence, Tr traverses the
time points from time point 9, until it finds the first time point that
holds some version of o1 (time point 10 in our case).

curPoint

time point 9

Tr Tw

ver = 5

o1

data5

Tw updates o1
and commits

curPoint

Tr

on

ver = 10

o1 on

data5data10

time point 9 time point 10

Figure 1. Time point 10 installed by Tw references the over-written
version of o1.

3.3 Basic Algorithm
Handling update transactions. The protocol for update transac-
tion Ti is depicted in Algorithm 1. The general idea is similar to
the one used in TL2 [5] and LSA [17]. An update transaction Ti

aborts if some object oj read by Ti is over-written after Ti begins
and before Ti commits. Conflicts are detected using the global time
points list. Upon starting, Ti saves the value of the latest time point
in the local variable upperBound. Roughly speaking, upperBound
holds the latest time at which an object in Ti’s read-set is allowed
to have been over-written.

A read operation of object oj first reads the latest version of oj

via the object handle, and then checks whether this version is valid
for Ti (function validateRead, lines 30–38). The validation proce-
dure first verifies that oj is not locked. Then, it tries to validate that
oj’s version is less than or equal to Ti.upperBound. If it is not, then
Ti tries to expand its upperBound to oj’s version by checking that
none of the objects in its read-set has been over-written (function
validateReadSet). If this attempt fails, the transaction is aborted.

A write operation (lines 10–13) is also invisible to other trans-
actions, as it postpones the actual work until the time of commit.
Write creates a copy of the object’s latest version for local updates,
and puts it in Ti’s local write set.

Algorithm 1 SMV algorithm for update transaction Ti.
1: Upon Startup:
2: Ti.upperBound← curPoint→time

3: Read oj :
4: if (oj ∈ Ti.writeSet) then return Ti.writeSet.get(oj )
5: data← oj .latest
6: if ¬validateRead(oj ) then abort
7: readSet.put(〈oj , data〉)
8: return data

9: Write to oj :
10: if (oj ∈ Ti.writeSet) then update Ti.writeSet.get(oj ); return
11: localCopy← oj .latest.clone()
12: writeSet.put(〈oj , localCopy〉)
13: update localCopy

14: Commit:
15: foreach oj ∈ Ti.writeSet do: oj .lock
16: if ¬validateReadSet() then abort

B newTP will reference the overwritten data
17: newTP← new time point
18: foreach oj ∈ Ti.writeSet do:
19: newTP.prevVersions.put(〈oj , oj .latest〉)
20: timeLock.lock()
21: newTP.time← curPoint→ time + 1

B update and unlock the objects
22: foreach 〈oj , data〉 ∈ Ti.writeSet do:
23: oj .version← newTP.time
24: oj .latest← data
25: oj .unlock()
26: curPoint.next← newTP
27: curPoint← newTP
28: timeLock.unlock()

29: Function validateRead(Object oj )
30: if oj .isLocked() then return false
31: if (oj .version > Ti.upperBound) then B oj has been over-written
32: if ¬validateReadSet() return false
33: upperBound← oj .version
34: return true

35: Function validateReadSet() B verify that none of the objects in the
read-set has been over-written after being read by Ti

36: foreach 〈oj , data〉 ∈ Ti.readSet do:
37: if oj .isLocked() ∨ oj .latest 6= data then return false
38: return true

Commit (lines 15–28) consists of the following steps:

1. Lock the objects in the write set (line 15). Deadlocks may
be detected by standard mechanisms (e.g., timeouts or Dread-
locks [13]), or may be avoided if acquired according to the same
order by every transaction.

2. Validate the read set.

3. Create a new time point newTP (lines 17–19), referencing all
the versions over-written by Ti (from Ti’s write set). For the
sake of simplicity, we first assume that commit locks the time
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points list (line 20). We will show in Section 3.4 how we avoid
such locking.

4. Set the value of newTP to the successor of curTP.

5. Update and unlock the objects in the write set (lines 22–25). Set
their new version numbers to the value of curTP.

6. Install the new time point at the end of the list and unlock the
time points list (lines 26–28).

Algorithm 2 SMV algorithm for read-only transaction Ti.
1: Upon Startup:
2: Ti.startTP← curPoint

3: Read oj :
4: latestData← oj .latest
5: if (oj .version ≤ Ti.startTP.time) then return latestData
6: TP← startTP.next
7: while(TP 6= ⊥) do:
8: if oj ∈ TP.prevVersions then return TP.prevVersions.get(oj )
9: TP← TP.next

10: Commit:
11: Ti.startTP← ⊥

Handling read-only transactions. The pseudo-code for read-
only transactions appears in Algorithm 2. The basic SMV algo-
rithm guarantees that every read-only transaction Ti commits in
a wait-free manner. The general idea is to construct a consistent
snapshot based on the start time of Ti. At startup, Ti.startTP points
to the latest time point (line 2); we refer to the time value of startTP
as Ti’s start time. For each object oj , the latest versions written to
oj before Ti’s start time should be read. When Ti reads an object
oj whose latest version is greater than its start time, it traverses the
list of time points until it finds any version of oj . Some version
is guaranteed to be found, because the updating transaction that
over-wrote oj has added a time point referencing the over-written
version. The commit procedure for read-only transactions merely
removes the pointer to the starting time point, in order to make it
GCable, and always commits.

3.4 Optimizations
Allowing concurrent access to the time points list. We show
how to avoid locking the time points list (lines 20, 28), so that
update transactions with disjoint write-sets are able to commit
concurrently. We first explain the reason for using the lock. In order
to update the objects in the write-set, the updating transaction must
know the new version number. The version number must be chosen
and added to the list as part of the same atomic action, so that
other transactions will not get the same number. But if a transaction
makes the new time point available before it updates its write-
set, then some read-only transaction might observe an inconsistent
state, as exemplified by the following scenario: transaction Tw

updates objects o1 and o2. The value of curPoint at the beginning
of Tw’s commit is 9. Assume Tw first inserts a new time point with
value 10 to the list, then updates object o1 and pauses. At this point,
o1.version = 10, o2.version < 10 and curPoint → time = 10.
A new read-only transaction starts with time 10 and successfully
reads the new value of o1 and the old value of o2, because they are
both less than or equal to 10, obtaining an inconsistent snapshot.
We conclude that the new time point should not become available
to reading transactions before the objects are updated.

To preserve consistency without locking the time points list,
we add an additional boolean field ready to the time point data
structure, which becomes true only after the committing transaction
finishes updating all objects in its write-set. In addition to the global
curPoint variable referencing the latest time point, we keep a global

curReadyPoint variable, which references the latest time point in
the ready prefix of the list. When a new read-only transaction starts,
its startTP variable references curReadyPoint (instead of curPoint
as in the original algorithm). In the scenario above, the new read-
only transaction has a start time of 9, because the new time point
with value 10 is still not ready. Hence, the new transaction does not
return the new value of o1 before the new value of o2 is written.
Generally, the use of curReadyPoint guarantees that if a read-only
transaction Tr reads an object version written by Tw, then Tw has
finished writing all the objects in its write-set.

Limiting the length of read operation traversals. In the basic
algorithm described above, a read-only transaction Tr might need
to traverse an unbounded number of time points from its start point
until it finds a time point referencing a version of some object oj .
In case many (short) writes overlap Tr , the overhead of traversing
the list will degrade the performance of Tr to the point that it will
not justify the benefit of avoiding the abort.

In order to avoid this undesired behavior, we define a system
parameter, WindowSize, which limits the number of time points a
read operation may traverse. If an appropriate version is not found
after traversing WindowSize time points, the transaction aborts.
Such aborts of long-running transactions also allow GC of old time
points. Using a limited WindowSize compromises the guarantee of
unabortable read-only transactions, but significantly improves the
algorithm’s performance in some workloads (see Section 4).

4. Preliminary Evaluation
4.1 Experiment Setup
In order to evaluate the performance of our algorithm we use
the Java version of the STMBench7 [8] evaluation framework.
This framework includes a benchmark suite that aims to simu-
late different behaviors of real-world programs by involving read-
only and update transactions of different lengths over the large
data structures. It supports various workload types, including read-
dominated workloads, where the share of read-only transactions is
higher than that of update transactions, and read-write workloads,
where there is no clear domination of either read-only or update
transactions. There is no straightforward way to plug-in current
STM toolkits into STMBench7, and therefore one needs to imple-
ment the algorithm directly in this framework.

Our evaluation aims to check the specific novel aspect intro-
duced by SMV, namely, keeping and garbage collecting multiple
versions using time points. Hence, we compare SMV to the clos-
est well-known algorithm, namely TL2. Specifically, we implement
the following algorithms in STMBench7:

SMV with the WindowSize set to 100.

SMVUnlimited – an unoptimized version of SMV, in which the
WindowSize parameter is ∞, i.e., there is no limit on the num-
ber of time points traversed during the read operation.

TL2-style – A single-versioned STM mimicking the basic opera-
tion of TL2 [5] with a single central global version clock.

k-versioned – an STM similar to TL2, in which each object keeps
k versions, (like in LSA). When a read-only transaction cannot
read the latest version of an object, it checks if it may read any
of the previous k versions. If all are too old or if the object is
locked, the transaction aborts.
The main difference between our k-versioned algorithm and
LSA is in the treatment of concurrent writers: we use commit-
time locking as in TL2, whereas writers in LSA are visible and
use an additional level of indirection for atomic commit. The
authors of LSA have chosen to keep 8 versions. In this section,
we experiment with 4- and 8-versioned algorithms.
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It is worth noting that our implementation of the TL2-style algo-
rithm does not use many of the software optimizations used in the
original one. Instead, we use a common code platform to compare
the algorithmic issues and not the engineering optimizations, which
we believe may be applicable to each of the compared alternatives.

The benchmarks are run on a shared-memory NUMA server
with 8 Quad Core AMD 2.3GHz processors and 16GB of mem-
ory attached to each processor. The server was not used by other
applications during our experiments. To ensure that the only lim-
iting factor for scalability is memory contention, we ran at most
32 threads for each workload, corresponding to the maximal true
concurrency provided by the machine.

In each test, each thread executes 2000 random transactions
on the data structures of STMBench7 distributed according to the
specific benchmark’s characteristics. Each data point in the graphs
shows an average taken over all threads. Each test is repeated
multiple times to ensure that the results are not spurious. The same
seeds are used for the random number generators for all algorithms,
so that they all execute exactly the same workload in every test.
STMBench7 starts measuring performance after an initialization
stage, in which it loads all the classes and builds an initial data
structure, thus eliminating any “cold start” effect.

Memory usage is evaluated by measuring JVM’s allocated heap
space. We note that this approach can be inaccurate, and might
not give a clear picture of the memory demands of transactional
objects, due to a large number of non-transactional immutable
objects kept by the benchmark. In the future, we would like to
design a more precise way for evaluating the memory usage of
different TM algorithms.

4.2 Results
Read-dominated workloads. We first study read-dominated work-
loads, i.e., runs in which the rate of long running read-only trans-
actions is much higher than the rate of update transactions. Read-
dominated workloads emphasize the strong sides of SMV:

1. Since this benchmark includes long read-only transactions, the
old versions SMV keeps are used intensively, leading to a high
commit ratio.

2. The rate of update transaction commits is relatively low. There-
fore, time points are added to the global list infrequently. Thus,
read-only transactions do not need to traverse many time points
when looking for old object versions, and SMV’s overhead is
low.

In Figure 2, we depict the commit ratio and the throughput of
the studied algorithms in read-dominated workloads. In Figure 2(a)
we can clearly see the deterioration of the commit ratio for the
other algorithms. We see that keeping a limited number of previous
versions increases the commit ratio from 0.55 to 0.75 in the k-
versioned algorithm. However, there is no significant difference
between keeping four or eight versions. We believe this might
be because many of the aborts are due to objects being locked
rather than no appropriate version being available. In contrast,
SMV’s commit ratio remains above 0.97 for both the optimized
and unoptimized versions of SMV.

Despite the fact that SMV provides a better commit ratio than k-
versioned algorithms, it consumes less memory. This is because our
algorithm strives to keep only versions with potential readers. For
example, SMV may keep a lot of versions for frequently updated
“hotspot” objects, while keeping only one (the latest) version for
an object with a low update rate. In Figure 3, we see the average
amount of heap-allocated memory space of the different algorithms
during the benchmark run. We can see that the memory demands
of SMV are smaller than those of 4- and 8-versioned algorithms.

1 16 32
SMVUnlim 308.5683 566.1 695.7817
SMV 280.5167 471.75 535.2167
4-ver 416.1667 712.5333 736.85
8-ver 560.85 827.6 966.5167
TL2 274.3 550.05 565.65
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Figure 3. Average memory consumption in an STMBench7 read-
dominated workload. SMV consumes less memory than k-versioned algo-
rithms.

The high commit ratio achieved in this benchmark, along with
the low overhead for reads, make SMV highly efficient. In Fig-
ure 2(b) we can see that the throughput of SMV grows as the num-
ber of threads increases (up to 32 threads), and it is substantially
higher than achieved by other algorithms, which suffer from a high
abort rate with a large number of threads: the throughput of the
TL2-style algorithm is 308 txs/sec, compared to 623 txs/sec for
SMV for 32 threads.

Read-write workloads. We now compare the performance of the
algorithms in read-write workloads. Read-write workloads present
the worst-case scenario for SMV, due to the following reasons:

1. Update transactions cannot leverage the multiple versions
stored by SMV. Therefore, their commit ratio is the same as
in the other algorithms.

2. The rate of update transaction commits is relatively high, and
the overhead of adding many new time points to the global
time points list is significant. Moreover, read operations that
need to look for old object versions have to traverse long list
suffixes, imposing a high computational overhead on read-only
transactions.

In Figure 4, we depict the commit ratio and the throughput of
the algorithms in the read-write workload. The commit ratio (Fig-
ure 4(a)) of SMV, like those of the other algorithms, drops signifi-
cantly as the number of threads grows. This decrease is due to con-
flicting update transactions. However, SMV’s commit ratio is still
much better than those of TL2-style and k-versioned algorithms
because of the reduced abort rate of read-only transactions.

In Figure 5, we see the average amount of heap-allocated space
during the benchmark run. We can see that the memory consump-
tion of SMVUnlimited becomes much worse when the number of
threads increases. This happens because long read-only transac-
tions progress slowly, and therefore do not allow for efficient GC
of the time points. The memory consumption of SMV, however, re-
mains lower than that of the k-versioned algorithm, even for a large
number of threads.

In Figure 4(b) we see that the overhead of traversing long
suffixes of the time points list becomes excessive for high rates of
committing transactions: indeed, the throughput of SMVUnlimited
drops for a large numbers of threads. This problem is mitigated
when we limit the number of traversed time points, emphasizing
the importance of the WindowSize parameter. Nevertheless, SMV
is still inferior to the other algorithms in this workload. The TL2-
style algorithm, which has the lowest overhead, achieves the best
performance.
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(b) Throughput in a read dominated workload.

Figure 2. Throughput and commit ratio for STMBench7 read-dominated workload. SMV gives the best throughput and commit ratio.
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(a) Commit ratio in a read-write workload.
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(b) Throughput in a read-write workload.

Figure 4. Throughput and commit ratio for STMBench7 read-write workload. Though giving a best commit-abort ratio, the throughput of SMVUnlimited
drops for the large number of threads. The throughput of SMV is similar to those of TL2-style algorithms for small number of threads and it becomes 20%
worse when the number of threads increases to 32.
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SMV 290.25 581.3167 825.0833
4-ver 429.8333 742.0667 902.4667
8-ver 589.7333 882.8667 1058.717
TL2 287.9 551.6667 588.3167
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Figure 5. Average memory consumption in STMBench7 read-write
workload. The memory consumption of SMVUnlimited does not scale well
as the number of threads grows, whereas SMV’s memory consumption is
lower than that of the k versioned algorithms.

5. Discussion and Future Research Directions
We presented Selective Multi-Versioning, an STM algorithm that
reduces the number of aborts, and is especially effective in read-
dominated workloads. Beyond the SMV algorithm, there are two
general take-away points from this paper: (1) the tradeoff between
commit rates and overhead; and (2) the use of auxiliary threads that
have access to private memories to complement invisible transac-
tional operations. We now discuss these two points, as well as fu-
ture research directions related to both of them.

5.1 Commit rates vs. overhead
There is an inherent tradeoff between improved commit rates on the
one hand, and the overhead associated with keeping, finding, and
removing old versions on the other. There are two complementary
approaches to studying this tradeoff.

First, formal analysis can explore the theoretical limitations of
multi-versioning. We are currently working on a (theoretical) com-
panion paper [15] that proves inherent limitations on STMs in terms
of the relationships between three factors: (1) the conditions under
which aborts can be ensured to be avoided (permissiveness [12]),
(2) the visibility level of transactional operations, and (3) the ability
to garbage collect object versions that are no longer useful to any
live transaction.

The second approach is to try to push the envelope of practi-
cal STM implementations further along. We now discuss our ini-
tial thoughts on how to reduce the overhead without forfeiting low
abort rate. We observe that SMV’s overhead directly depends on the
frequency of update transactions: First, every update transaction in
SMV does more work than in a single-versioned STM like TL2– it
allocates a new time point data structure instead of simply updating
an existing version clock. Second, the overhead of read-only trans-
actions grows with the number of update transactions they overlap,
because every concurrently committing update transaction adds to
the time points list they might need to traverse. Third, the mem-
ory allocation of SMV, and with it the cost of automatic garbage
collection, also increase with the frequency of update transactions.

Thus, it appears that the main limiting factor for SMV’s perfor-
mance is the frequency of creating new time points. Our first idea
therefore focuses on allocating fewer time points.
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Allocating a new time point serves two purposes. The first goal
is to distinguish between two versions of the same object, in case
this object is referenced by both the new and the previous time
points. In this case, creating a new time point is essential for
correctness. The second goal, which is not required for correctness,
is allowing a more aggressive garbage collection— object versions
stored in a previous time point may be garbage collected while there
are still live read-only transactions pointing the new time point.

In case the write set of a transaction T does not intersect the
set of objects stored in the latest time point, T can safely add its
objects to the latest time point, and increment the version of that
time point. Doing so reduces the overhead, both for T and for
subsequent read-only transactions, but it incurs a memory cost by
delaying garbage collection. We plan to experiment with different
policies for choosing when to create a new time point.

SMV’s overhead can be further reduced via clever use of auxil-
iary threads, as discussed in the next section.

5.2 Auxiliary threads
Implementing transactional operations in an invisible way has been
argued to be important for performance. On the other hand, it
limits the information available to transactions, which poses some
challenges for STM designers.

In this paper, we used an auxiliary GC thread in order to cir-
cumvent one of the limitations of invisibility, namely, the inabil-
ity to garbage collect old object versions once they are no longer
useful for any live transaction. The auxiliary thread has access to
all memory, including the “invisible” private memory of read-only
transactions. Although, from a theoretical standpoint, this means
that operations are not strictly invisible, from a practical perspec-
tive, they are “invisible enough”, since the GC thread is only run
infrequently, and the vast majority of transactional operations can
continue to be served from local caches without interference.

While in SMV we relied upon one particular pre-existing aux-
iliary thread, we believe that the same approach can have many
additional uses, as STMs can design their own auxiliary threads for
a variety of purposes.

In the context of SMV, we plan to develop a custom GC thread
as part of the application, to replace the system’s automated one.
This will allow SMV to be used in environments without managed
memory, similarly to Boehm’s garbage collector [1]. The custom
GC can also work more efficiently than the automated one, by
explicitly looking for time points with no pointers from startTP
variables. In addition, this approach will allow for a number of
optimizations to improve SMV’s performance.

For example, there is a high overhead of traversing long time
points lists in mixed workloads because automatic GC prevents
object handles from directly referencing old object versions. But
if we use our own custom GC thread, we can keep “soft” pointers
to the old version: the custom GC thread can identify versions for
removal using startTP pointers only, and upon deciding to remove
a version, it can disconnect the pointer to it from the object handle.

We have only scratched the surface of possible uses of auxil-
iary threads. We hope that future work will find many additional
creative ways to exploit them, in the context of STM and beyond.
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