
Open Nested Transactions: Semantics and Support

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003–9264, USA

Email: moss@cs.umass.edu

Abstract— We describe semantics for serializable (safe) open nested
transactions. Given these semantics, we then suggest hardware necessary
to support them directly. We further consider some useful, but not seri-
alizable, applications for open nesting, and their hardware implications.
We focus primarily on linear nesting, which we previously argued to be
more amenable to hardware support than the general case.

I. MOTIVATION

There is increasing interest in adding some notion of transactions
to general purpose programming languages such as Java (see [1]
for example). Transactions promise to make it easier for ordinary
programmers to write correct and efficient concurrent applications (at
least of certain kinds), by solving a number of problems exhibited
by locking, such as deadlock, priority inversion, and concurrency
bottlenecks.

We focus here on support for nesting of transactions, which we
believe is essential for realizing the full potential of transactions.
Applications and libraries will call other libraries, and thus language
transactions will occur nested inside other language transactions.
Simply aggregating these into big transactions leads to loss of
concurrency, more transaction conflicts, and more re-executions of
failed transactions. Further, a strict transaction model is also rigid,
leading programmers to code outside the model. For the sake of
correctness, programmers should use transactions wherever possible,
i.e., transactions should be the default. Hence, it may be wiser to
support reasoned loopholes rather than a strict model.

Here we describe open nesting, a transaction model offering
higher concurrency that non-nested and simply nested (closed nested)
transactions. The database community developed open nesting some
time ago, but it is less familiar to language designers and hardware
architects, and undoubtedly some of the concepts need a degree of
“translation” and adjustment as we attempt to migrate them into
the environment of programming language transactions—hence our
motivation for recapitulating the model here. We first describe a
safe, serializable, model, which serves primarily to offer higher
concurrency. However, by “abusing” the model, one can achieve
useful excursions from the strictures of serializability, which we also
explore to some extent.

II. THE OPEN NESTING MODEL

Here we offer a necessarily condensed exposition, avoiding formal-
ism. We do this not only for the sake of conciseness; we also hope
that the informal presentation builds better intuition and conceptual
understanding.

Transactions: A transaction is a dynamic execution of a sequence
of operations, which should appear to execute instantaneously with
respect to other concurrent transactions. If a transaction fails, it is as
if it never ran (no partial executions). A failed transaction may be
retried, depending on the nature of the failure, in order to achieve
exactly-once execution wherever possible. These transactions offer
Atomicity, Consistency, and Isolation, the first three of the ACID

properties; in this setting we forgo Durability. Gray and Reuter’s
text on transaction processing [2] remains an excellent background
work on transaction concepts and their implementation in information
systems (databases, etc.). Before moving on, we stress the point of
view of a transaction execution as a sequence of operations. As
database folks might say: “The log is the truth—the state is only
a cache.”

At the lowest level of abstraction, a transaction’s operations ex-
amine (read) and modify (write) state, and thus a transaction can be
summarized in terms of the set of locations and values it has read
and written, in terms of bytes or words. However, it remains helpful
to realize that this is just a summary of the effect of a transaction’s
operations at this lowest level of abstraction—though it is the level at
which Transactional Memory (hardware support) will tend to operate.

Conflict: We say two operations conflict if they do not commute,
i.e., swapping them causes either or both of them to return a different
result or to lead to a different state (possibly returning a different
result in the future). Two transactions conflict if they issue operations
that conflict. Transaction systems impose concurrency control to
prevent conflicting transaction executions.

Transaction abort and commit: If a transaction completes suc-
cessfully, we say it commits. Concurrency conflicts, and other events
(errors and exceptions of various kinds), can lead to the need to
abort an in-progress transaction, i.e., to remove any of its tentative
effects, and perhaps to retry it. In general, to abort a transaction one
must undo its sequence of operations, by executing inverses of those
operations (undos) in reverse order. In the special case of the level of
abstraction of reads and writes, it is adequate merely to restore the
state of any modified location to what it was before the transaction
modified it. However, it is helpful to view this as just an optimization
of undoing in reverse order. “Read” and “Write” are perfectly good
operations, too, and can be logged and undone just fine. But as we
will see later, framing things at higher levels of abstraction can offer
increased concurrency.

Closed Nesting: In closed nesting, a transaction may execute child
transactions (subtransactions). Following one of our early descriptions
[3], we assume that a parent does not execute while any of its
children do, but in general a transaction may have multiple concurrent
children (see also [4], [5]). Using the log model, if a child commits,
we append its log to its parent’s log. If a child aborts, we undo
its actions and discard its log. Importantly, a child abort does not
abort its parent, though the parent may be notified of the abort and
take alternative action of its choosing, including aborting itself. One
interesting property of the closed nesting model is that a child’s
operations are deemed never to conflict with operations of its parent
(or any ancestor). However, conflict of operations between a child
and a non-ancestor (sibling, descendant of sibling, or a transaction
that is or is part of a different top-level transaction) does induce
transaction conflicts. The aggregation of child effects into parent logs
demonstrates the aggregation we described before, and also shows



how closed nesting is semantically “flat”, operating at a single level
of abstraction.

Linear Nesting: In linear nesting we restrict a transaction to have
at most one child at a time. Thus the tree of running descendants of
any transaction is a line, not a general tree structure. In linear nesting
one can identify a transaction solely by a top-level transaction id (the
original ancestor of the transaction) plus a nesting level. This greatly
simplifies determining ancestor-descendant relationships in hardware,
and also permits some useful further optimizations, as we recently
described [6].

Open Nesting: Open nesting is, not surprisingly, similar to closed
nesting. However, in the open nesting case the parent and child
execute at different levels of abstraction. We explain this with a
running example. Suppose you are to implement a highly concurrent
version of the Java HashMap library class, but with transactional
semantics. For concreteness, we consider a closed (chained) hash
table. This consists of an array of linked lists, one list for each hash
bucket.

Consider first how this would work without nesting, in a model that
operates at the level of reads and writes of memory words. For either
the get or put operations, you first compute the hashCode of the
object presented as a key. This touches the key object, and perhaps
updates a header word of that object, used to cache the hash code. You
then use the hash code to determine a bucket, and pick up the linked
list for the key’s bucket and begin examining the objects in that list.
You will immediately conflict with any concurrent transaction that has
updated the pointer to the head of the list (but not yet committed),
and, if you get that far, with any transaction that has updated the list
farther along. You also examine other key objects as you traverse the
list looking for a match to your key object. You can easily conflict
with transactions that created or updated those objects. Finally, in the
case of put, you must update the list, creating further conflicts.

Of course one way people approach transactions is to say “Oh, I’ll
just do each hash table operation as its own (top-level) transaction.
Then all these conflicts go away, except for low-level conflicts
between actually concurrent table operations.” But this strategy does
not allow the table operations to be composed effectively into bigger
transactions, and such composition is sometimes necessary for correct
semantics. For example, an algorithm might manage a collection of
objects by keeping them on various lists, with the requirement that
each object always be on or another of the lists. To move an object
from one list to another cannot properly be done as two separate
transactions, since another transaction could slip in the middle and
observe that the object being moved is currently on no list.

(Closed) nested transactions allow you to aggregate multiple low
level transactions into a bigger low level transaction. Closed nested
transactions might be adequate for the “move this object from one
list to another” case, since the list deletion and insertion are relatively
short and closer together in time. But complex operations can have
many effects in many places, and can run for a significant period
of time. Hence, conflicts can be a real problem. However, many of
the conflicts at the level of memory words are what we call false
conflicts: conflicts that occur at a low level of abstraction, but which
are not essential to the semantics of the operations. For example,
when looking for a particular key in a HashMap, other keys we
happen to touch along the way do not matter, and it is unfortunate
that observing them may lead to unnecessary conflicts.

Returning to the HashMap example, how would it work with open
nesting? The lower level (child) transactions work with memory reads
and writes as their operations. The high level semantics of the table
have to do with presence and absence of keys (and values) within a

set of mappings. If two transactions try to access and update the same
key, that is a fundamental conflict, at the higher level of abstraction,
regardless of implementation. But the accident of two different keys
lying in the same hash bucket is not fundamental, but a false conflict
when viewed from the higher level.

Just like non-nested and closed nested transactions, open nesting
must be able to commit and abort transactions, and to indicate when
conflicts occur. The critical notion here is that when an open nested
transaction commits, we accomplish a change in level of abstraction.
In the HashMap case we switch from memory reads and writes
to a view of a HashMap as a set of key-value mapping pairs. The
essential operations are inserting a pair, observing a pair, and deleting
a pair, and none of these commute on the same pair except two
observations of it. Thus, these operations are what we need to log
at the higher level. So, as a HashMap.get transaction commits, we
discard the lower level read-/write-set log of the child and add (at least
logically) an observed record to the parent’s log. We proceed similarly
for insertion and deletion. Please ignore for the moment exactly how
this might be implemented and try to focus on the concept.

What if the parent aborts? When we switched levels of abstraction
as the child committed, we also switched the level at which we must
abort the work done by the child. To abort a completed insertion,
we must delete the mapping, by invoking a delete operation, not
by just slamming back in the pre-insertion state of memory words.
Intervening insertions and deletions, though they are for other keys,
nevertheless can have rearranged the hash bucket or the whole table.
So, which bucket pointers need to be adjusted can be quite different.
One way of looking at this is that the commit of the open nested
transaction really (finally) commits the child’s state changes, as seen
at the lower level of abstraction. The only way to reverse the effect
of the child action is to execute another action, in this case a delete
of the pair the child inserted. Thus, from the standpoint of the lower
level, the upper level undo is forward progress.

It should clear that when the child commits and gives up its read-
and write-sets, operations that conflict at the low level will be able
to proceed, and we achieve higher concurrency. However, for proper
high level semantics, we must detect and prevent high level conflicts,
i.e., conflicts that arise from the inherent semantics of the higher level
actions. That is, just as the lower level has its concurrency control,
detecting and responding to conflicts at the level of memory reads and
writes, the higher level needs its own concurrency control in terms
of what is in and out of the set of mapping pairs in the HashMap.
Because semantics is very data-type dependent, we cannot expect
simple and uniform semantics for conflicts (or for undos) at the higher
level. Rather, they must be given by the programmer.

What might higher level (abstract) concurrency control look like
for our HashMap? One strategy is to associate with each mapping
pair a set of reading transactions and a writing transaction. Thus
we implement read and write locks at the level of mapping pairs,
in software. Each reading operation would need to acquire a read
lock, each writing operation a write lock, etc. There are additional
subtleties. For example, some operations in HashMap are on the
whole map, e.g., returning the whole key set, or all pairs. These
operations prevent any additions or deletions to the set, because they
effectively make assertions about what is not in the set as well as
what is. This is a subtle point, demonstrating the abstractness of these
locks: if we probe a HashMap for a key not in the map, we must
also “lock” this fact, since the caller detected absence of the key and
may be relying on it.

When a higher level transaction commits (or aborts) we must
release these locks. Thus, we need to support on-commit actions as



well as on-abort undos (which invoke an inverse and then release the
lock). In summary, just as an open nested commit requires a change
in level of abstraction with respect to undos (logs), it demands a
change in point of view with respect to concurrency and visibility
(locks), a switch from lower level conflict management (perhaps in
hardware) to more abstract management (in software).

Open Nested Insertion Dissected: Now we can describe insertion
into a HashMap more completely. It first computes the hash code of
the key object. The hashCode operation is itself a good candidate
for open nesting, to avoid false conflicts with other manipulations of
the key object (including its creation). Since hashCode is supposed
to be idempotent (always return the same value for the same object),
it does not abstractly conflict with any other operation on the key
object. The put (insert) operation then proceeds to determine if the
key in question is locked. If it is locked then it waits (or, depending
on policy, causes an abort, of itself or of conflicting transactions). If
the key is not locked, the transaction acquires a lock for it. This lock
is specific to the particular HashMap, and hence records (somehow)
the HashMap, the key, and the locking transaction. These lock table
manipulations are part of the ongoing open nested transaction. The
transaction records the lock in a list of things it needs to deal with on
completion (either commit or abort). The transaction also records, in
its parent’s list of things to do on abort, the undo of this operation,
namely a deletion of the key in question. In the midst of all this
the transaction also does its basic work of inserting the pair into the
HashMap.

If the open nested transaction commits, it drops its read- and write-
sets. Thus its updates to the HashMap, to the lock table, and to
the parent transaction’s commit action list and abort action list are
installed and become visible, at the level of memory reads and writes.
If a conflicting get or put comes along, the conflicter will see this
when it searches the lock table, and will trigger concurrency control
action. If the open nested action aborts, we discard its low level
writes, to the basic data structure, to the lock table, and to the commit,
abort, and completion action lists. If the parent aborts, we run the
abort actions, as open nested actions themselves, and then drop any
locks.

Multiple Levels of Nesting: What if the HashMap operations
are themselves part of a larger action? We can use closed nesting
to aggregate actions. This is appropriate if there is little concurrency
to be gained from adding a level of abstraction. However, we can
also add a level of abstraction by using open nesting again. In this
case, when the higher level open nested action commits, we discard
the lower level operation undo log (abort action list) and perform
any commit actions (such as releasing locks). The higher level open
nested action is guaranteeing correctness, according to its even more
abstract viewpoint. Some years ago we proved the correctness, in
terms of equivalence of abstract state and results, of composing open
nesting in this way [7] (see [8], [9], [10] for a sampling of related
work by others).

III. EXAMPLE: PHONE DIRECTORY

We now offer an example that uses two levels of transaction nesting
(closed on top of open) and a concurrent update scenario to illustrate
further our proposed style of use for open nesting (i.e., abstract
serializability: serializability in terms of the higher level (abstract)
state). We assume a computerized telephone directory, organized
by name, department, and phone number. The basic data structure
consists of phone directory entry objects; we call the class PDE
for short. To support various lookups, the overall directory (which
we call PD for short) has two indexes (maps): a SortedMap from

person name (String) to PDE, and a SortedMap from department
name (String) to SortedMap giving an alphabetical list of PDE’s
for people in the given department. We use SortedMap’s rather than
HashMap’s to support alphabetical listing of ranges of names, etc., as
well as equality searches. We assume the SortedMap structures are
implemented using open nesting for all of their operations. Operations
on a PD use closed nesting if they need to examine or update multiple
structures in the PD. For example, adding or deleting a PDE requires
updating two maps (the by-name map and one department’s map);
changing a PDE’s department requires updating two department
maps; etc. Some operations, such as looking up a single name, do
not require both levels of nesting.

Concurrency Control: The SortedMap we envision allows range
lookups: at the very least individual names (range of size 1) and all
names (full range), but likely also including all persons whose last
name starts with a given prefix, etc. Thus an appropriate locking
model is locking ranges of names. Two range locks conflict if their
locking mode (read, write) conflicts and their ranges overlap. (This
is a simple and highly implementable restriction of predicate locking
[11], which in general is NP-complete.) Note that an application built
on top of the PD might hold a lock a long time, e.g., while displaying
a user’s PDE for possible editing in an interactive window, to avoid
having the information change while the display window is open.
(One can use a timeout on data entry to prevent the lock from being
held indefinitely, or somehow allow a conflicting updater to force
the interactive transaction to abort.) Since some lookups and updates
proceed through the by-name map, and others through the department
map, we associate the range lock table with the PD as a whole, and
use lowest level concurrency control (read- and write-sets) on the
SortedMap’s.

We observe that a range lock covers not only those PDE’s in the
PD at the current time, but the infinite number of PDE’s that lie
in the range and are not in the table. That is, one is locking PDE
absence from the table as well as PDE presence. This gives one
confidence that a range retrieval gets all the entries in the PD at
the current time. Note that this effect cannot be achieved simply by
locking PDE’s individually!

Scenario: Suppose we have two concurrent transactions on a PD,
one adding an entry for “Moss” in “Computer Science” and one
deleting an entry for “Mosher” in “Computer Engineering”. These
person and department names are close enough alphabetically that
they may well lie in the same internal leaf object in the by-name
SortedMap data structure, which, for the sake of argument, we
implement with a B-tree. We further observe that the PD updates may
be part of much larger and complex transactions, likely distributed,
for provisioning and deprovisioning of staff in personnel processes.
Thus, even after the PD operations are committed (from their point
of view), they may be part of a larger nested transaction that may
take some time to complete.

Suppose the insertion and deletion start about the same time, with
the insertion coming first. We’ll call the transactions I and D (see
Figure 1). They are closed nested transactions, each consisting of
several steps. First, each acquires a range lock on the (small) range
consisting of the person’s name. We assume that acquiring the range
lock is an open nested action (I1 and D1), on the range lock table.
We do it this way so that the locking table will not be a bottleneck.
D next tries to delete its name from the by-name SortedMap (open
nested transaction D2). It gets to the leaf bucket, examining index
buckets and name String’s along the way, and finds the relevant entry.
Rather than physically removing the entry right away, it adds to D’s
commit list an operation that will do the physical deletion later, as



part of committing D. The reasoning here is that one should not
physically remove data until it is finally committed, since otherwise,
when there is an abort and one would need to re-insert the removed
object, there might not be space. This is a general principle in
designing transactional data structures, understood by the database
implementation community.

I D 

I1: lock D1: lock I2: name D2: name I3: dept D3: dept 

R•••••W R•••••W R•••••W R•••••W R•••••W R•••••W 

Fig. 1. Interleaved Concurrent Insertion and Deletion

Meanwhile, I1 inserts its range lock in the lock table, possibly
needing to wait (briefly) or retry if its lock acquisition overlaps with
D’s. I then proceeds to search the by-name SortedMap (open nested
transaction I2). It finds the same bucket and looks for the right place
to insert the new key. It attempts to shuffle higher entries over by one
and to insert its new entry. It thus does writes to the leaf bucket’s
words, and likely conflicts with the deletion (D2). However, as soon
as D2 commits, I2 can proceed and enter its information. It enters in
I’s abort action list an operation to delete the new entry (exactly like
D2’s operation added to D’s commit list). Similar to D2 and I2, open
nested transactions D3 and I3 manipulate the department maps. Here
they will not conflict, since the PDE’s are for different departments.

The figure is drawn to illustrate significant points. It is intended
to be read with time passing from left to right. Looking at the
lowest level, we see that the reads and writes of each open nested
action (Ii, Di) are clustered together. While in reality these reads
and writes may be somewhat mixed together, serializability of the
individual transactions Ii and Di requires that it be as if they were
clustered together. The figure shows one possible ordering for the
Ii and Di. Thus, from the lowest level perspective, the order of the
transactions is I1, D1, I2, D2, I3, D3. However, at the higher level
of abstraction, since I and D are operating on different keys, the
I operations commute with the D operations, so the order given is
equivalent to (i.e., equal in the abstract to) I1, I2, I3, D1, D2, D3.
Thus, I and D are abstractly serializable: even though they are tangled
together at the level of reads and writes, they are ACI, Atomic,
Consistent, and Isolated, in the abstract.

When I and D are ready to commit, they have the following actions
on their respective commit, abort, and completion lists:

• I’s commit list: empty
• I’s abort list: remove its PDE from the by-name map and its

department map
• I’s completion list: remove its range lock
• D’s commit list: remove its PDE from the by-name map and its

department map
• D’s abort list: empty
• D’s completion list: remove its range lock

Here we present the lists with their actions in the order in which they
were added. If I aborts, the system will (before actually abandoning
I) execute its abort list actions in reverse order (undoing things in
the opposite order from which they were done, i.e., last to first) and
then execute I’s completion actions in reverse order (it is not clear
this order matters as much). If I commits, the system executes the
commits actions in the given order, and then the completion actions in

the given order. The same applies to D. It is important to understand
that I (or D) is considered to abort if it itself aborts (e.g., because
of concurrency control conflicts or some kind of failure) or if any
ancestor aborts (before I (D) commits). On the other hand, I (D) does
not commit until an open ancestor commits (with top-level ancestors
understood to be open).

We summarize below the protocol for managing a transaction’s
lists when the transaction completes. Note again that we consider
top-level transactions to be open.

• On open commit: perform commit actions, then completion
actions; ignore the abort list

• On closed commit: append each list to the parent’s corresponding
list

• On abort: perform abort actions in reverse order, then comple-
tion actions in reverse order; ignore the commit list

Please refer to Section V for corresponding protocols for managing
read- and write-sets (lowest level actions).

An Abort Scenario: Suppose for some reason the I transaction
aborts after I2 and before I3. It is important that the undo be a separate
operation at the abstract level. If another user’s transaction added or
removed a different key from the same bucket, then just backing out
I2’s writes will be wrong, since the bucket’s state has further evolved
since I2 ran. Likewise, D2’s commit operation, to really remove its
key, must also be a separate abstract operation, since intervening
insertions and deletions of other keys may move the slot containing
the key D2 wishes to delete. Likewise it is important to maintain
abstract concurrency control (abstract locks). Otherwise, in the case
of I aborting after I2, the inserted key might be observed by another
transaction—but then I2 almost immediately goes away. In this case
I is not properly isolated or atomic with respect to other transactions.

Some Special Cases: In the phone directory example we pre-
sented a fairly general case, a collection with multiple indexes, with
individual operations (insert, lookup, remove individual entries) and
collection operations (lookup all keys in a given range (not covered
in detail)). We now consider a couple of special cases, which begin
to show how the general model can sometimes be streamlined.

Special Case: Interning. The Java String class maintains a table
of unique copies of particular strings, via its intern operation.
This table offers only the one operation, which conflicts only with
interning another String consisting of the same characters. However,
a conflicter can simply be re-run. Further, there is no need to remove
an interned string if the intern operation later aborts. For highest
concurrency one should implement intern as an open nested action. It
needs no abstract lock, and no (abstract) commit, abort, or completion
actions.

Special Case: Creating Strings. Following on from the intern
example, for intern not to encounter conflicts when examining
string contents (it compares strings using String.equals, etc.), String
constructors should be open nested, committing their memory writes
immediately. Thereafter, a String is immutable, so there will be no
conflicts. Like interning, constructing strings will have no commit,
abort, or complete actions. Realizing that String constructors should
be open nested leads us to:

Special Case: Java Object Allocation. Java object allocation, up
through the point of filling in the object header with its type
information, etc., and zeroing the object contents, should also be
open nested. This will insure that transaction aborts can never make
visible an object that does not have a proper type and safely initialized
fields. (This does not prevent the escape and visibility of an object
whose constructor has aborted, leaving the object’s fields null, but at
least we won’t violate Java type safety.)



IV. WHAT TRANSACTIONS DON’T DO

In the interest of “full disclosure” it is important to be clear about
some things that transactions do not do, and for which one needs
other mechanisms:

• Transactions do not arrange communication between threads.
In fact, the I of the ACID properties stands for Isolation,
non-communication! To obtain serializability, one can connect
together the transactions of threads that communicate, so that the
transactions all commit or all abort (or rollback to a point prior
to the communication, etc.). Luchangco and Marathe describe
a design to accomplish this [12]. In some cases one may
wish to relax the restriction that communicating transactions be
connected for purposes of commit and abort (see Section VI).

• Transaction processing does not impose any particular order on
transactions issued by concurrent threads, nor does it inherently
reveal their order. With transactions one obtains atomicity (the
A of ACID), and by implication Consistency (the C). Similarly,
with stylized use of Java locking (roughly speaking, applying
synchronized to each operation that needs to be atomic) one
obtains the same properties. But the Java memory model also
imposes ordering between synchronized operations issued by the
same thread and by different threads on the same object. This
cuts both ways: transactions may allow more concurrency, by
not imposing ordering; Java locking imposes ordering, which is
a kind of communication (i.e., it allows reasoning about ordering
of events).

• Transactions do not themselves introduce concurrency. For ex-
ample, one might want a certain loop to execute with its it-
erations logically concurrent (to obtain concurrency). Executing
each iteration logically as a transaction will insure that iterations
that happen to conflict execute atomically. One may further
want the iterations’ transactions to commit in the loop’s original
order—or perhaps not, if one knows the order doesn’t matter.

V. SUPPORTING OPEN NESTING

We now take up the question of how to support open nesting. First,
it is reasonably clear that some things need to be specified by the
programmer. In particular, the programmer will need to indicate, for
each operation, its inverse. The programmer will also need to specify
which pairs of operation invocations conflict. If the programmer
supplies this information at a fairly high level (e.g., tables of inverses
and conflicts), then the language implementation may be able to
generate much of the detailed code required, especially if we provide
suitable generic libraries for managing lock tables, and so forth. The
language implementation can also manage the commit action, abort
action (undo), and completion action lists. There is no real need,
and probably no benefit, from supporting these parts of open nesting
implementation in hardware.

What can hardware do? First of all, hardware can provide the
lowest level transaction semantics: read- and write-sets on memory
words. Of course this can also be done in software, as a number of
recent software transactional memory implementations demonstrate
(e.g., [13], [1], [14]). But how do such hardware transactions interact
with nesting? We have sketched elsewhere hardware to support linear
nesting for closed nested transactions [6]; there we also suggested one
specific behavior for that hardware when an open nested transaction
commits. However, that was just one possible position among many.
We continue to assume that aborts of open subtransactions drop the
read- and write-sets, and commits install the subtransaction writes
to top level. But that still leaves a number of options of what to do

when an open nested transaction commits. Here are some of those
options:

1) Reads and writes aggregate into the parent, as with closed
nesting.

2) Drop subtransaction read and written locations from all read-
and write-sets.

3) Drop subtransaction written locations from all read- and write-
sets, but leave ancestors’ reads (updated with values written by
the subtransaction values).

4) Leave ancestor read- and write-sets alone (updated with values
written by the subtransaction).

5) Retain subtransaction written locations as read-set entries in the
parent, and drop subtransaction read-set entries.

6) Retain subtransaction read and written locations as read-set
entries in the parent.

These options vary in the degree of concurrency they allow, and in
the strength of the guarantee they provide to the subtransaction’s
invoker. For example, the first option has the least concurrency and
the strongest guarantee. However, because it offers no increase in
concurrency over closed nesting, it would not be a particularly useful
choice. The second option offers the highest concurrency, by dropping
the most items from read- and write-sets (which are used to determine
conflicts). However, it might be surprising that some objects, recently
touched by the parent, are now “magically” available for any other
transaction to modify at will.

Let’s pick apart the situation a little more, using the HashMap
example. The state of key and value objects is quite distinct from the
state of the HashMap itself. The internal structures of the HashMap,
its array of buckets, the bucket linked lists, etc., are independent
of the key and value objects, and private to the HashMap. Thus,
releasing all read- and write-sets on the HashMap is not a problem,
provided all uses of the HashMap follow the open nesting protocol,
with its high level concurrency control, etc. In this case, there is one
possible difficulty, namely the need for the HashMap operations
to call hashCode on the key objects. Computing the hash code
might involve reading, or even updating, a variety of words in the
key object (and other objects), so arbitrarily dropping those words
from all ancestors could do strange things if the ancestors have been
manipulating the objects. It seems best to leave ancestor words alone,
which favors the fourth option on our list. With this option, any
data structures accessed only by open nested actions (such as the
internals of the HashMap) are effectively entirely committed, while
we interfere least with ancestor read- and write-sets, and thus with
ancestor concurrency control expectations.

A possible difficulty with hashCode is that user-implemented
hash operations could still encounter conflicts. For example, if the
transaction that created the key object and initialized it has not yet
committed, but it allows a reference to the key object to escape
(e.g., via an open nested transaction that writes the reference into
some shared data structure), then another transaction could conflict
when trying to read the object’s data to compute its hash code.
This suggests that object initialization should be an open nested
transaction, so that object state cannot “disappear”, even if the
creating transaction aborts. There are safety concerns here previously
noted: we cannot have object headers turning into zeroes (or worse,
if initialization does object zeroing, whatever arbitrary contents were
in those words before!). Likewise, in order to prevent unwanted
concurrency conflicts, programmers may need to exercise care in
implementing hashCode. For example, they can provide an extra
field to hold their user-computed hash value, and hashCode can



consult this first. If we use a separate open nested transaction to
initialize the cached hash code, and commit it, then our HashMap
operations will only read this value, which will never be updated
again. Thus we will have no future conflicts on hashCode.

Revised Proposal: In sum, considering the overall programming
model, we suggest that open nesting support the fourth option above,
namely that when an open nested action commits, we drop its read-
and write-sets, leaving ancestor read- and write-set items alone,
except for updating their values to correspond to what the commit-
ting transaction wrote. This enhances concurrency while preventing
ancestor concurrency control “surprises”. This proposal differs from
the one we previously offered [6], which discards an ancestor item
if the open nested transaction writes the same location.

Style of Concurrency Control: Thus far we have presented
concurrency control in terms of locking (read- and write-sets are
effectively fine-grained short-term locks on individual memory words
or cache lines), sometimes called pessimistic concurrency control.
There are also optimistic approaches, which proceed without neces-
sarily checking for concurrency conflicts until a transaction attempts
to commit (Kung and Robinson’s work [15] is foundational, and this
line of research and its application continues [16], [17], [18], [19]).
There is no fundamental reason why one cannot apply optimistic
concurrency control to transactional memory, open transactions, and
even multi-layering of open nesting. However, for safety it is im-
portant that systems be designed so that a transaction will never see
and attempt to operate from an inconsistent state. We do not try to
determine here what might be the specific implications of this design
constraint.

VI. BENDING THE RULES

As with anything requiring correct programming, programmers can
goof when writing a class such as HashMap, and end up offering
broken semantics by failing to use open nesting correctly. However,
with good library and language support, allowing descriptions of
inverses and conflicts in a more declarative way rather than requiring
that they be programmed “by hand”, we can substantially increase
the reliability of open nesting.

For its part, the hardware mechanism fundamentally enhances
concurrency, through “early” release of read- and write-set items.
We can bend the rules of safe open nesting to take advantage of that
concurrency in useful ways. Put another way, sometimes we do not
need or desire serializability. Here are some examples of applying
open nesting to achieve useful non-serializable behavior:

Logging/Tracing: When entering information in logs, or collecting
traces, one will often desire the information to be recorded no matter
what, i.e., even if the containing transaction aborts. In the abort case,
one might want to add another log/trace record indicating the abort.
This kind of recording is easy to do with an open nested action whose
abort action just appends the abort notice. It remains helpful to use
a transaction when writing a log/trace record, so that if bits of the
record get added to a buffer piecemeal via a series of OutputStream
method calls, the record will not be mixed together with output from
other log/trace records being written at the same time. But once the
individual log record is done, the log/trace stream is available to
record other events, from the same thread or from a different one.
This is an example of a permanent effect.

Communication: Open nesting can be used to support essen-
tially any kind of communication, because it can immediately and
permanently commit changes to shared communication buffers. Of
course one might still encounter conflicts on the objects that were
communicated. If we desire the system to roll back when a receiving

transaction aborts, then we need to introduce some additional mech-
anism to link the abort and commit of different transactions. Helpful
work in exploring these ideas includes the ACTA model [10] and
Pedregal’s dissertation [20].

Work Queues: A special case of communication is shared work
“queues” (not necessarily FIFO). Here, one transaction can post a
unit of work, committing it to the work queue. It uses an open
transaction to do this on the basis that it knows the unit of work
is necessary/helpful (or at least not harmful), no matter what. An
idle thread can pick up a work item, again committing immediately
the removal of the item from the queue. However, if the recipient
aborts, it can arrange its abort list to re-insert the work unit into the
queue, to make sure the work unit is handled eventually.

VII. MORE APPLICATIONS OF NESTING

While it should be clear that open nesting will require a certain
amount of run-time system support, we ask now the converse
question: Can open nesting help in implementing modern run-time
systems? We first observe that transactional memory, and open nesting
as well, might be of considerable use inside operating systems, to
overcome concurrency bottlenecks and increase software reliability.
The trick in using inside an operating system is that the operating sys-
tem may be involved in providing some of the support mechanisms,
e.g., managing overflows of hardware transactional caches, etc. Thus,
the operating system itself may not have as rich a transaction model
at its disposal. However, operating system layering, i.e., carefully
coding those components that provide the richer transaction model,
and then using that model more freely elsewhere, may address that
issue.

Within the purview of programming language run-time systems
we briefly consider these issues: exceptions, memory management
(allocation and garbage collection), checkpointing, conditional atomic
actions, and sequential rollback.

Exceptions: As we have noted elsewhere [6], Harris and Fraser’s
design for transactions in Java [1] took the approach that exceptions
thrown during a transaction constitute normal completion, as far as
the transaction is concerned. Their approach has the virtue of least
disturbance to original Java semantics. However, we believe that in
most cases when things go wrong, programmers want partial work
cleaned up. Usually, a thrown exception indicates that things have
gone wrong. Thus we suggest that throwing an exception should
generally abort its containing transaction (unless caught within the
transaction). This avoids the programmer having to try to back
things out “manually”, using try-finally blocks. It is well-known that
exceptional paths in programs are more likely to be wrong, partly
because they are harder to think through, partly because they are
frequently an after-thought, and partly because they are hard to test
(it is difficult to generate all the necessary scenarios to test them).
Transaction abort seems well-suited to cleaning up exceptional cases.

While the idea seems good, there are a couple of technical
difficulties in carrying it out. First, it is most likely the default that
if a transaction aborts, we retry it. This is sensible in the case of
concurrency conflicts, for example, and possibly in some exceptional
cases. Consider, however, the case of a web purchasing transaction
where in the middle of various steps (updating inventory, generating
packaging and shipping orders, etc.) we discover that the credit card
is invalid. We rightly wish to back out of the steps being taken,
but we should not automatically retry the credit card. We need
to distinguish a category of exceptions that will indicate that the
transaction should not be retried. This is easily done for Java (and



several other languages) by indicating that exceptions in a particular
part of the Exception class hierarchy will not be retried.

A more serious obstacle is that transactions are themselves objects,
and need to be created and filled in, and not have their contents zeroed
out when the transaction aborts. That is, they are constructed by
an aborting transaction, but their state must be visible to exception
handlers outside the transaction. One way to accomplish this is to
have the run-time support for the throw statement make copies of
objects reachable from the exception object being thrown, and to
make those copies using an open nested transaction. If the exception
object refers to objects that existed before the aborting transaction
began, it might not copy those. Their state will be rolled back (if
it was updated), but it may help to refer to them (e.g., information
about the credit card that the transaction found to be invalid). The
whole matter bears further study, but it does appear that open nesting
can assist in achieving helpful semantics for exceptions.

Memory Management: There are two cooperating parts to pro-
gramming language memory management: allocation and reclama-
tion. We have already suggested that when an object is allocated
and initialized (header filled in and body zeroed), that work should
be an open nested action, so that the rest of the system will never
see an object that is not type-safe. In highly concurrent situations one
might even split allocation into two open nested transactions: the first
one finds an available block of storage and reserves it (increments
a bump pointer, removes from a free list, etc.); the second one does
the low level initialization of the new object. In a world of explicit
storage management (malloc/free), the undo of allocation might free
the allocated space (return it to a free list). This is a reasonable default
policy for that storage management regime, but it is well to keep in
mind that open nesting can also allow escape of a reference to the
new object. Such published references needs to be backed out in case
of abort, or the default behavior overridden.

In the case of implicit storage management, i.e., garbage collection
(GC), the “undo” of allocation is garbage collection. However, it
might be appropriate for an aborting transaction to zero out reference
fields of objects whose construction is aborted. This will reduce GC
work and perhaps allow more objects to be reclaimed (i.e., it reduces
GC over-estimation of liveness of other objects).

What about using open nesting to assist concurrent GC? A
concurrent GC runs at the same time as the application. Most
concurrent GCs make changes to application objects while they
run. For example, they set “marked” bits in object headers, or, in
copying GCs, even update references to point to new copies of the
target objects. It would seem that open nesting is well suited to this
task, since a short open nested transaction can permanently update
the object headers, references, etc. However, transactional memory
introduces an interesting phenomenon, as illustrated by the following
scenario. Suppose field f of some object starts out referring to object
x. An executing, but not yet committed, transaction T updates f to
refer to object y. A concurrent copying collector wishes to redirect
object y to a new copy, y’. An open nested action can do this, though
there is a potential conflict between the GC and T. A more subtle
case is when the GC wishes to redirect x to refer to x’. Field f does
not contain the value x when the GC looks at it, and then T aborts,
then f will have the value x restored.

One strategy we can pursue for supporting concurrent GC is rather
different: it is to offer a reflective view of other threads’ state, a view
that reveals all the possible values a location might end up with
depending on the pattern of transaction commits and aborts. That is,
the GC needs to be able to view the transactional memory contents.
More than that, it needs to update them, e.g., to change the record

rollback value of x to x’. In a sense the GC is a level of abstraction
below the ordinary computation, and this makes sense, since ordinary
computation is on type-safe objects, while memory management’s
job is (in part) to manufacture the view of type-safe objects from
flat sequences of memory locations. Rather than requiring special
hardware or operations, the GC might request that a thread be frozen
and its transactional state information be dumped to memory. The
GC could then operate on and update that state (which is accessible
only to run-time system components). When the thread restarts, we
reload its transactional state (but with new values, e.g., x’ instead of
x).

Another approach to implementing concurrent GC is for the GC not
to manipulate words where it conflicts with an ongoing transaction.
The GC might wait, might go do other work for a while, or might
eventually force the ongoing transaction to abort (to guarantee GC
progress). In any case, hardware transactional memory support will
simplify implementing concurrent GC correctly. In fact, our own early
hardware proposal [21] grew in part from our experience designing
lock-free concurrent GC [22]. It is quite helpful if one can perform
atomic read-modify-write operations on at least two separate memory
words.

Checkpointing: It is often helpful to be able to roll back a
transaction to any of various points, and restart forward progress
from there, rather than having to discard all of a transaction’s work
so far. This readily accomplished using (closed) nesting: just initiate
and enter a new child transaction at each checkpoint position desired.
In the face of conflict, one aborts as many of these transactions as
necessary to roll back to a place before the conflict. Of course any
committed open nested transactions need to be undone using their
undos, etc. Checkpointing is also related to the next two applications,
conditional atomic actions and sequential rollback.

Conditional Atomic Actions: Monitor-like constructs, including
stylized use of Java synchronized objects, often include operations
that conditionally wait, but otherwise execute atomically. A typical
case is a communication queue, such as a circular buffer. An insert
operation needs to wait if the limited buffer space is currently
full, and a remove operation needs to wait if the buffer is empty.
Open nesting makes it easy to implement buffer insert and remove
with minimal conflicts, but waiting does not fit transaction models.
Harris and Fraser [1] included in their design a form of conditional
atomic action, what we might call a conditional transaction, that
conditionalizes execution of a statement S on the truth of a predicate
expression p. One way to think of how this works is that we use a
transaction; call it T. T first evaluates p. If p is true, T proceeds to
execute S and then T commits. If, in the first step, T finds p to be
false, it aborts, and retries from the beginning. As stated, this would
result in busy waiting. Harris and Fraser observed, though, that it
makes no sense to retry T before some other conflicting transaction
commits. Thus, we should perhaps suspend T right after it discovers
p to be false, but give T a very low priority so that any conflicter
will win the conflict and cause T to abort, which is the signal for it
to retry. If there is no conflict for some time, we can abort T and the
thread scheduler can use a back off algorithm to allow T to check,
less and less frequently, whether its awaited condition is true.

Since a conditional atomic action can be embedded in a larger
transaction, the beginning of the test of the predicate p is like a
checkpoint.

Sequential Rollback: Suppose a transaction T performed two open
nested transactions one after another, A and B. Suppose it also did
some non-nested work before, in between, and after them; we call
that work a, ab, and b, the overall order being a, A, ab, B, b. Note



that a, ab, and b add to T’s read- and write-sets, while A and B add
to its commit, abort, and completion action lists. The protocol we
gave earlier was to undo B and then A, running their abort actions in
reverse order, then their completion actions in reverse order. Lastly
we drop T’s read- and write-sets. While this should usually work,
we can imagine situations where it would be better to undo in this
order: b, B, ab, A, a. We can accomplish these semantics by inserting
a checkpoint in T immediately after each open nested action. Thus, T
directly incorporates a and A, then its child T1 directly incorporates
ab and B. Finally, a child T11 of T1 incorporates b. If we abort at
this point, T11 will abort, restoring memory word state to right after
B. Then we will undo B and after that undo ab’s word state changes,
which gives us the state right after A. We then undo A and after that
undo the writes of a.1 Under what conditions we need this sequential
roll back of memory level state is something we need to study further.
We are also not sure whether it would tend to impose any significant
performance penalty if done as a matter of course.

VIII. SUMMARY

We have offered an exposition of the semantics of open nesting
and how it can support serializable (safe) execution with higher
concurrency than non-nested or closed nested execution. We have
advanced the description of how to support open nesting in the
language run-time system and hardware. We also described additional
applications of nesting, and some useful, though not serializable,
applications of open nesting.

IX. CONCERNING RELATED WORK

The topic of nested transactional memory is quite new and relatively
unexplored. If a reviewer is aware of other work on the topic, we
will be pleased to hear of it! We hope the works we have cited along
the way provide adequate useful background and reference to what
has come before—we indeed stand on the shoulders of giants.

X. ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grant number CCR-0085792 and by Intel Cor-
poration. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the sponsors. We further acknowledge
ongoing collaboration on nested transaction memory models with
Bradley Kuszmaul, Charles Leiserson, Gideon Stupp, and James
Sukha, particularly the notion of linear nesting.

REFERENCES

[1] T. Harris and K. Fraser, “Language support for lightweight
transactions,” in Proceedings of the 2003 ACM International
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2003), ACM SIGPLAN. Anaheim, CA: ACM
Press, Oct. 2003, pp. 388–402.

[2] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, ser. Data Management Systems. Morgan Kaufmann,
1993.

[3] J. E. B. Moss, Nested Transactions: An Approach to Reliable
Distributed Computing. Cambridge, MA: M.I.T. Press, 1985.

[4] ——, “Nested transactions: An approach to reliable distributed
computing,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, Apr. 1981, also published as MIT Laboratory for
Computer Science Technical Report 260.

1We first heard of this approach from Charles Leiserson.

[5] ——, “Nested transactions: An approach to reliable distributed
computing,” in Proceedings of the Second Symposium on Reliability in
Distributed Software and Database Systems. Pittsburgh, PA: IEEE,
July 1982, pp. 33–39.

[6] J. E. B. Moss and A. L. Hosking, “Nested transactional memory:
Model and preliminary architecture sketches,” presented at the 2005
Workshop on Synchronization and Concurrency in Object Oriented
Languages (SCOOL ’05), held at OOPSLA, October 2005, San Diego,
CA (no proceedings). Submitted for publication. Draft available at
http:www.cs.umass.edu/˜moss/scool2005.pdf.

[7] J. E. B. Moss, N. D. Griffeth, and M. H. Graham, “Abstraction in
recovery management,” in Proceedings of the 1986 ACM SIGMOD
International Conference on Management of Data. Washington, D.C.:
ACM SIGMOD Record 15, 2 (June 1986), May 1986, pp. 72–83.

[8] C. Beeri, P. A. Bernstein, and N. Goodman, “A model for concurrency
in nested transactions systems,” Journal of the ACM, vol. 36, no. 2,
pp. 230–269, Apr. 1989.

[9] G. Weikum and H.-J. Schek, “Concepts and applications of multilevel
transactions and open nested transactions,” in Database Transaction
Models for Advanced Applications. Morgan Kaufmann, 1992, pp.
515–553.

[10] P. Chrysanthis and K. Ramamritham, “Synthesis of extended
transaction models using ACTA,” ACM Transactions on Database
Systems, vol. 19, no. 3, pp. 450–491, 1994.

[11] K. P. Eswaren, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notion
of consistency and predicate locks in a database system,”
Communications of the ACM, vol. 19, no. 11, pp. 624–633, Nov. 1976.

[12] V. Luchangco and V. J. Marathe, “Transaction synchronizers,”
presented at the 2005 Workshop on Synchronization and Concurrency
in Object Oriented Languages (SCOOL ’05), held at OOPSLA,
October 2005, San Diego, CA (no proceedings).

[13] N. Shavit and D. Touitou, “Software transactional memory,” in
Proceedings of the Annual ACM Symposium on Principles of
Distributed Computing, 1995, pp. 204–213.

[14] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software
transactional memory for dynamic-sized data structures,” in
Proceedings of the Annual ACM Symposium on Principles of
Distributed Computing, 2003, pp. 92–101.

[15] H. T. Kung and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM Transactions on Database Systems, vol. 6,
no. 2, pp. 213–226, June 1981.

[16] M. Herlihy, “Apologizing versus asking permission: Optimistic
concurrency control for abstract data types,” ACM Transactions on
Database Systems, vol. 15, no. 1, pp. 96–124, 1990.

[17] M. Rinard, “Effective fine-grained synchronization for automatically
parallelized programs using optimistic synchronization primitives,”
ACM Transactions on Computer Systems, vol. 17, no. 4, pp. 337–371,
Nov. 1999.

[18] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, “Efficient
optimistic concurrency control using loosely synchronized clocks,”
ACM SIGMOD Record, vol. 24, no. 2, pp. 23–34, June 1995.

[19] S. Jagannathan and J. Vitek, “Optimistic concurrency semantics for
transactions in coordination languages,” in Coordination Models and
Languages, ser. Lecture Notes in Computer Science, vol. 2949, 2004,
pp. 183–198.

[20] C. Pedregal-Martin, “Transaction recovery in databases and beyond,”
Ph.D. dissertation, University of Massachusetts, Amherst, MA, Sept.
2002.

[21] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proceedings of the
International Symposium on Computer Architecture, 1993, pp.
289–300.

[22] M. P. Herlihy and J. E. B. Moss, “Lock-free garbage collection on
multiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 3, no. 3, pp. 304–311, May 1992.


