
Implicit Privatization Using Private Transactions

Dave Dice
Sun Labs at Oracle, 1 Network Drive,

Burlington, MA 01803-0903 USA
dave.dice@oracle.com

Alexander Matveev
Tel-Aviv University, Tel-Aviv 69978,

Israel
matveeva@cs.tau.ac.il

Nir Shavit
Tel-Aviv University, Tel-Aviv 69978,

Israel
shanir@cs.tau.ac.il

Abstract
In software transactional memory (STM) systems, it is use-
ful to isolate a memory region accessed by one thread from
all others, so that it can then operate on it “privately”, that is,
without the instrumentation overhead of inter-transactional
synchronization. Allowing transactions to implicitly priva-
tize memory is a source of major performance degradation in
state-of-the-art STMs. The alternative, to explicitly declare
and guarantee privacy only when needed, has been argued to
be too tricky to be useful for general programming.

This paper proposes private transactions, a simple inter-
mediate that combines the ease of use of implicit privatiza-
tion, with the efficiency that can be obtained from explicitly
knowing which regions are private.

We present a new scalable quiescing algorithm for im-
plicit privatization using private transactions, applicable to
virtually any STM algorithm, including the best performing
TL2/LSA-style STMs. The new algorithm delivers virtually
unhindered performance at all privatization levels when pri-
vate transactions involve work, and even under the extreme
case of empty private transactions, allows for a scalable “pay
as you go” privatization overhead depending on the privati-
zation level.

1. Introduction
One goal of transactional memory algorithms is to allow pro-
grammers to use transactions to simplify the parallelization
of existing algorithms. A common and useful programming
pattern is to isolate a memory segment accessed by some
thread, with the intent of making it inaccessible to other
threads. This “privatizes” the memory segment, allowing the
owner access to it without having to use the costly trans-
actional protocol (for example, a transaction could unlink a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TRANSACT ’10 Date, City.
Copyright c© 2010 ACM [to be supplied]. . . $10.00

node from a transactionally maintained concurrent list in or-
der to operate on it or to free the memory for reallocation.)

Today, many of the best performing lock-based software
transactional memory (STM) algorithms [4–6] use a vari-
ation of the TL2/LSA [4, 11] style global-clock algorithm
using invisible reads. When we say invisible reads, we mean
that the STM does not know which, or even how many, read-
ers are accessing a given memory location. Not having to
track readers is the key to many efficient STMs, but also a
problem if one wishes to allow privatization.

Allowing transactions to implicitly privatize memory is
a source of major performance degradation in such STMs
(One should note that STMs that use centralized data struc-
tures, such as RingSTM [14] or compiler assisted coarse
grained locking schemes [10], can provide implicit priva-
tization without the need for explicit visible readers). The
alternative, to explicitly declare and guarantee privacy only
when needed, has been argued to be too tricky to be useful
for general programming.

Why is guaranteeing implicit privatization such a prob-
lem? Consider a transaction that has just privatized a mem-
ory segment. Even though the segment cannot be accessed
by any other transaction (executing on the same or other
processor), after the transaction commits, prior to the com-
mit, latent transactional loads and stores might be pend-
ing. These latent loads and stores, executed by transactions
that accessed the segment before it was isolated, can still
read from and write into the shared memory segment that
was intended to be isolated. This unexpected behavior is
known as the “privatization problem.” This results in unex-
pected changes to the contents of the isolated shared memory
(which may have been reallocated and (although resident in
the shared memory)) is intended to be outside of the trans-
actionally shared data region. Other unexpected, generally
asynchronous, behaviors can also occur.

For example, consider the scenario in Figure 1: an invis-
ible read based transaction by a thread P removes a node
form a linked list. Thus, once the transaction completes, the
node will no longer be reachable to other threads and P will
be able to operate on it privately. However, before P com-
pletes its transaction, another transaction Q reads the pointer,
and is poised to read a value from the node. P has no way

b c da 0

: divide

by 0 error

Figure 1. Privatization Pathology Example

of detecting Q. This is because Q reads the pointer invisibly,
and will not see any trace of P touching the location in the
node since P is operating on it non-transactionally. As a re-
sult, even though Q is doomed to fail (once it revalidates the
locations it read, and detects the pointer has changed), in the
interim it can perform illegal operations. This is an example
of a privatization problem that one must overcome.

One solution to the privatization problem is to establish
programming constraints against concurrent transactional
and non-transactional access to the same set of shared mem-
ory locations. However, this is a solution we would like to
avoid.

Another solution is to add privatization capabilities to a
transactional memory. The transactional memory can em-
ploy either “explicit privatization,” where the programmer
explicitly designates regions passing out of transactional use
to be quiesced, waiting for any pending transactional loads
and stores to complete before the memory is allowed to be
accessed non-transactionally. Programming explicit segment
quiescence is complex and error prone. For example, it is in-
sufficient for a transaction to explicitly privatize a segment
from the transactionally shared data region before modifying
that segment.

Alternately, transactions can employ “implicit privatiza-
tion,” where the STM automatically manages the memory
accessibilty/lifecycle issues. A paper by Cheng et al. [15]
describes an implicit privatization mechanism that quiesces
threads instead of shared memory regions, potentially im-
pacting overall scalability. As we said, the problem with im-
plicit privatization techniques to date, is that they hinder the
scalability of most of the best performing STMs.

The current state-of-the-art is thus that there exist several
highly scalable STM algorithms that operate well without
providing privatization, but do not scale well when implicit
privatization capabilities are added (see TL2-IP algorithm
in [3] and see [1, 8, 9, 13]). This is the situation we wish to
rectify.

This paper proposes private transactions, a simple inter-
mediate approach that combines the ease of use of implicit
privatization, with the efficiency that can be obtained from
explicitly knowing which regions are private. The idea be-
hind private transactions is simple. The user will use implicit
privatization to privatize memory segments just as before,

but will declare, using a special keyword or keywords, which
code segments he/she expects to be executed privately.

From the programmers point of view, a private transaction
is thus a declaration of the code elements that are expected
to be private: it is the programmers responsibility to make
sure that the selected locations within the private transaction
are indeed not accessible to successful transactions. It is the
STMs responsibility to make sure that unsuccessful transac-
tions do not violate the transactional barrier and access these
privatized regions.

We believe private transactions will not add an extra bur-
den to programmers beyond that of implicit privatization be-
cause the programmer must anyhow know what he expects
to be private following the act of privatization! (This is def-
initely true for newly written code, and for legacy code in
which the programmer is not performing guesswork while,
say, replacing locks with transactions). Notice that there is
no limitation on the code that can be called within a private
transaction, and in particular one can call external libraries
that know nothing about the transactions executing in the
system.

What do we gain from the private transaction declara-
tion? Our gain is twofold. We remain within the transactional
model (i.e. the private transaction is a transaction, not a “bar-
rier” whose semantics and rules of use with respect to other
transactions are unclear), and we can algorithmically guar-
antee efficient execution of the privatized code (it will run
at the pace of un-instrumented code), placing only a limited
computational burden on regular non-private transactions. In
other words, unlike with the standard model of implicit pri-
vatization, the privatization overhead using private transac-
tions will have a pay-as-you-go nature: the less privatization,
the less overhead.

An important contribution of our paper is a new scalable
quiescing algorithm for implicit privatization using private
transactions, applicable to virtually any STM algorithm, in-
cluding the TL2/LSA-style STMs. We note that for those
who do not wish to use private transactions programming
model, this quiescing algorithm can still be used at the end
of privatizing transactions to guarantee efficient implicit pri-
vatization.

To show the power of the new quiescing algorithm tech-
nique, we apply it to the latest version of the TL2 STM. We
then compare our new TL2P algorithm, that is, TL2 with
private transaction capability, to TL2-IP, that is, TL2 with
a known implicit privatization mechanism based on shared
reader counters.

As we show, the new algorithm is highly scalable. In a
realistic situation in which private transactions include work
(see Figure 5, it delivers virtually unhindered performance.
In less realistic trying benchmark in which private transac-
tions do not include work, it delivers great performance at
low privatization levels, and unlike former techniques, as ex-
emplified by TL2-IP, remains scalable (though not as effi-

cient as TL2) even with 100% privatization. We believe it
can be applied to many existing STMs, allowing them to
maintain scalability while providing low overhead privati-
zation capabilities.

Interestingly, non-transactional data structures, such as
those in the Java concurrency package, suffer from privatiza-
tion issues. For example, a record removed from a red-black
tree cannot be modified without worrying that some other
thread is concurrently reading it. Our new private transac-
tion mechanism offers a scalable way to add privatization to
such structures.

2. Private Transactions
A private transaction is a transaction accessing memory
locations that cannot be accessed by any other successful
transaction.

The idea behind private transactions is simple. The pro-
grammer, using a regular transaction, privatizes certain sec-
tions of code by making them inaccessible to any thread that
starts executing after the completion of this transaction. The
programmer also declares, using the special private trans-
action keyword or keywords, which code segments he/she
expects will be executed privately.

The private transaction is thus a declaration of the code
elements that are expected to be private after regular success-
ful transactions have privatized it. It is the STMs responsibil-
ity to make sure that unsuccessful transactions do not violate
the regular transactional barrier.

Thus, in the classical linked list example, a programmer
will use a regular transaction to privatize a linked list node,
and then place all code accessing this node within the private
transaction, knowing it is no longer accessible. If he/she
correctly privatized using a regular transaction, the private
transaction semantics will be guaranteed, and otherwise, as
with any buggy program, all bets are off.

We believe private transactions will therefore not add an
extra burden to programmers beyond that of implicit privati-
zation because the programmer must anyhow know what he
expects to be private following the act of privatization! No-
tice that there is no limitation on the code that can be called
within a private transaction, and in particular one can call
external libraries that know nothing about the transactions
executing in the system.

3. Implementing Private Transactions
Our privatization technique can be added to any existing
STM without changing it. The main idea, which we will call
a quiescing barrier, is well known: track in a low overhead
fashion when threads start transactions and when they end
them. Using this tracking data, privatization can be provided
on demand by waiting for all active transactions to complete
before continuing with the execution of a private transaction.
However, past attempts to make this type of algorithm scale
failed because the mechanisms used to implement the qui-

STM Transaction

TXP-START → executes wait barrier

TXP-END

Private Tr ansaction

TX-START

TX-END

slot of thread 2

thread 1 thread 2

slot of thread 1
Dynamic Array of active threads

TXP-START → updates thread’s slot

TX-END → updates thread’s slot

Figure 2. Two threads execute transactions. We see the dy-
namic array used to track quiescing information and bars
tracking the execution phases of the two threads. Upon start
and finish, the threads update the dynamic array slot asso-
ciated with each one of them. When Thread 1 executes a
private transaction, it will execute a wait barrier, waiting for
Thread 2 because it detects that Thread 2 is in a middle of
transaction execution.

escing barrier incurred too large an overhead, and this over-
head was exacerbated by the requirement to privatize 100%
of the transactions: there was no declaration of when it is
actually required.

Here we combine the use of private transactions with
a very low overhead shared array to achieve a lightweight
quiescing scheme.

The transactional tracking mechanism, depicted in Fig-
ure 2 is implemented as follows. The quiescing barrier needs
to know about the threads that are transactionally active. We
thus assign every thread a slot in an array which the barrier
scans. For this to be efficient, we use an array proportional
to the maximal concurrency level, and use a leasing mecha-
nism [7] together with a dynamic resizing capability. We will
explain shortly how this is done. A thread will indicate, in its
array slot, if it is running an active transaction, and will add
an increasing per-thread transaction number. The respective
fields are the IsRun boolean flag indicating if the thread is
executing a transaction, and TxCount is a byte size counter
which is incremented upon every transaction start.

During a transaction’s start:

1. Map Thread Slot: The thread id is mapped to an index
inside the array that the barrier scans. An explanation will
follow shortly.

2. Increase Thread’s Counter: The TxCount counter is
increased by one to indicate a new transaction has started.

3. Update Run Status: The transactional active status flag
IsRun is set to TRUE.

4. Execute a memory barrier: A write-read memory bar-
rier instruction is executed to ensure that the other threads
see that current thread is active.

At the transaction’s end:

1. Update the Run Status: The status flag IsRun is set to
FALSE. (No need for a memory barrier).

As can be seen, the operations by any given thread
amount, in the common case, to a couple of load and store
instructions and a memory barrier.

In more detail, the quiescing barrier records the current
run status of the transactionally active threads and waits for
completion of each of them. It uses the following 4 array
fields of MAX THREADS length. Several arrays are used: an
array th tx counts[] is used to hold the stored counters of
the transactionally active threads, th ids[] is used to hold
the stored thread ids of the transactionally active threads,
th checked[] is used to indicate for which active threads the
waiting condition needs to be tracked. Also, we maintain
a global variable CurNumberOfSlots that holds the current
number of assigned slots in the global slots array th slots[]
in which every assigned slot has a pointer to an associated
TxContext.

Using these variables the quiescing barrier algorithm pro-
ceeds as follows:

1. Store the Active Threads Status: For every transaction-
ally active thread with id thread id, store the thread’s Tx-
Count and thread id to the waiting thread’s context fields
th tx counts[thread id] and the th ids[thread id]. Also
set the waiting threads’s th checked at entry thread id to
FALSE, indicating that one needs to wait for this thread’s
progress.

2. Wait For Progress: For every tracked stored thread sta-
tus which need to be checked for progress, check if the
thread is still running and its TxCount counter is equal
to the stored one. If so we need to wait, therefore start
this step again. Return when all the threads we waited for
made progress.

The number of threads in an application can be much
higher (in the thousands) than the actual concurrency level at
any given moment. This is typically determined by the num-
ber of hardware threads (in the tens). Therefore, we main-
tain an array of “leased” slots, proportional to the expected
concurrency, to which the transactionally active threads are
mapped. A lease [7] is a temporary ownership of a lock on a
location, one that is either released by a thread or revoked if
it is held beyond the specified duration. The allocated array
itself can be much larger than the number of active threads,
but we keep a counter indicating its actual active size at
any point. The scanning thread, the one checking the barrier,
need only traverse the array upto its actual active size.

When a thread starts a transaction, it checks if it owns its
assigned array slot. If its does, then the thread continues as
usual. Otherwise, the thread picks a slot in the array. If the
hashed entry is free then the thread takes it, and otherwise
it tries to steal the slot. The thread will succeed in stealing
the slot only if the slot’s lease time or timeout, from the last

active run of the thread which owns the slot, has passed. If
the timeout has not expired, than the thread tries to acquire
another slot. If no slot can be acquired, the thread adds a new
slot to the end of the array and assigns itself to it.

In the array, every thread’s context ctx has a is slot valid
boolean variable indicating if the thread’s slot is valid (as-
signed and not stolen) and a is slot steal in process boolean
variable indicating if some thread is trying to steal the cur-
rent thread’s slot.

The Assert Thread Slot works as follows:

1. Check for a Steal: If some other thread is in the pro-
cess of stealing the current thread’s slot then spin on
is slot steal in process.

2. Check Slot Validity: Check that is slot valid is TRUE.
If so, return to the caller. Otherwise, continue to the next
step.

3. Register a Slot: Compute the slot number of the thread
by hashing it to its thread id. For example, use slot number
= thread id mod number of cores. If the slot with the
computed number is free to try to acquire it using a Com-
pare And Swap (CAS) to write into it a pointer to the
thread’s record ctx. If the slot is not free, or the CAS
failed, then Try To Steal Slot. If the stealing failed, try to
steal any other assigned slot. If all the stealing attempts
failed, allocate a new slot in the dynamic array.

The Try To Steal Slot procedure checks for the slot time-
out and if it has expired acquires the slot. Try To Steal Slot
procedure works as follows:

1. Check For a Timeout: Check if the slot’s owning thread
timeout from last active transaction has expired. If not
return failure.

2. Check For a Steal: Check if some other thread is already
trying to steal that slot by looking at the is slot steal in process
value of the slot’s owning thread. If it is, return failure.
Otherwise, try to CAS the is slot steal in process field
to TRUE. If the CAS fails, return failure, and otherwise
continue to the next step.

3. Validate the Slot Status: Check that the slot owner has
not changed and check the timeout expiration again. If all
checks are positive - continue to next step, and otherwise
return failure.

4. Steal the Slot: Assign the slot’s value to be a pointer
to the stealing thread’s context and set its is slot valid
to TRUE. In addition, set the previous owning thread’s
is slot valid and is slot steal in process flag to FALSE.

Allocation of a new slot is done when all the steals failed.
The procedure works as follows:

1. Allocate a new Slot: Increment the CurNumberOfSlots
global limit variable using a CAS.

2. Initialize the Allocated Slot: Assign the slot’s value to
be a pointer to the thread’s context and set its is slot valid
to TRUE.

In order to garbage collect the expired slots, periodically
execute a maintenance operation which checks for expired
slots and frees them. This same operation can adjust the the
CurNumberOfSlots according to the actual number of slots
with unexpired leases.

The main purpose of this complex dynamic slot allocation
algorithm is to avoid scanning an array proportional to the
number of threads in the system, and instead scan only those
which are transactionally active.

As we show, the complete mechanism is lightweight and
delivers scalable performance.

The end result of this algorithm is the un-instrumented
execution of privatized code, with no limitation on code
that can be called within a private transaction: in particular
one can call external libraries that know nothing about the
transactions executing in the system.

4. Outline of correctness
For lack of space we do not discuss private transaction se-
mantics and only briefly outline why our algorithm is cor-
rect. In a nutshell, each private transaction is preceded by a
traversal through the privatization barrier, recording all ac-
tive transactions. We assume all private transaction memory
regions are not accessible to successful transactions. Thus,
by waiting till all active transactions have completed, and
given that private locations can no longer be reached by
newly started transactions, privacy is guaranteed.

5. Empirical Performance Evaluation
Many of the scalable lock-based STM algorithms in the
literature use a TL2 style locking and global clock based
scheme, differing perhaps in details such as the order of
lock acquisition and the abort and retry policies [4–6, 11,
12]. Most of these algorithms do not support privatization
because of its high overhead. We will therefore provide an
evaluation of our new privatization algorithm by adding it
to the most efficient know version of the TL2 algorithm, one
using a GV6 clock scheme citeTL2. We call this new version
of TL2 supporting private transactions TL2P.

We would have loved to provide a comparison of TL2P to
the STM of Saha et. al [10] that provides privatization via a
global transactional quiescing mechanism, but unfortunately
it is only available using the author’s specific STM compiler
framework which cannot be applied to our algorithm.

This section therefore presents a comparison of the
vanilla TL2 algorithm with a GV6 counter, the TL2-IP al-
gorithm that provides implicit privatization for TL2, and our
new TL2P algorithm supporting implicit privatization with
private transactions. The microbenchmarks include the (now
standard) concurrent red-black tree structure and a random-
ized work-distribution benchmark.

The red-black tree was derived from the java.util.Tr-
eeMap implementation found in the Java 6.0 JDK. That
implementation was written by Doug Lea and Josh Bloch.
In turn, parts of the Java TreeMap were derived from the
Cormen et al [2]. We would have preferred to use the exact
Fraser-Harris red-black tree but that code was written to to
their specific transactional interface and could not readily be
converted to a simple form.

The red-black tree implementation exposes a key-value
pair interface of put, delete, and get operations. The put
operation installs a key-value pair. If the key is not present
in the data structure put will put a new element describing
the key-value pair. If the key is already present in the data
structure put will simply insert the value associated with
the existing key. The get operation queries the value for a
given key, returning an indication if the key was present in
the data structure. Finally, delete removes a key from the
data structure, returning an indication if the key was found
to be present in the data structure. The benchmark harness
calls put, get and delete to operate on the underlying data
structure. The harness allows for the proportion of put, get
and delete operations to be varied by way of command line
arguments, as well as the number of threads, trial duration,
initial number of key-value pairs to be installed in the data
structure, and the key-range. The key range of 2K elements
generates a small size tree while the range of 20K elements
creates a large tree, implying a larger transaction size for the
set operations. We report the aggregate number of successful
transactions completed in the measurement interval, which
in our case is 10 seconds.

In the random-array benchmark each worker thread
loops, accessing random locations. The transaction length
can be a constant or variable. While overly simplistic we be-
lieve our random access benchmark captures critical locality
of reference properties found in actual programs. We report
the aggregate number of successful transactions completed
in the measurement interval, which in our case is 10 seconds.

For our experiments we used a 64-way Sun UltraSPARC R©
T2 multicore machine running SolarisTM 10. This is a ma-
chine with 8 cores that multiplex 8 hardware threads each.

In our benchmarks we “transactified” the data structures
by hand: explicitly adding transactional load and store oper-
ators. Ultimately we believe that compilers should perform
this transformation. We did so since our goal is to explore
the mechanisms and performance of the underlying trans-
actional infrastructure, not the language-level expression of
“atomic.” Our benchmarked algorithms included:

TL2 The transactional locking algorithm of [4] using the
GV4 global clock algorithm that attempts to update the
shared clock in every transaction, but only once: even if
the CAS fails, it continues on to validate and commit.
We use the latest version of TL2 which (through several
code optimizations, as opposed to algorithmic changes)
has about 25% better single threaded latency than the

version used in in [4]. This algorithm is representative of
a class of high performance lock-based algorithms such
as [6, 12, 16].

TL2-IP A version of TL2 with an added mechanism to pro-
vide implicit privatization. Our scheme, which we dis-
covered independently in 2007 [3], was also discovered
by Marathe et al. [8] who in turn attribute the idea to
Detlefs et al. It works by using a simplistic GV1 global
clock advanced with CAS [4] before the validation of the
read-set. We also add a new egress global variable, whose
value “chases” the clock in the manner of a ticket lock.
We opted to use GV1 so we could leverage the global
clock as the incoming side of a ticket lock. In the trans-
actional load operator each thread keeps track of the most
recent GV (global clock) value that it observed, and if it
changed since the last load, we refresh the thread local
value and revalidate the read-set. That introduces a vali-
dation cost that is in the worst case quadratic. These two
changes – serializing egress from the commit – and reval-
idation are sufficient to give TL2 implicit privatization.
These changes solve both halves of the implicit privati-
zation problem, the 1st half being the window in com-
mit where a thread has acquired write locks, validated its
read-set, but some other transaction races past and writes
to a location in the 1st thread’s read-set, privatizing a re-
gion to which the 1st thread is about to write into. Se-
rializing egress solves that problem. The 2nd half of the
serialization problem is that one can end up with zombie
reader transactions if a thread reads some variable and
then accesses a region contingent or dependent on that
variable, but some other thread stores into that variable,
privatizing the region. Revalidating the read-set avoids
that problem by forcing the 1st thread to discover the up-
date and causing it to self-abort.

TL2P This is the same TL2 algorithm without any internal
changes, to it to which we added the private transaction
support mechanism.

5.1 Red-Black Tree Benchmark
In the red-black tree benchmark, we varied the fraction of
transactions with privatization. In the top two graphs in Fig-
ure 3, private transactions involve no computation, stress-
ing the quiescing mechanism. We can see that under these
extreme circumstances, in all the cases, unlike TL2-IP, the
TL2P scheme is scalable at all levels of privatization. This is
quite surprising because one might think that as more threads
run one needs to scan more entries in the dynamic array
when performing the private transaction. But as can be seen
d=from the graphs, it does not impose a significant over-
head on the quiescence mechanism. The TL2P algorithm
with 20% mutations pays a maximum penalty of 15% for
10% privatization case. 35% for 50% privatization and 50%
for 100% privatization. With 4% of mutations (not shown in

Figure 3. Throughput when private transactions do no
work. A 2K sized Red-Black Tree on a 128 thread Niagara
2 with 25% puts and 25% deletes and 10% puts and 10%
deletes for TL2, TL2-IP, and TL2P varying the percentage
of private transactions: 100%, 50%, and 10%.

the graphs), perhaps a realistic level of mutation on a search
structure, the maximum performance penalty in TL2P for
100% privatization, which is like implicit privatization, is no
more than 25%. And if the privatization is only partial, say
10%, the penalty is just 11%! In general we can see that the
TL2P algorithm with no private transaction usage is a little
lower than TL2. It is because of the internal counters used
for thread transactional tracking. They impose some minor
overhead above the standard TL2.

5.2 Random Array Benchmark
In the random-array benchmark we vary the privatization
density and the transaction patterns. The goal is to esti-
mate the penalty private transactions pay for different trans-
action lengths. For short transactions, we use 32 reads per
reader and 16 read-modify-write operations per writer. We
use 128 reads and 64 read-modify-write operations for the
long transaction case. To mimic the heterogeneous case, the
reader length is randomized between 1-128 reads, and the
writer between 1-64 read-modify-write accesses.

In Figure 4 we can see that the performance in the short
and long transactions benchmarks is nearly the same. In both

Figure 4. Throughput when private transactions do no
work. A 4M sized Random-Array on a 128 thread Niagara
2 for, short transactions of 32 reads per reader and 16 read-
modify-write operations per writer, long transactions of 128
reads per reader and 64 read-modify-write per writer and
heterogeneous transactions with random [1-128] reads per
reader and random [1-64] read-modify-write per writer

we see a 20% penalty for TL2P in the 100% privatization
case, but the TL2IP performance is different in the long
transaction case, caused by a heavier use of the global clock,
which is affected by long transactions.

The heterogenous benchmark creates a higher penalty
than the constant length transactions. That is because the
private transaction barrier waits for all the active threads and

the possibility that it will wait for the long one thread is
higher as there are more threads in parallel. Therefore, the
penalty for the quiesence is higher, but as the privatization
level decreases to 50% and 10%, the performance improves.
This is the case where the on demand privatization approach
saves the situation and allows TL2P to achieve good results.

5.3 Realistic Private Transactions
The two graphs in Figure 5 depict the more realistic situ-
ation when private transactions involve computation. In this
case it consists of a sequence of random reads approximately
10-15 times longer than the privatizing transaction. Because
these are reads, TL2 can run them even though it has no pri-
vatization. Here you can see that TL2P (in blue) provides
virtually the same performance as TL2 (in red) at all levels
of privatization, confirming the potential of the private trans-
action quiescing technique. In contrast, TL2-IP (in orange)
does not scale at any level.

Figure 5. Throughput when private transactions do a large
amount of private work. A 2K sized Red-Black Tree on a
128 thread Niagara.

In summary, we see that the simple quiescence privatiza-
tion technique added to the TL2 STM, provides TL2 with
privatization support which delivers great scalable perfor-
mance under realistic conditions and takes advantage of par-
tial privatization under full stress when there are empty pri-
vate transactions.

6. Conclusion
We presented the first scalable approach for privatizing
TL2/LSA style invisible-read-based STM algorithms. Pri-
vate transactions offer a simple intermediate approach that
combines the ease of use of implicit privatization, with the
efficiency that can be obtained from explicitly knowing
which regions are private. The result is a “pay as you go”
cost for privatization, and a framework, private transactions,
that will hopefully allow for further compiler and other op-
timizations that will make privatization a low cost addition
technique not just for STMs but perhaps in general for con-
current data structures.

The quiescing algorithm at the basis of the private trans-
action methodology is of independent value as it can be used
as a privatization barrier within STMs or in the context of
other data structures.

7. Acknowledgements
This paper was supported in part by grants from the Euro-
pean Union under grant FP7-ICT-2007-1 (project VELOX),
as well as grant 06/1344 from the Israeli Science Founda-
tion, and a grant from Sun Microsystems.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of

transactional memory and automatic mutual exclusion. In
POPL, pages 63–74, 2008.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, second edition
edition, 2001.

[3] D. Dice and N. Shavit. Tlrw: Return of the read-write lock. In
Transact 2009, Raleigh, North Carolina, USA, 2009.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In Proc. of the 20th International Symposium on Distributed
Computing (DISC 2006), pages 194–208, 2006.

[5] A. Dragojevic, R. Guerraoui, and M. Kapalka. Stretching
transactional memory. In PLDI ’09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language design
and implementation, pages 155–165, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-392-1. doi: http://doi.acm.
org/10.1145/1542476.1542494.

[6] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tun-
ing of word-based software transactional memory. In PPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 237–
246, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-
795-7. doi: http://doi.acm.org/10.1145/1345206.1345241.

[7] C. G. Gray and D. R. Cheriton. Leases: an efficient fault-
tolerant mechanism for distributed file cache consistency.
Technical report, Stanford University, Stanford, CA, USA,
1990.

[8] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable
techniques for transparent privatization in software transac-
tional memory. Parallel Processing, International Confer-

ence on, 0:67–74, 2008. ISSN 0190-3918. doi: http://doi.
ieeecomputersociety.org/10.1109/ICPP.2008.69.

[9] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai,
R. L. Hudson, B. Saha, and A. Welc. Practical weak-atomicity
semantics for java stm. In SPAA ’08: Proc. twentieth annual
symposium on Parallelism in algorithms and architectures,
pages 314–325, jun 2008.

[10] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai,
R. L. Hudson, B. Saha, and A. Welc. Single global lock se-
mantics in a weakly atomic stm. In Transact 2008 Workshop,
2008.

[11] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm
with eager validation. In 20th International Symposium on
Distributed Computing (DISC), September 2006.

[12] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. Mcrt-stm: a high performance software trans-
actional memory system for a multi-core runtime. In PPoPP
’06: Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages
187–197, New York, NY, USA, 2006. ACM. ISBN 1-59593-
189-9. doi: http://doi.acm.org/10.1145/1122971.1123001.

[13] M. F. Spear, L. Dalessandro, V. Marathe, and M. L. Scott.
Ordering-based semantics for software transactional memory.
In OPODIS ’08: Proc. 12th International Conference on Prin-
ciples of Distributed Systems, dec 2008. Springer-Verlag Lec-
ture Notes in Computer Science volume 5401.

[14] M. F. Spear, M. M. Michael, and C. von Praun. Ringstm:
scalable transactions with a single atomic instruction. In
SPAA ’08: Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, pages 275–284,
New York, NY, USA, 2008. ACM. ISBN 978-1-59593-973-9.
doi: http://doi.acm.org/10.1145/1378533.1378583.

[15] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai. Code generation and optimization for transactional
memory constructs in an unmanaged language. In CGO ’07:
Proceedings of the International Symposium on Code Gener-
ation and Optimization, pages 34–48, Washington, DC, USA,
2007. IEEE Computer Society. ISBN 0-7695-2764-7. doi:
http://dx.doi.org/10.1109/CGO.2007.4.

[16] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable trans-
actions and their applications. In SPAA ’08: Proceedings of
the twentieth annual symposium on Parallelism in algorithms
and architectures, pages 285–296, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-973-9. doi: http://doi.acm.org/10.
1145/1378533.1378584.

