
Evaluating Contention Management Using Discrete Event
Simulation

Brian Demsky Alokika Dash
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, CA 92697

{bdemsky,adash}@uci.edu

Abstract
Understanding the behavior and benefits of contention managers
is important for designing transactional memory implementations.
Contention manager design is closely tied to other design deci-
sions in a transaction memory implementation, and therefore ex-
periments to compare the behaviors of contention managers are
difficult. This paper presents a discrete event simulator that allows
researchers to explore the behavior of contention managers and
even to perform experiments that compare lazy conflict detection
without contention management to eager detection combined with
a contention manager. For our benchmarks, lazy conflict detection
is competitive with the best contention managers even if the con-
tention manager can be implemented with no runtime overheads.
Our experiments confirm that contention management design is
critical for transactional memories that use eager validation.

1. Introduction
Researchers have proposed a wide range of hardware and soft-
ware approaches to implement transactional memory [14, 16, 2, 7].
Transactional memories speculatively execute transactional code
while monitoring for conflicts between transactions. If conflicts are
detected, these systems revert the effects of transactions to elimi-
nate the conflicts. Some transactional memories use a contention
manager to decide which of the conflicting transactions to abort.

The design of a contention manager is closely tied to the imple-
mentation strategy used by the transactional memory. For exam-
ple, invisible reader implementation strategies make eager detec-
tion of read-write conflicts difficult. On the other hand, perform-
ing in place writes necessitates eager conflict detection to ensure
correctness and contention management to avoid deadlocks. These
dependencies make experiments to help understand the benefits of
contention management for different implementation strategies dif-
ficult.

The alternative of trying to understand the benefits of contention
management by simply comparing existing implementations that
use lazy or eager conflict detection is likely to be misleading. Cur-
rent implementations that use lazy conflict detection differ in many
aspects from those that use eager conflict detection. In particular,
some implementations are heavily optimized while other imple-
mentations have not been optimized at all. Optimized implemen-
tations may even incur qualitatively different contention on the
same benchmark — heavily optimized implementations are likely
to spend relatively less time inside of transactions and therefore are
less likely to conflict. Moreover, because supporting a new con-
tention manager may require significant changes to a transactional
memory implementation, it can be useful to estimate the potential
benefits from the contention manager before implementing it.

A second challenge in designing contention managers is that the
performance of contention managers for programs with significant
contention can be difficult to understand. When resolving a conflict
between two transactions, a good contention manager must not
only consider the current work done by the transactions but also
the likelihood that the winning transaction can eventually commit.

We have developed a discrete event-based transactional mem-
ory simulator to help understand the benefits of contention man-
agement. Our simulator allows us to perform experiments that are
otherwise not possible — we can compare lazy conflict resolution
and no contention manager with eager conflict resolution and a
wide range of contention managers. Our simulator also allows re-
searchers to estimate the potential benefits of a highly optimized
contention manager using non-optimized code.

1.1 Contributions
This paper makes the following contributions:

• Discrete Event Simulation of Transactional Memory: It in-
troduces a new tool that allows researchers to understand the
benefits of different contention management strategies.

• Graphical Output: The tool includes support for generating
plots of transaction executions that allow researcher to easily
understand the performance of contention managers.

• Random Execution Generation: The tool supports generating
random executions to evaluate contention managers. A user can
control the key parameters of these executions including: the
length of transactions, the number of threads, and the number
of objects accessed.

• Transaction Tracing: We have instrumented a software trans-
actional memory implementation to record traces that can be
used as input to the tool.

• Evaluation: We have recorded execution traces for all of the
STAMP benchmarks and used these traces with our simulator
to explore the behavior of a wide range of contention managers.

The remainder of the paper is structured as follows. Section 2
presents our discrete event transaction simulator and discusses our
trace recording mechanism. Section 3 presents our trace collection
mechanism. Section 4 discusses limitations of our approach. Sec-
tion 5 presents our evaluation. Section 6 discusses related work; we
conclude in Section 7.

2. Discrete Event Simulation
We next describe our discrete event simulation tool for transac-
tional memories. We begin by describing the tool’s input.

2.1 Input
The discrete event simulation takes as input an execution descrip-
tion that describes an application’s execution. The execution de-
scription is comprised of a set of thread descriptions — there is one
thread description for each thread in application’s execution. A set
of transaction descriptions comprise each thread description. The
thread description contains a transaction description for each com-
mitted transaction instance that the thread executed and a set of spe-
cial transaction descriptions characterize the computation times be-
tween transaction executions. A set of events comprise each trans-
action description. The simulator supports the following events:
transaction begin, object read, array read, object write, array write,
delay, and transaction commit. Each event has a 64-bit time stamp
that gives the number of clock cycles between the beginning of the
transaction and when the event would occur if there are no con-
flicts. Object read and write events have a 32-bit object identifier
associated with them. Array read and write events have both a 32-
bit object identifier and an index associated with them. Transaction
descriptions that model the program’s execution between transac-
tions can contain barrier events that model barrier synchronization
constructs.

The tool supports two methods for generating execution de-
scriptions. The first method takes as input a number of parameters
that describe an application’s execution and then the tool randomly
generates an execution description. These parameters include the
number of threads, the number of transactions per thread, the num-
ber of object accesses per transaction, the time between object ac-
cesses, the number of objects, and how the object accesses are dis-
tributed across the objects.

The second mode takes as input an execution trace from an ap-
plication’s execution and generates the correspond execution de-
scription. This translation process drops aborted transactions and
extracts events only from the transactions that commit. The trans-
lation generates delays to simulate the computation between trans-
actions — the delay time between two transactions is computed
as the time between when the previous transaction committed and
when the first attempt of the current transaction begins.

2.2 Simulation Algorithm
We next describe the basic simulation algorithm. The simulator
uses a priority queue to store pending events. The simulator begins
by placing each thread’s first event into the priority queue. The
simulator then executes its main loop. Each iteration of the main
loop begins by removing the earliest event from the priority queue.
The simulator processes that event and then in general enqueues
the next event from the given thread into the priority queue.

We next describe the action the simulator takes for each type of
event:

• Delay Event: The simulator takes no specific action for delay
event.

• Read Event: When the simulator processes a read event, it adds
the current transaction to the readers list for the specified object
or array element. If the simulator is configured to use eager
conflict detection and there is a conflict, it calls the contention
manager.

• Write Event: When the simulator processes a write event, it
adds the current transaction to the writers list for the specified
object or array element. If the simulator is configured to use
eager validation and there is a conflict, it calls the contention
manager.

• Commit Event: When the simulator processes a transaction
commit, it commits the transaction. If it is configured for lazy
conflict detection, it first checks that it is safe to commit the

transaction. If so, it iterates over the transaction’s write set and
marks all of the conflicting transactions as unsafe to commit.
The fast abort version of the lazy conflict detection immediately
aborts any conflicting transactions.
Finally, the simulator removes the current transaction from the
read and write lists of all objects and array elements.

• Barrier Event: When the simulator processes a synchroniza-
tion barrier, it stores the current thread’s event index and then
increments the thread barrier count. If all threads have entered
the barrier, it enqueues the next event for each thread into the
priority queue and then resets the thread barrier count to 0.

Contention managers make decisions on whether to abort trans-
actions and when to retry aborted transactions. The system exposes
an interface that allows the contention manager to decide which
transaction to abort and how long the transaction should wait be-
fore retrying. For example, if the first event of the transaction oc-
curs t1 clock cycles after the transaction begin, the current simu-
lation time is t, and the contention manager requests a delay of d
cycles, then the first event in the retried transaction is schedule for
the time t1 + t +d.

2.3 Extensions
Our simulator can graphically present simulation results to help
researchers better understand contention management. It can gen-
erate timelines for the key events in the simulated execution.
These events include object accesses, the beginning of transactions,
aborts, and commits. We have found these timelines useful for
understanding an application’s behavior under a given contention
manager.

Our simulator can explore parameter spaces and generate plots
that show how the program’s performance depends on the given pa-
rameter. For example, the simulator can vary the number of threads
in the randomly generated executions and then plot how different
contention managers are affected by the amount of contention in
the application.

Our plotting support generates gnuplot compatible data files and
then uses gnuplot to generate graphs.

2.4 Contention Managers
The transaction simulator can simulate the behavior of several
contention managers. We have found it straightforward to extend
the simulator to support other contention managers and found that
implementing a new contention manager generally takes only a
few minutes. Prototyping contention managers in the simulator
is easier because performance is not critical and the simulator is
single-threaded. Many of our contention managers were based on
the descriptions given in Scherer’s Ph.D. dissertation [13]. We next
describe each contention manager.

2.4.1 Aggressive
The Aggressive manager always aborts the enemy transaction in
case of a conflict. This simplistic strategy is prone to livelock, we
use randomized exponential backoff of the aborted transactions to
avoid livelock.

2.4.2 Timid
The Timid manager always aborts the current transaction. It is also
prone to livelock, we therefore use randomized exponential backoff
to avoid livelock.

2.4.3 Polite
The Polite manager uses exponential backoff when it detects a
conflict. It spins for randomly selected number of clock cycles

taken from the interval [1,2n ∗12), where n is the number of retries.
After 22 retries, the polite manager aborts the enemy transaction.

2.4.4 Random
The Randomized contention manager randomly chooses between
aborting the conflicting transaction and waiting a random interval
of bounded length.

2.4.5 Timestamp
The Timestamp contention manager records the time that each
transaction starts. If two transactions conflict, the newer transaction
is aborted. This manager guarantees that at any point in time, that
at least one of the running transactions will eventually commit.

2.4.6 Karma
The Karma manager attempts to resolve conflicts based on the
amount of work that transactions have done. The Karma manager
approximates the amount of work a transaction has completed by
using the number of objects that the transaction has opened. The
motivation of the Karma manager is to preserve work done by long
running transactions.

When a transaction commits, the Karma manager resets its open
object counter. If one transaction conflicts with a second, the Karma
manager aborts the second transaction if it has a lower priority.
Otherwise, the Karma manager delays the current transaction by a
random amount of time. When the current transaction re-attempts
to open the object, the Karma manager compares its retry count
plus its open object count to the conflicting transactions’ open
object count.

If a transaction is aborted, it maintains its current open ob-
ject count (“karma”). At this point, we have described the stan-
dard Karma manager. Our initial implementation of this manager
was prone to live-lock. Consider transactions that first open several
conflict-free objects, then attempt to access a conflicting object, and
finally perform a computation. If such a transaction is killed on
the conflicting access, the retry of the transaction can quickly gain
enough priority to kill the other transaction. This process then re-
peats itself indefinitely. Our Karma implementation uses random-
ized exponential backoff of the aborted transactions to avoid this
livelock scenario.

2.4.7 Eruption
The Eruption manager is similar to the Karma manager, but waiting
transactions add their Karma to any transactions that they block on.
The reason for this strategy is that transactions that block multiple
transactions will get a higher priority and therefore finish quickly.

2.4.8 Lazy
The Lazy implementation simulates a software transactional mem-
ory that detects conflicts lazily when transactions commit. The
Lazy implementation simulates software transactional memories
that allow transactions that are doomed to execute until they at-
tempt to commit.

2.4.9 Fast
The Fast implementation is similar to the Lazy implementation, but
assumes that the software transactional memory aborts transactions
as soon as the conflicting transaction commits.

2.4.10 Omniscient
The Omniscient manager uses search to generate the ideal schedul-
ing of the transactions. Even though this manager uses pruning
techniques to reduce the search space, the exponential search space

limits this manager to very small execution descriptions. This man-
ager considers the future behavior of an application and is not in-
tended to model any realistic contention manager. We include it
only to provide researchers with insight as to how much room there
is for improvement in scheduling transactions. We do not present
results for the Omniscient manager as it does not scale to our bench-
marks.

3. Trace Collection
We instrumented our software transactional memory implemen-
tation to record traces of key events in the execution of transac-
tions. These events include transactional reads, transactional writes,
transaction aborts, transaction commits, transaction starts, and bar-
riers.

Our implementation contains a Java compiler that implements
language extensions for transactions plus a runtime transactional
memory library. Our compiler implements standard optimizations
to eliminate unnecessary transaction instrumentation. Our transac-
tional memory implementation uses a hybrid strategy — it uses
an object-based STM for objects and a word-based STM for ar-
rays. Our implementation uses lazy validation — we detect con-
flicts when transactions commit.

Modern processors contain chip-level timestamp counters.
Modern x86 processors include a 64-bit timestamp counter that is
incremented at each clock. This timestamp counter is read by using
the rdtsc instruction. This mechanism provides a high precision,
low overhead timing mechanism. On most modern Intel systems,
these counters are synchronized across cores and even separate pro-
cessors. We verified that these counter were synchronized on our
machines.

Our trace recording implementation allocates a large thread
local trace buffer for each thread when it is started. Our event
recording macro simply executes the rdtsc instruction to read the
current time stamp counter, and then stores the current count along
with an integer event identifier. For object accesses, it records a
unique identifier for the object (or for arrays the array identifier
plus the words that were accessed). When the program exits, the
trace is dumped to disk.

4. Limitations
The goal of our event-based transaction simulator is to help re-
searchers better understand the potential benefits of contention
management strategies. For example, if the simulation shows that a
given strategy only provides a 10% benefit, researchers know that
the strategy is only worthwhile if it can be implemented with an
overhead that is less than 10%.

It is important to keep in mind that the simulation results only
provide partial information. For example, some strategies might
generate significant cache line contention. Contention managers
may also have different performance characteristics in real world
systems. For example, operating system scheduling or cache misses
could potentially break livelocks for contention managers that ex-
hibit livelock in simulation.

5. Evaluation
We implemented both a discrete event simulator for transactional
memory and a Java compiler and runtime with support for soft-
ware transactions. We translated the STAMP benchmark suite to
Java [3]. Source code for the our simulator, transactional memory
implementation, and benchmarks is available at http://demsky.
eecs.uci.edu/software.php.

We executed the benchmarks to generate execution traces for
the STAMP benchmarks. We ran each benchmark with 2, 4, and

8 threads. We generated these traces on a dual processor quad-
core Intel Xeon E5410 2.33 GHz processor with 20 GB of RAM
running the 64 bit CentOS Linux distribution and kernel version
2.6.18. This provided us with a total of 8 cores.

5.1 Randomly Generated Executions
We first discuss our experiments that use the simulator on randomly
generated executions. We varied the number of threads in the ran-
domly generated executions from 1 to 40. Each thread executes
40 transactions and each transaction performs on average 20 ob-
ject accesses (with a deviation of ±3). The accesses are 80% reads
and 20% writes and are randomly distributed over 400 objects. We
observed similar behavior for workloads with higher write percent-
ages. The accesses are spaced on average 20 clocks apart (with a
deviation of ±4).

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30 35 40

FAST
LAZY

TIMESTAMP
KARMA

ERUPTION
TIMID

AGGRESSIVE
RANDOM

POLITE

Figure 1. Execution Times in Cycles (log scale)

A random execution was generated for each thread count. Then
for each contention manager, we simulated its performance on the
random execution. Figure 1 presents the execution times in cycles
for this experiment. Lower values are better. The y-axis gives the
execution time in log scale and the x-axis gives the number of
threads. From this figure we see that many contention managers
become poorly behaved as the amount of contention increases.
Figure 2 presents the same results for the best five managers on
a linear scale. Figure 3 presents the percentage of transactions that
abort.

As contention increases, lazy validation performs significantly
better than most contention managers. The reason is that as con-
tention increases, it becomes likely that an individual transaction
will conflict multiple times. It therefore becomes difficult to make
the right decision about which transaction should win, because it is
likely that the winning transaction will simply lose in a later con-
flict. We note that the Timestamp contention manager works well
— timestamps provide a complete order and therefore two threads
cannot repeatedly abort each other when retrying the same trans-
actions. We found it surprising that a contention manager’s abort
percentage is not a good predictor of performance. In particular,
the timestamp algorithm has both a high abort percentage and good
performance. The insight is that (1) it matters which transactions
are aborted — the design of the timestamp contention manager
avoids aborting long running transactions and (2) the timestamp
manager never introduces delays and therefore aborts many more
transactions.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 5 10 15 20 25 30 35 40

FAST
LAZY

TIMESTAMP
KARMA

ERUPTION

Figure 2. Execution Times in Cycles (linear scale)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

FAST
LAZY

TIMESTAMP
KARMA

ERUPTION
TIMID

AGGRESSIVE
RANDOM

POLITE

Figure 3. Abort Percentage

5.2 Traces of STAMP Benchmarks
We next discuss our experiments using traces recorded from ac-
tual executions of the STAMP benchmarks. Figure 4 presents the
execution times in cycles (lower is better). Figure 5 presents the
percentage of transactions that aborted. The x-axis of both graphs
gives the number of threads. As noted in the original STAMP paper
and the STAMP website, the execution time of the Bayes bench-
mark is highly sensitive to the order in which dependencies are
learned. This causes the 4 core executions to take more time than
the 2 core executions. The lazy conflict detection versions are com-
petitive with the best contention managers for eager conflict detec-
tion on all benchmarks.

Labyrinth, SSCA2, and Vacation have few transaction conflicts
and therefore the contention manager does not have much impact
on performance. Bayes, Genome, and Intruder have more con-
flicts and we observe that the choice of contention manager affects
performance. The Polite contention manager performs poorly for
KMeans. Note if two transactions mutually conflict, the polite man-
ager will make both transactions randomly backoff exponentially to
wait for the other to commit. Such pathological cases yield the large
slowdowns observed.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

2 4 8

Bayes

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

2 4 8

Genome

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

2 4 8

Intruder

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

2 4 8

KMeans

1.1E11 3.7E11 8.5E11

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

2 4 8

Labyrinth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

2 4 8

SSCA2

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

2 4 8

Vacation

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

2 4 8

Yada

Lazy (left)
Fast
Aggressive
Timid
Timestamp
Karma
Polite
Eruption
Random (right)

Figure 4. Execution Times in Cycles

5.3 Contention Manager Design
Internally, we developed a contention manager for transactional
memories that use lazy validation. The idea was to record during
the commit process how often transactions conflict on each object
and then the transactions that accessed those objects would first
lock them to avoid aborts. This was coupled with a simple cycle
detection algorithm to avoid deadlocks. We implemented this strat-
egy and found that it performed poorly under high contention.

We developed the simulator to better understand the perfor-
mance of this contention manager. We found that it was often the
case that one or more transactions that could quickly commit would
wait on a second transaction and that this second transaction would
either later wait on a third transaction or abort. The simulator re-
sults showed this strategy does yield benefits for programs in which
a transaction is unlikely to conflict twice. This suggests a runtime
check that could turn off the contention manager for workloads in
which it performs poorly.

5.4 Discussion
Our results reveal that lazy validation with no contention manage-
ment performs well for all of the STAMP benchmarks and for the
randomly generated executions. The key insight is that under heavy

contention, it is likely that the transaction that wins one conflict will
just abort because of a later conflict. In this light, lazy validation can
be viewed as a contention manager that delays resolving conflicts
until the transactions complete and there exists more information
about which transactions can commit. Under low contention, con-
tention manager does not matter.

We expect that lazy validation will perform relatively better for
real implementations. For real transactional memory implementa-
tions, the maintenance of the object reader lists required by eager
validation generate extra memory traffic and can cause contention
on cache lines.

Our results indicate that a key element of contention manager
design is to ensure that the contention manager avoids pathologi-
cal behaviors. In particular, for good performance it is important to
both avoid livelock (or near livelock) and situations in which mul-
tiple transactions needlessly backoff exponentially.

6. Related Work
The Chapel [4], X10 [5], and Fortress [1] high performance com-
puting languages include language constructs that specify that code
should be executed with transactional semantics.

 0

 20

 40

 60

 80

 100

2 4 8

Bayes

 0

 20

 40

 60

 80

 100

2 4 8

Genome

 0

 20

 40

 60

 80

 100

2 4 8

Intruder

 0

 20

 40

 60

 80

 100

2 4 8

KMeans

 0

 20

 40

 60

 80

 100

2 4 8

Labyrinth

 0

 20

 40

 60

 80

 100

2 4 8

SSCA2

 0

 20

 40

 60

 80

 100

2 4 8

Vacation

 0

 20

 40

 60

 80

 100

2 4 8

Yada

Lazy (left)
Fast
Aggressive
Timid
Timestamp
Karma
Polite
Eruption
Random (right)

Figure 5. Abort Rates

Knight proposed a limited form of hardware transactional mem-
ory that supported a single store operation [12]. Herlihy and Moss
extended this work to support short transactions that write to mul-
tiple memory locations in hardware [11]. Shavit and Touitou first
proposed a software approach to transactional memory for transac-
tions whose data set can be statically determined [14]. Herlihy et
al. extend the software approaches to handle dynamic transactions
whose accesses are determined at runtime [10].

Harris et al. have implemented compiler optimizations for a
word-based STM [8]. These optimizations avoid log operations on
newly allocated objects and eliminate duplicate open operations.

DSTM2 provides a library-level implementation of an object-
based software transactional memory for Java [9]. It is designed to
support multiple contention managers. However, it can be difficult
to understand the behavior of contention managers using DSTM2
and researchers can’t compare radically different implementation
strategies. TL2 is a lock-based software transactional memory that
acquires lock at commit-time [6]. It uses a global clock to ensure
that transactions read a consistent snapshot of memory. TL2 should
be roughly approximated by the LAZY or FAST simulations, how-
ever TL2 can abort transactions without any conflicts due to the
details of its use of a global clock.

Other researchers have found that lazy validation serves as a
form of contention management [15].

7. Conclusion
Many transactional memory implementation contain contention
managers to resolve conflicts between transactions. Contention
manager design has many subtleties — the contention manager
must avoid livelock and other pathological behaviors while at-
tempting to optimize performance.

This paper presents a discrete event simulation framework for
evaluating contention managers independent of transactional mem-
ory implementations. The results show that lazy validation is com-
petitive with the best contention managers for all of the STAMP
benchmarks and randomly generated executions.

Acknowledgments This research was supported by the National
Science Foundation under grants CCF-0846195 and CCF-0725350.
We would like to thank the anonymous reviewers for their helpful
comments.

References
[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Messen, S. Ryu,

G. L. Steele, and S. Tobin-Hochstadt. The Fortress Language
Specification. Sun Microsystems, Inc., September 2006.

[2] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memory. In 11th International
Symposium on High Performance Computer Architecture, 2005.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Proceed-
ings of The IEEE International Symposium on Workload Characteri-
zation, September 2008.

[4] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel Programma-
bility and the Chapel Language. International Journal of High Per-
formance Computing Applications, 2007.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, 2005.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In
Proceedings of the 20th International Symposium on Distributed
Computing, 2006.

[7] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom,
M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency (TCC). In Proceedings of the
11th International Symposium on Computer Architecture, June 2004.

[8] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. In Proceedings of the 2006 ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2006.

[9] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework
for implementing software transactional memory. In Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, 2006.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software trans-
actional memory for dynamic-sized data structures. In Proceedings
of the Twenty-Second Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, July 2003.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the Twentieth
Annual International Symposium on Computer Architecture, 1993.

[12] T. Knight. An architecture for mostly functional languages. In
Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, pages 105–112, 1986.

[13] W. N. Scherer. Synchronization and Concurrency in User-level
Software Systems. PhD thesis, University of Rochester, 2006.

[14] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing, August 1997.

[15] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A
comprehensive strategy for contention management in software
transactional memory. In Proceedings of the Symposium on Principles
and Practice of Parallel Programming, 2009.

[16] M. F. Spear, V. J. Marathe, W. N. Scherer, and M. L. Scott.
Conflict detection and validation strategies for software transactional
memory. In Proceedings of the Twentieth International Symposium
on Distributed Computing, 2006.

