
Compilation of Thoughts about AMD Advanced Synchronization Facility and
First-Generation Hardware Transactional Memory Support

Jaewoong Chung, Luke Yen, Martin Pohlack, Stephan Diestelhorst, Michael Hohmuth, David Christie
Advanced Micro Devices, Inc.

jaewoong.chung,luke.yen,martin.pohlack,stephan.diestelhorst,michael.hohmuth,david.christie@amd.com

Abstract

AMD’s Advanced Synchronization Facility (ASF) is an AMD64 ex-
tension for transactional programming and lock-free data structures.
After we had released the ASF specification to the public, we contacted
various transactional memory (TM) experts in academia and indus-
try to get their opinions on ASF and suggestions for improvements.
We found their feedback invaluable in understanding what the first-
generation TM hardware support should look like and how to improve
ASF. In this paper, we present the summary of their likes, dislikes,
and concerns about ASF and explain our opinions on their sugges-
tions. By sharing the reviews, we hope to encourage further involve-
ment of TM experts in defining a desirable set of requirements for the
first-generation TM hardware support. We believe that this will greatly
help to bring out a better TM support sooner in commercial processors.

1. Introduction

Transactional memory (TM) is a promising solution to help pro-
grammers develop parallel programs [4, 7, 11, 13, 14]. With TM, pro-
grammers enclose a group of instructions within a transaction to exe-
cute them in an atomic and isolated way. The underlying TM system
runs transactions in parallel as long as they have no inter-transaction
data dependencies.

Advanced Synchronization Facility (ASF) is an AMD64 hardware
extension for transactional programming and lock-free data structures [1,
8]. ASF consists of seven instructions. SPECULATE and COMMIT
are for demarcating transaction boundaries. ABORT is for rolling back
a transaction voluntarily. LOCK MOV is for selectively annotating the
memory accesses to be processed transactionally. RELEASE is to se-
mantically drop a transactional read access performed previously by
LOCK MOV before COMMIT. Advanced programmers can use the
ISA directly to implement lock-free data structures. They use LOCK
MOV and RELEASE to control the number of words accessed transac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

tionally between SPECULATE and COMMIT. By keeping the number
of cache lines accessed in a transaction under what ASF guarantees to
support in hardware, they do not need to have a software backup mecha-
nism for transactional execution and can use ASF as a flexible extension
of the existing single-word atomic primitives such as CMPXCHG [3].
Average programmers can rely on compilers that accept high-level lan-
guage constructs such as atomic blocks [4] and that generate ASF-based
code. WATCHR and WATCHW are used to set a system-wide access
monitor on an address in a transaction and to detect memory accesses
to the address originating from other cores in the system.

After the ASF specification [1] had been released, we contacted
many experts ranging from professors to OS developers and game pro-
grammers to get various reviews on ASF. In this paper, we present the
summary of the reviews that we find invaluable in understanding what
the first-generation TM hardware support should look like and how to
improve the current ASF specification. This summary paper presents
what the reviewers liked and disliked about ASF. It also includes their
concerns and our opinions on their suggestions. By sharing the re-
views, we hope that readers formulate their own opinions on the issues
discussed in the paper, make suggestions to the TM community, and
identify more issues. All of this will greatly help to bring out a better
first-generation TM hardware support in future commercial processors.

The paper is organized as follows. Section 2 provides an overview
of ASF and programming examples. Section 3 presents the summary
of the reviews and our opinions on them. Section 4 discusses related
work and Section 5 concludes the paper.

2. ASF Overview

2.1 ISA

Table 1 shows the seven instructions ASF adds to the AMD64 ar-
chitecture. SPECULATE starts a transaction. It takes a register check-
point that consists of the program counter (rIP) and the stack pointer
(rSP). The rest of the registers are selectively checkpointed by software
in the interest of saving hardware cost. Nested transactions are sup-
ported through flat nesting — parent transactions subsume child trans-
action [13].

LOCK MOV moves data between registers and memory like MOV,
but with two differences. First, it should only be used within trans-
action boundaries; otherwise, a general protection exception (#GP) is
triggered. Second, the underlying ASF implementation processes the
memory access by LOCK MOV transactionally (i.e., data versioning
and conflict detection for the access). A conflict against the access is

Category Instruction Function

Transaction SPECULATE Start a transaction
Boundary COMMIT End a transaction
Transactional LOCK MOV Load from [Addr]
Memory [Reg], [Addr] to [Reg] transactionally
Access LOCK MOV Store from [Reg]

[Addr], [Reg] to [Addr] transactionally
ASF Context ABORT Abort the current transaction
Control RELEASE [Addr] Undo a transactional load

to [Addr] done by
a previous LOCK MOV

Access WATCHR [Addr] Detect a store from
Monitor [Addr] by the other cores

WATCHW [Addr] Detect a load or store to
[Addr] by the other cores

Table 1. ASF instruction set architecture.

detected when either a transactional access from another transaction
or a non-transactional access also touches the same cache line, and at
least one of the accesses is a write. This ensures strong isolation of
the memory accesses by LOCK MOV [7]. Since the detection is done
at cache-line granularity, there can be false conflicts due to false data
sharing in a cache line. To reduce design complexity, LOCK MOV is
allowed only for the WB (writeback) memory access type [3]. We pro-
vide the minimum capacity guarantee as part of ISA so that transactions
that access up to four distinctive memory words with LOCK MOV are
guaranteed not to suffer from capacity overflows.

Since ASF allows transactional accesses and non-transactional ac-
cesses to be mixed within transaction boundaries, it is possible that the
same cache line is accessed by both access types. ASF disallows only
one case where a cache line modified by a transactional access is mod-
ified by a non-transactional access later in the same transaction. This
rule aims to separate the previous transactional data that will be com-
mitted at the end of the transaction from the current non-transactional
data that must be committed immediately. If this rule is violated, a #GP
exception is triggered.

All the other cases are allowed. A transactional access following a
non-transactional access to the same address is allowed since the non-
transactional access is committed when the instruction triggering the
access retires. A non-transactional load following a transactional load
is allowed since loads do not conflict. A non-transactional load follow-
ing a transactional store is allowed since the load just reads the result of
the store in program order. A non-transactional store following a trans-
actional load is allowed simply because it does not break the memory
consistency maintained by the underlying ASF system. There are two
sub-cases here with regard to another thread accessing the cache line.
If another thread reads from the cache line, the value written by the
non-transactional store is returned since the previous transactional load
does not conflict with it and the non-transactional store has been al-
ready committed. If another thread writes to the cache line, a conflict is
detected against the previous transactional load regardless of the non-
transactional store.

RELEASE drops isolation on a transactional load access performed
to an address by LOCK MOV. The underlying ASF implementation
may stop detecting conflicts to the address with the semantics that the
load access never happened. It is ignored if used on an address pre-
viously modified by LOCK MOV to prohibit discarding transactional
data before committing a transaction.

COMMIT concludes a transaction. The register checkpoint is dis-

Status Code Aborted by
ASF CONTENTION Transaction conflict
ASF ABORT ABORT instruction
ASF CAPACITY Transaction overflow
ASF DISALLOWED OP Prohibited instructions
ASF FAR Exception, Interrupt
Table 2. ASF abort status codes set in rAX.

carded and the transactional data are committed. A nested COMMIT
does not finish a transaction for flat nesting. The underlying ASF im-
plementation checks if there is a matching SPECULATE. If not, a #GP
exception is triggered.

ABORT is for rolling back a transaction voluntarily. Transactional
data are discarded, and the register checkpoint is restored. This brings
the execution flow back to the instruction following the outermost SPEC-
ULATE and terminates transactional operation. ASF supports jumping
to an alternative rIP at a transaction abort by manipulating the zero
flag (ZF). ZF is cleared by SPECULATE and set when a transaction
is aborted. JNZ (jump when not zero) with an alternative rIP can be
placed right below SPECULATE. JNZ falls through at first since ZF
is cleared by SPECULATE but jumps to the alternative rIP at transac-
tion abort since ZF is set for an aborted transaction. Since the execu-
tion flow is out of transactional context after the transaction abort, JNZ
needs to jump back to SPECULATE if the transaction is to be retried.
The combination of SPECULATE and JNZ is essentially identical to
an alternative design in which SPECULATE takes an alternative rIP
as an operand since AMD64 processors translate this kind of complex
instructions into multiple micro-operations (e.g., the micro-operation
versions of SPECULATE and JNZ in this case). On detecting a trans-
action conflict, ASF performs the same abort procedure to roll back the
conflicted transaction.

There are multiple conditions for a transaction abort besides ABORT
and a transaction conflict. Since it is important for software to under-
stand why a transaction has failed and respond appropriately, ASF uses
rAX to pass an abort status code to software, as shown in Table 2. Since
rAX is updated with the status code at a transaction abort, compilers
must not use rAX to retain a temporary variable over SPECULATE. A
general purpose register is used for the status code rather than a new
dedicated register that would require additional OS support to handle
context switches.

There are five abort status codes. ASFCONTENTION is set when
a transaction is aborted by a transaction conflict. ASFABORT is set by
ABORT. ASF CAPACITY is set when a transaction is aborted due to
transactional hardware-resource constraints. ASFDISALLOWED OP
is set when a prohibited instruction is attempted within transaction bound-
aries. Prohibited instructions are categorized into three groups. The
first group includes the instructions that may change the code seg-
ments and the privilege levels such as FAR CALL, FAR JUMP, and
SYSCALL. The second group includes the instructions that trigger in-
terrupts such as INT and INT3. The third group includes instructions
that can be intercepted by the AMD-V (Virtualization) hypervisor [2].

ASF FAR is set when a transaction is aborted due to an exception
(e.g., page fault) or an interrupt (e.g., timer interrupt). Due to design
simplicity, ASF rolls back transactions at exceptions and interrupts. To
report which instruction triggered the exception, ASF adds a new MSR
(Model Specific Register), ASFExceptionIP, which contains the pro-
gram counter (rIP) of the instruction triggering the exception. At a page
fault, a transaction is aborted and as usual the page fault’s linear address
is stored in CR2 (Control Register 2) [3].

WATCHR and WATCHW set an access monitor to track memory

Push:
 SPECULATE
 JNZ <Push>
 LOCK MOV RAX, [RBX + head]
 MOV [RDX+ next], RAX
 LOCK MOV [RBX + head], RDX
 COMMIT

Pop:
 SPECULATE
 JNZ <Pop>
 LOCK MOV RAX, [RBX + head]
 CMP RAX, 0
 JE <Out>
 MOV RDX, [RAX + next]
 LOCK MOV [RBX + head], RDX
Out:
 COMMIT

(a) Lock-free LIFO

Insert:
 SPECULATE
 JNZ <Insert>
 LOCK MOV RAX, [table_lock]
 CMP RAX, 0
 JE <ActualInsert>
 ABORT
ActualInsert:
 // insert an element
 COMMIT

Resize:
 LOCK BTS [table_lock], 0
 JC <Out>
 // resize the table
 MOV [table_lock], 0
Out:

(b) Resizable Hashtable

Figure 1. Lock-free LIFO and resizable hashtable with
ASF ISA.

accesses to an address originating from other cores. WATCHR detects
a store to the address. WATCHW detects a load or a store to the address.
If such accesses are detected, the transaction enclosing the instructions
is aborted.

2.2 Programming with ASF

ASF supports three programming styles: transactional programming,
lock-free programming, and collaboration with traditional lock-based
programming.

Transactional Programming: It is straight-forward to write trans-
actional programs with ASF. A transaction is enclosed by SPECU-
LATE and COMMIT, and all memory accesses in the transaction are
performed with LOCK MOV. ABORT is used for rolling back the
transaction voluntarily.

Lock-free Programming: ASF makes it easy to construct lock-
free data structures for which simple primitives such as CAS are either
insufficient or inconvenient. For example, a lock-free LIFO list is a
concurrent linked list that pushes and pops elements like a stack with-
out locking. It can be implemented with a single-word CAS (Compare-
And-Swap) instruction such as CMPXCHG. A new element B is pushed
by first reading the top element A, setting B’s next pointer to point to
A, and then writing B to the link head with CAS that updates the link
head only when the head still points to A. While providing better con-
currency than the lock-based LIFO, the CAS-based implementation has
theABAproblem [12] caused by the time window between reading A
and executing CAS. If another thread pops A, pushes a new element
C, and pushes A back during the time window, CAS will update the
list header with B since the header still points to A. This breaks the list
since C is lost. This issue has traditionally been addressed by appending
a version number to the list head pointer which is atomically read and
updated with the pointer. However, this requires a wider CAS operation
and extra space consumed for the list head pointer. ASF avoids these
requirements by detecting data races not based on data values but based
on the accesses themselves. In thePushfunction in Figure 1(a), the cur-
rent value of the head pointer (RBX + head) is loaded transactionally to
a temporary register (RAX), which initiates conflict detection against

 SPECULATE
 LOCK MOV RAX, [mem1]
 LOCK MOV RBX, [mem2]

 /* a random op with RAX and RBX */

 LOCK MOV [mem1], RAX
 LOCK MOV [mem2], RBX
 COMMIT

Figure 2. A flexible fetch-and-op pattern.

the head pointer. Then, the current head pointer value is assigned to
the next pointer of a new element (RDX + next) being pushed. Finally,
the head pointer is updated with the new element (RDX). In this way,
the Push function is free of the ABA problem since the head pointer is
protected by ASF throughout the function and a transaction conflict is
detected when C is pushed. ThePop function works similarly except
that it has an additional check (i.e., CMP RAX, 0) to see if the LIFO is
empty. Moreover, ASF allows multiple elements to be popped in one
atomic operation, by allowing one to safely walk the list to the desired
extraction point, then updating the head pointer.

Collaboration with Lock-based Programming: It is beneficial for
ASF-based code to work with traditional lock-based code in order to
use it as a simple software backup mechanism covering uncommon
cases. For example, consider a concurrent hashtable. It is easy to de-
velop the ASF-based code that inserts/removes an element to/from the
hashtable. Occasionally, the hashtable may need to be resized, which
requires accessing all elements in the hashtable. If the hashtable is
large, the limited hardware resource in a first-generation ASF imple-
mentation will cause a transaction capacity overflow.

Our recommendation is to implement a lock-based resizing code
with a 1-bit hashtable lock, as shown in Figure 1(b). The insertion
code starts a transaction and reads the lock bit (tablelock) with LOCK
MOV. If the lock bit is not set, it jumps toActualInsertand inserts a
new element. If the lock bit is set, it busy-waits by aborting and retrying
the transaction. The resizing code grabs the lock non-transactionally
with BTS (bit test and set) [3]. The BTS instruction reads the lock bit,
copies it to CF (Carry Flag), and sets the lock bit. If the lock bit is
set, someone else is resizing the hashtable, in which case, it escapes the
function (JC). If the lock bit was not set, it resizes the hashtable and fin-
ishes the function by resetting the lock bit. By setting the lock bit with
BTS, it aborts all active insert transactions through transaction conflicts
and blocks future insert transactions until the resizing code resets the
lock bit. This ensures that the resizing code accesses the hashtable ex-
clusively, and the hashtable is race-free during resizing. While the re-
sizing code is not running, the transactions inserting elements execute
in parallel since they read-share the lock bit.

3. Likes, Dislikes, Concerns, and Our Opinions

In this section, we present the summary of the reviews on our ASF
specification. We also present our opinions.

3.1 Overall Rating and Usage

As the first x86 TM hardware-support specification, ASF was highly
welcome with very positive expressions such as “really cool”, “drool-
ing on it”, and “I want it now”. Some reviewers perceived it as more
of a flexible x86 atomic primitive beyond CAS due to the limited TM

0%
5%

10%
15%
20%
25%
30%
35%

ba
ye

s

ge
no

me

int
rud

er

km
ean

s

lab
yri

nth ssc
a2

va
cat

ion ya
da

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
ye

s

ge
no

me

int
rud

er

km
ean

s

lab
yri

nth ssc
a2

va
cat

ion ya
da

ETC

Parallel Library

Scratchpad

Benign Race

Barrier Granularity
Promotion
Immutable

Stack

Redundant Barrier
Elimination
Barrier

Figure 3. The ratios of the memory accesses instru-
mented with software barriers to all memory accesses
within transaction boundaries in the STAMP bench-
mark suite [6]. The ratios of bayes and labyrinth are
almost negligible.

support for general transactional programming with ASF. An inter-
esting stereotype usage suggested for atomic operations was a flexible
multi-word fetch-and-op as shown in Figure 2. Multiple data items are
loaded transactionally (e.g., two data items in the figure), manipulated
for a random op in private storage (e.g., registers or stack memory) non-
transactionally, and stored back transactionally. If used, stack variables
have to be alive only between SPECULATE and COMMIT. This usage
encompasses many interesting cases such as multi-word compare-and-
swap and multi-word fused-multiply-add (i.e., A = A + B x C). Some
reviewers mentioned using ASF for speculative lock elision of small
critical sections that works similar to the code in Figure 1(b).

3.2 Selective Annotation

Selective annotation of transactional memory accesses in a trans-
action enables(a) TM hardware resource saving for transactional pro-
gramming and(b) flexible mixture of speculative accesses and non-
speculative memory accesses for lock-free programming. Our obser-
vation from the existing transactional programs for STM systems is
that only a small portion of memory accesses in a transaction has to be
annotated with software barriers for transactional execution. Figure 3
shows the ratio of the memory accesses instrumented with software bar-
riers to all memory accesses in transactions in the STAMP benchmark
suite [6]. On average, the ratio is only 8%. There are various mem-
ory access patterns that contribute to the 92% of memory accesses that
do not require software barriers. For example, as a CISC architecture,
AMD64 has a small number of architectural registers and induces stack
accesses to spill the registers. These stack accesses do not require con-
flict detection since they are to private data if the data do not escape the
stack. If the stack variables are created after a transaction begins, the ac-
cesses to the variables do not need data versioning as well since the vari-
ables are effectively discarded by restoring the stack pointer when the
transaction is aborted. As a result, these stack accesses do not require
software barriers. Overall, the low ratio indicates that the majority of
memory accesses in a transaction can be executed non-transactionally
without compromising program correctness. Reviewers seem to easily
acknowledge this opportunity of saving TM hardware resources.

On the other hand, as for the flexible mixture of transactional ac-
cesses and non-transactional accesses, some reviewers disliked allow-
ing non-transactional accesses in a transaction since it could potentially

 SPECULATE
 LOCK MOV [mem1], RBX
 MOV [mem2], RCX
 COMMIT

Figure 4. A simple example that breaks the x86’s mem-
ory consistency model.

weaken isolation among transactions. Other reviewers liked it since it
enables TM software tools to “punch through” a transaction. This fea-
ture can, for example, be useful for debuggers to log information about
outstanding transactions [10]. We advocate selective annotation in fa-
vor of giving more programming freedom to software developers. Pro-
grammers can always use transactional accesses to be on the safe side
whenever they are concerned with weakening isolation.

Another concern with mixing transactional accesses and non-transactional
accesses was about the exception triggered when a transactional ac-
cess and a non-transactional access modify the same cache line. This
can make ASF-based code less portable. For example, assume an ob-
ject with two fields one of which is accessed transactionally and the
other accessed non-transactionally. Depending on memory allocation
schemes and runtime systems, the two fields may or may not be allo-
cated in the same cache line, which means that the exception could be
avoided in some systems but will be triggered in the other systems. This
is troublesome and calls for open discussion.

3.3 Memory Access Ordering

There were questions about the cases where ASF breaks the x86’s
memory consistency model [3]. Figure 4 shows a very simple transac-
tion with a transactional store and a following non-transactional store to
two different cache lines. According to the x86 memory model, mem-
ory accesses should be observed in program order, which means that
the transactional store should be exposed to the rest of the system first.
However, in ASF, the transactional store is exposed after COMMIT is
executed. The non-transactional store is exposed ahead in the reversed
program order. We think that this deferred commit of the transactional
store is essential for ASF to support atomicity. In our opinion, program-
mers should either use only transactional accesses for the code sensitive
to the memory consistency model or be aware of this behavior and write
the code accordingly. A COMMIT works as a memory barrier so that
the memory accesses before the COMMIT are always exposed to the
rest of the system ahead of the memory accesses after the COMMIT.

3.4 Minimum Capacity Guarantee

The issue of minimum capacity guarantee (i.e., the largest trans-
action memory footprint guaranteed not to cause capacity overflows) is
one of the hottest topics not only for ASF but also for any TM hardware
support in general. Should processor vendors provide any guarantee
about TM or can TM support be purely best-effort (i.e., no guarantee at
all)? Obviously, no guarantee is an easier choice for processor vendors
and is advocated by some reviewers. However, other reviewers also
pointed out that best-effort hardware transactions lack a good property
of the existing atomic primitives (e.g., compare-and-swap) — that the
primitives always commit in a certain way and make progress. They
liked the minimum capacity guarantee supported by ASF in two ways.
First, it makes best-effort hardware transactions look less like “black

Conflict Detection

On-chip Network

Instruction FetchMicrocode Engine
Micro ROMInterrupt

L1 Cache

(1) detect/report a conflict

(2) a pending interrupt

(3) jump to the microcoded
abort procedure

CPU Core

Figure 5. A time window for orphan transactions is from
(1) to (3).

magic” for successful transactional execution. Second, programmers
will know when they do not need to write software fallback code to
deal with capacity overflows.

An obvious follow-up question was how we knew that the minimum
capacity guarantee in the current ASF specification (i.e., four distinctive
memory lines) was sufficient. The answer is that we did not know. As
most readers can easily guess, the number four came from the likely
set-associativity of four in the L1 cache. Since all AMD processors
support out-of-order execution with the load/store queues, it should not
be hard to increase the minimum capacity guarantee by leveraging the
queues as transactional buffer as SUN Rock did [9]. However it is not
easy to make a company-wide commitment on the minimum capacity
guarantee for any future AMD processor with ASF support, as it may
restrict the design freedom of future AMD micro-architectures.

3.5 Best-effort Maximum Capacity

Our discussion with AMD engineers brought up an interesting is-
sue. The best-effort maximum capacity supported by ASF with no
guarantee (i.e., the largest possible transaction memory footprint that
may not cause capacity overflows) can also be problematic from the
perspective of practical business. Assume a software product that has
transactions bigger than the guaranteed minimum capacity but runs fine
without capacity overflows due to additional best-effort transactional
buffer provided by an AMD processor. The product does not have soft-
ware fallback code to deal with capacity overflows simply because it
just runs fine without the code. The problem happens with a poten-
tial next-generation AMD processor which provides a lower degree of
best-effort support (e.g., a smaller best-effort transactional buffer). The
software product would suffer from capacity overflows on this proces-
sor. According to the ASF specification that guarantees nothing for
transactions bigger than the minimum capacity guarantee, it is clear
that the software company has to add proper software fallback mecha-
nisms. But what could happen in practice is that the company blames
AMD for not being able to execute the code that used to run fine with
older processors and demands AMD to fix it. One solution is to make
the minimum capacity guarantee equal to the best-effort maximum ca-
pacity (i.e., no more best-effort approach). We present it as another
open question for TM experts.

3.6 Abort

There was a question about the possibility of “orphan transactions”
[11] in ASF. Orphan transactions are those that are marked to be
aborted due to a transaction conflict by the underlying ASF system but
not yet aborted. We noticed that there could be a time window for or-
phan transactions depending on ASF implementations. For example,
one of the cost-effective ways we consider to implement the abort pro-
cedure is to deal with it as if it was a special interrupt. We refer to
Figure 5 in our discussions. In step (1), the interrupt is triggered by the
cache when a transaction conflict is detected with cache coherence pro-
tocol. In step (2), the interrupt is delivered to the CPU core by setting
an interrupt bit. Finally, in step (3) the microcode engine checks the
bit (typically at the end of issuing micro-ops of an x86 instruction) and
starts the abort procedure. In this case, the window for orphan trans-
actions starts at the time when the conflict is detected (i.e., (1)) and
ends at the time when the microcode engine starts the abort procedure
(i.e., (3)). With the out-of-order execution pipeline, many things can
happen in this window. The potential problems with the window will
have to be worked out with the designers of a specific baseline AMD
processor. We intend not to expose any side effects of potential orphan
transactions.

There were suggestions to clarify what happens with the registers
other than rIP (program counter) and rSP (stack pointer) when a trans-
action aborts. The current specification guarantees the restoration of
only rIP and rSP, leaving the other registers to be restored by software.
The question was if those registers that were not modified in the aborted
transaction are guaranteed to remain unchanged after the abort. The
current specification does not guarantee it. However, we agree that this
guarantee can enable interesting compiler optimizations to reduce the
software–register-checkpoint overhead. We consider adding this guar-
antee to the next version of ASF.

3.7 Software Fallback

In comparison to traditional lock-based code, some reviewers did
not like the programming pattern of combining hardware transactions
and software-fallback code since it makes the best-case faster but the
worst-case slower. This is not a clear win from the performance per-
spective unless there is a good proof showing that the best-case is the
common case. We agree that it depends on application characteristics
if the hardware TM support helps improve performance.

3.8 Nesting

Multiple reviewers suggested not to bother supporting nested trans-
actions. They agreed that transaction composability with nesting is im-
portant but argued that this may have to be supported by software for
first-generation TM hardware support. While it is quite easy for us to
support flat nesting with a simple nesting depth counter [13], we agree
that nested transactions will be rare at least with the limited TM hard-
ware support of first-generation ASF implementations.

3.9 Contention Management

The baseline ASF contention-management policy isattacker wins
where a transaction issuing a conflicting memory access wins a trans-
action conflict [5]. This can cause live-locks, and some reviewers ex-
pressed that “dead-lock is hard to deal with, but live-lock is harder”.
We chose the attacker wins policy for two reasons: 1) it is cheap to
implement and 2) the complexity of modern processor designs tends to
introduce random back-off latencies when transactions are re-executed,

which can eliminate live-locks naturally in some cases. However, we
agree that there still is a danger to suffer from live-locks and are de-
veloping cost-effective hardware schemes to eliminate live-locks. For
now, we expect that software backup code either takes an alternative
execution path or retries an aborted transaction after random backoff
time.

3.10 RELEASE

In addition to the general difficulty of using early release [5], there
was a concern about the case where RELEASE can unintentionally re-
lease transactionally accessed data. For example, assume two memory
words are accessed transactionally but only one word is intended to be
released. Depending on memory allocation mechanisms, the two mem-
ory words may or may not be located in the same cache line. The RE-
LEASE instruction can only release whole cache lines. Consequently,
if both words are located in the same cache line, both will be released
together. Though we think that this problem has to be essentially dealt
with by software developers, we also consider a hardware mechanism
that detects this case with a set of counters incremented whenever dis-
tinctive locations of a cache line are transactionally accessed. An ex-
ception could be triggered when a RELEASE instruction is executed on
a cache line with the counter value bigger than one.

3.11 Imprecise Exception

Since ASF aborts transactions at exceptions, the processor state ob-
served by the OS exception handler is different from the processor state
of the moment exceptions are triggered. In other words, ASF makes
exceptions imprecise from the perspective of software. There were
questions about what kinds of information the OS can get when a page
fault happens. We thought that it to be enough for ASF to provide the
accurate rIP and the faulting memory address. However, there were
questions about other information such as the rSP value at a page fault.
We were not told what the information is exactly for but certainly can
consider providing more information if needed. Another question was
about stepping an outstanding transaction through for debugging. We
have an idea to allow for the stepping by suspending a transaction at a
debug trap, running the debugger non-transactionally, and resuming the
transaction when returning from the trap. However, it incurs additional
cost to do that and will be considered only when there is a clear demand
from software companies.

3.12 Cache-line Awareness

A reviewer disliked the fact that the current specification defines a
transaction conflict in connection with cache lines instead of describing
it more abstractly. We partly agree with him since this definition style
may reduce the design freedom in choosing implementation schemes.
However, it is highly likely that ASF implementations will leverage
the existing cache coherence protocols for conflict detection. We think
the concrete descriptions of the conditions for conflict detection with
cache lines is better for programmers and compiler developers to help
understand exactly when a transaction conflict happens.

3.13 Far Call and Ring 0

There were questions about the reason to prevent far calls (i.e., func-
tion calls that change segment registers) in a transaction. The answer
is that we want to avoid implementing additional hardware schemes

to eliminate security issues with program control transfer. The pro-
gram control is transferred to the OS at system calls, exceptions, and
interrupts [3]. If a control transfer happens in an application transac-
tion and the underlying ASF implementation is not equipped with ad-
ditional hardware to deal with program control transfer, the OS code is
executed as part of the transaction. The problem is that if the transac-
tion fails to complete, there can be security problems. For example, like
most modern processors supporting security features to separate the OS
and applications, the x86 architecture allows the OS and applications to
use different code segments and privilege levels by changing the code
segment selectors at the boundary of system calls [3]. If an ASF im-
plementation does not have additional hardware to manage the segment
registers that contain the segment selectors, an application transaction
aborted in the middle of executing a system call will be restarted with
the OS privilege level since the segment registers will still hold the seg-
ment selectors for the OS. This results in a security breach. Malicious
programs can take advantage of this security hole to get the OS privi-
lege level with a contrived multi-threaded TM code that forces a trans-
action in the middle of a system call to conflict with another transaction
intentionally. We have a general hardware design to prevent security
problems like this but have not reflected it yet in the specification due
to its additional hardware cost.

On the other hand, the current ASF specification supports trans-
actions in Ring 0 [3] (i.e., transactions that stay in the kernel mode
throughout their lifetime).

4. Related Work

SUN developed their TM hardware support in the Rock proces-
sor [9]. There are several differences between ASF and SUN’s TM sup-
port. First, ASF supports selective annotation of transactional memory
accesses for efficient TM resource use. Second, it offers a minimum ca-
pacity guarantee to help programmers develop sophisticated lock-free
data structures without complex backup software. Third, near function
calls (i.e., function calls that do not change segment registers) and TLB
misses do not abort transactions with ASF. Fourth, ASF takes a register
checkpoint of rIP and rSP at the beginning of a transaction, leaving the
rest of the registers to be managed by software.

5. Conclusions

In order to stimulate discussions on what the first-generation TM
hardware support in commercial processors should look like, we present
the summary of the various reviews on ASF and our opinions on them.
We believe that this will enable a better TM hardware support to come
out earlier.

6. Acknowledgments

We appreciate all TM experts who provided invaluable reviews for
ASF. Their suggestions are duly considered for improvement of the
current ASF specification.

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement N 216852.

7. References

[1] Advanced Synchronization Facility.
http://developer.amd.com/CPU/ASF/Pages/default.aspx.

[2] AMD Virtualization.
http://www.amd.com/us/products/technologies/virtualization/Pages/
virtualization.aspx.

[3] AMD64 Architecture Programmer’s Manual.
http://developer.amd.com/documentation/guides/Pages/default.aspx.

[4] Intel c++ stm compiler. http://software.intel.com/en-
us/articles/intel-c-stm-compiler-prototype-edition-20/.

[5] J. Bobba, K. E. Moore, et al. Performance pathologies in
hardware transactional memory. InISCA ’07: Proc. of the 34th
Intl. Symp. on Computer architecture, pages 81–91, 2007.

[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In
IISWC ’08: Proceedings of The IEEE International Symposium
on Workload Characterization, 2008.

[7] C. Cao Minh, M. Trautmann, J. Chung, et al. An Effective
Hybrid Transactional Memory System with Strong Isolation
Guarantees. Inthe Proc. of the 34th Intl. Symp. on Computer
Architecture. June 2007.

[8] D. Christie, J. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and

E. Riviere. Evaluation of amd’s advanced synchronization
facility within a complete transactional memory stack. In
Proceedings of Eurosys 2010 Conference, Paris, France.

[9] D. Dice, Y. Lev, et al. Early experience with a commercial
hardware transactional memory implementation. InASPLOS’09:
14th Intl. Conf. on Architectural Support for Programming
Languages and Operating System, 2009.

[10] V. Gajinov, F. Zyulkyarov, et al. Quaketm: parallelizing a
complex sequential application using transactional memory. In
ICS ’09: Proc. of the 23rd intl. conf. on Supercomputing, 2009.

[11] M. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. Inthe Proc.
of the 20th Intl. Symp. on Computer Architecture, May 1993.

[12] IBM Corporation.IBM System/370 Extended Architecture,
Principles of Operation. IBM Publication No. SA22-7085, 1983.

[13] A. McDonald, J. Chung, et al. Architectural Semantics for
Practical Transactional Memory. Inthe Proc. of the 33rd Intl.
Symp. on Computer Architecture, June 2006.

[14] K. E. Moore, J. Bobba, et al. LogTM: Log-Based Transactional
Memory. Inthe Proc. of the 12th Intl. Conf. on
High-Performance Computer Architecture, Feb. 2006.

