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Pretenuring can reduce copying costs in garbage collectorsby allocating long-lived objects into regions that the
garbage collector will rarely, if ever, collect. We extend previous work on pretenuring as follows. (1) We produce
pretenuring advice that is neutral with respect to the garbage collector algorithm and configuration. We thus can and
do combine advice from different applications. We find for our benchmarks that predictions using object lifetimes at
each allocation site in Java programs are accurate, which simplifies the pretenuring implementation. (2) We gather and
apply advice to both applications and Jikes RVM, a compiler and run-time system for Java written in Java. Our results
demonstrate that building combined advice into Jikes RVM from different application executions improves perfor-
mance regardless of the application Jikes RVM is compiling and executing. Thisbuild-timeadvice thus gives user
applications some benefits of pretenuring without any application profiling. No previous work uses profile feedback
to pretenure in the run-time system. (3) We find that application-only advice also consistently improves performance,
but that the combination of build-time and application-specific advice is almost always noticeably better. (4) Our same
advice improves the performance of generational, Older First, and Beltway collectors, illustrating that it iscollector
neutral. (5) We include animmortal allocation space in addition to a nursery and older generation, and show that
pretenuring to immortal space has substantial benefit.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—memory management(garbage
collection)

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Garbage collection, pretenuring, lifetime prediction, profiling

1. INTRODUCTION

Garbage collection (GC) is a technique for storage management that automatically reclaims
unreachable program data. In addition to sparing the programmer the effort of explicit storage
management, garbage collection removes two sources of programming errors: memory leaks
due to missing or deferred reclamation; and memory corruption through dangling pointers
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because of premature reclamation. The growing use and popularity of Java and C#, in which
garbage collection is a required element, makes attaining good collector performance key to
good overall performance. Here our goal is to improve collector performance by reducing
GC costs for long-lived objects. We focus ongenerational copying collection[Appel 1989;
Lieberman and Hewitt 1983; Ungar 1984] and demonstrate the generality of our approach
using theOlder First [Stefanović et al. 1999] andBeltway[Blackburn et al. 2002] collectors.

Generational copying GC partitions the heap into age-basedgenerations of objects, where
age is measured in the amount of allocation (the accepted practice in the GC literature). Newly
allocated objects go into the youngest generation, thenursery. Collection consists of three
phases: (1) identifying roots for collection; (2) identifying and copying into a new space any
objects transitively reachable from those roots (called “live” objects); and (3) reclaiming the
space vacated by the live objects. Rather than collecting the entire heap and incurring the cost
of copying all live objects, generational collectors collect the nursery, place survivors in the
next older generation, and collect successively older generations only if necessary. Because
the rate of death among the young objects is typically high inobject-oriented languages, gener-
ational collectors usually offer performance advantages over full heap collectors (this property
is called theweak generational hypothesis).

Pretenuringallocates some objects directly into older generations. Ifpretenured objects
are indeed long-lived, then the pretenuring avoids copyingthe objects from the nursery into
the generation where they are allocated. An ideal pretenuring algorithm would inform the
allocator of the exact lifespan of a new object, and then the allocator would select the ideal
generation in which to place the object. The collector wouldthus consider an object only after
it has sufficient time to die, avoiding ever copying it. If an object will die before the next
nursery collection, then the allocator would place it in thenursery (the default), whereas if
the object lives until the termination of the program, then the allocator would place it into a
permanent region.

We develop pretenuring advice from application profiling, on a per allocation-site basis. For
our suite of Java programs, we show that allocation-site advice results in accurate predictions,
and that these predictions are robust over different input data. In contrast, languages such as C
require calling context to produce accurate predictions [Barrett and Zorn 1993; Seidl and Zorn
1998]; Section 8 discusses these alternative prediction mechanisms.

We extend the approach of Cheng, Harper, and Lee (CHL) [Chenget al. 1998], whose work
inspired our research. Firstly, our advice generation process classifies each object asimmor-
tal—its time of death was close to the end of the program,short lived—its lifetime was less
than a threshold value, orlong lived—everything else. CHL instead classify objects (allocated
at a particular allocation site) that usually survive a nursery collection in a generational collec-
tor aslong lived, and those that do not asshort lived. Secondly, CHL profile a given application
and generational collector configuration (including a specific heap size) to generate pretenur-
ing advice. We instead use precise object allocation traces, obtained using the Merlin precise
trace generation tool [Hertz et al. 2002; 2005], to generatelifetime statistics from which we
derive our advice, a more costly, but offline, process. Because these statistics are collector- and
configuration-neutral, they are more general, which our experimental results confirm. Finally,
wenormalizeour statistics according to the application’s maximum volume of live objects and
its total allocation, making our advice more scale-invariant.

The generality of our pretenuring advice results in two key advantages over previous work.
(1) Since we normalize advice with respect to total allocation for a specific execution, we can
and do combine advice from different applications that share allocation sites (e.g., classes in-
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ternal to the JVM, and libraries). (2) We can and do use the advice to improve three distinct
collectors that segregate objects based on their age: an Appel-style generational collector [Ap-
pel 1989], an Older First collector [Stefanović et al. 1999], and the Beltway collector [Black-
burn et al. 2002], on ten benchmarks, eight from SPECjvm98.

In our experiments, we use Jikes RVM (formerly called Jalapeño) [Alpern et al. 1999;
Alpern et al. 2000], a compiler and run-time system for Java written in Java, extended with the
garbage collectors we investigate. We profile all our benchmarks, and then combine their pre-
tenuring advice to improve the performance of Jikes RVM itself; we call this systembuild-time
pretenuring. This advantage is unique to the Java in Java implementation, whereas C JVMs
instead must manually manage their data structures. When measuring the effectiveness of our
build-time pretenuring, we omit the application itself from the combined advice profile. Such
advice is calledtrueadvice [Barrett and Zorn 1993].

We show that build-time pretenuring improves the performance of Jikes RVM running our
benchmarks an average of 30% for tight heaps without any application-specific pretenuring.
As the heap size grows, the impact of garbage collection timeand pretenuring on total execu-
tion time decreases, but pretenuring still improves collector performance. Because CHL profile
advice is specific to both the application and collector configuration, their system cannot read-
ily combine advice for this purpose. Building pretenuring into the JVM before distribution
means users will benefit from pretenuring without profiling their applications.

Using only our application-specific profile advice always improves performance, too: up
to 10% on average for tight heaps. Our advice also yields on average significantly better
performance than CHL advice, giving more than 10% improvement in tight heaps and 5% in
large heaps. Combining our build-time and application-specific advice always yields the best
performance: it decreases garbage collection time on average by 40% to 70% for most heap
configurations. It improves total execution time on averageby 36% for a tight heap.

We organize the remainder of the paper as follows. Section 2 offers some background on
pretenuring and its expected benefits and costs. Section 3 discusses our approach to pretenur-
ing and the collection and generation of pretenuring advice. Section 4 analyzes the lifetime
behaviors of objects in our Java applications. We then describe our performance methodology
and setting in Section 5. Section 6 presents execution time and related measurement results
for pretenuring with generational collection for Jikes RVMat build-time, application-specific
pretenuring with CHL and our advice, and the combination of application-specific and build-
time advice. We further demonstrate the generality of our advice by showing the same advice
improves an Older First collector and a Beltway collector. We consider issues of using pre-
tenuring in practice (Section 7), compare related work withour approach (Section 8), and
conclude (Section 9).

2. THE PRETENURING COLLECTOR, EXPECTED BENEFITS AND COSTS

For this work, we built an Appel-style generational collector [Appel 1989] that partitions the
heap into a nursery and a second, older, generation. It also has a separate, permanent space
(which we callimmortal) that is never collected. The nursery size isflexible: it is the space
not used by the older generation and the permanent space. We fix the total heap size to make
fair comparisons. Some heap space is always reserved for copying (this space must be at least
as large as sum of the nursery and the older generation in order to guarantee that collecting
the nursery and then the older generation will not fail). When all but the reserved heap space
is consumed, the collector collects the nursery, promotes surviving objects into the older gen-
eration, and makes the freed space the new nursery. After a nursery collection, if the old
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generation’s size is close to that of the reserved space, it triggers collection of the older gener-
ation. We call this collectorAppelas a convenient shorthand and to emphasize its varying-size
nursery, but one should keep in mind that it is just in the general style of Appel’s original
collector.

Expected benefit of immortal space.Long-lived objects allocated into immortal space avoid
all copying, both the first copy from the nursery into the older generation, and the copy made
each time we collect the older generation. There is also a space benefit. Because we never
collect the immortal space, we need not reserve additional space into which to copy it, which
frees space for use by the nursery and older generation.

Expected cost of immortal space.We never reclaim objects allocated in the immortal space,
so if we pollute the space with objects that die quickly we effectively reduce the heap size
(possibly running out of space entirely). However, we can tolerate some pollution because
each object in immortal space commits half the space it wouldtake if allocated elsewhere. A
more subtle effect is that a short-lived object allocated inimmortal space can cause retention
of objects reachable from it. This effect is known asnepotism[Ungar and Jackson 1988]. It
does not appear to occur very often, but suggests being conservative in pretenuring.

Expected benefit of old generation pretenuring.We save the work of copying the object
from the nursery, if it survives nursery collection.

Expected cost of old generation pretenuring.If the object is shorter-lived and would have
been reclaimed by a nursery collection, we pollute the oldergeneration and cause an old gen-
eration collection sooner than we otherwise would. Nepotism may also occur.

It would appear that the space and time benefits of immortal space, when it is a good choice,
are much larger (on a per-object basis) than those of old generation pretenuring. The overall
benefit depends, of course, on the relative volume of short-,medium-, and long-lived objects,
and whether their allocation occurs in patterns we can exploit.

Although we use the Appel-style generational collector here to motivate and describe pre-
tenuring, our approach is general. We describe the application of pretenuring to two other
collectors, Older First and Beltway. Similar benefits should accrue to parallel and concurrent
collectors in terms of overall GC effort, perhaps reflected in higher throughput, fewer rounds
of GC, better memory utilization, etc.

3. PRETENURING ADVICE METHODOLOGY

Two objectives are central to our approach: producing robust and general pretenuring advice,
and understanding and testing the premise of per-site lifetime homogeneity on which the suc-
cess of profile-driven pretenuring rests.

3.1 Gathering Information and Generating Pretenuring Advice

Any algorithm for generating pretenuring advice must consider the two major cost compo-
nents:relative copying costsandrelative space consumption. The copying cost includes scan-
ning and copying an object when it survives a collection. Space cost has an indirect impact in
that higher space overhead forces more frequent GCs. One wayto conceptualize space cost is
in terms ofspace rental: the space required by an object times the length of time it uses that
space. On the two extremes, pretenuring advice that recommends pretenuringall objects into
permanent space minimizes copying costs but increases space rental; and advice that recom-
mends pretenuringno objects tends to minimize space rental at the expense of higher copying
costs.
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One of our goals is to generate advice that is neutral with respect to any particular collection
algorithm or configuration. This goal precludes the use of the metric used by CHL [Cheng et al.
1998], which pretenures if the collector usually copies objects allocated at a particular site in
the context of a specific generational collector configuration. Our approach is instead based
on two fundamental object lifetime statistics:age and time of death. Object age indicates
how long an object lives, and time of death indicates the point in the allocation history of the
program at which the object becomes unreachable.

We normalize age with respect tomax live size, following the garbage collection convention
of equating time to bytes allocated.Max live sizerefers to the maximum volume (bytes) of
live objects in a program execution, which indicates thetheoreticalminimum memory require-
ment of a program. This normalization will reduce differences between different runs of the
same program where the size of the program’s heap data structures is different. Object age is
expressed as a fraction or multiple of the max live size. For example, an age of 0.25 means
that during the lifetime of the object,0.25×max live sizebytes of allocation occurred.

We normalize time of death with respect to total allocation.1 For example, consider an
object allocated toward the end of the program that dies after the last allocation. It has a
normalized time of death of 1.00. This normalization has thesame intent as the one we apply
to object age: to reduce differences in characterizing different runs of the same program, and
thus to make our characterizations and our advice more independent of scale.

We illustrate the relationships between object age, time ofdeath, max live size, and total
allocation in Figure 1 for a Java version ofhealth [Cahoon and McKinley 2001; Rogers et al.
1995] running a small input set, where we plot one point for each age and time of death
combination that has a volume of objects exceeding a chosen threshold.2 The bottom and right
axes normalize “time” with respect to total bytes allocatedfor that program, while the top and
left axes show time with respect to the program’s max live size, which relates to a “heap full”
of allocation. Note that the scales on opposite sides (e.g.,top and bottom) are only showing
normalization to different units. For the illustrated run,a point at (7,2) in terms of max live
size is at about (0.77,0.22) in terms of total allocation. Such a point represents an object that
died 77% of the way through the run (in terms of bytes allocated) and whose age was 22% of
total allocation (and hence was allocated 55% of the way through the run).

This figure shows that a large number of objects have short lifetimes, and the horizontal
“lines” of points indicate that throughout the execution ofthe program objects are most likely
to die when they reach one of a small number of ages (for example about 0.2 and0.45×
max live size).3 There are also times of death at which many objects die simultaneous, which
appear as vertical “lines” in the figure.

The figure also illustrates how our object classification, discussed in detail in Section 3.1.2,
puts objects into short-lived, long-lived, and immortal “bins”.

3.1.1 Object Lifetime Profiling.We analyze age and lifetime statistics using an execu-
tion profile for each application. We obtain the profile by producing a precise object allo-

1The relationship between max live size and total allocation is a function of allocation behavior. In our Java programs,
total allocation ranges from 9 to 91 times max live size.
2Plotting a point for every object obscures where the scatterplot is more and is less dense.
3This effect is particularly evident inhealth: it places objects in a queue and processes them and discardsthem in
FIFO order (or requeues them). Thus these objects tend to haveuniform lifetimes. For many other programs it would
be more common to see clustering of time-of-death: data structures built over time and then discarded at a particular
point in execution.
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Fig. 1. Object Age and Death Distributions forhealth (6-128)

cation and death trace. We produce these traces using the Merlin tool [Hertz et al. 2002;
2005]. Merlin produces precise traces at much lower cost than previous approaches, making
precise traces possible where in the past they were infeasible.4 In an earlier version of this
work [Blackburn et al. 2001], we instead did full-heap collections after every 64KB of alloca-
tion, over-estimating lifetimes by around 32KB on average.Although this approach leads to
few classification errors, it requires us to adjust our pretenuring advice strategy a little because
it distorts the space-rental calculations that indicate candidate sites for pretenuring. We ended
up abandoning space-rental as our primary measure of site importance and now use allocation
volume.

An object lifetime trace gives a sequence of object allocation and object death records, in-
cluding the time of allocation, time of death, size of the object (particularly relevant for arrays,
since the size may not be known until run time), and the allocation site. An allocation site
corresponds to a particularnew bytecode, i.e., Java class, method, and bytecode offset within
the method. Since inlining can vary from run to run in an adaptive and dynamically compiled
system, if inlining induces cloning of allocation sites, wegroup their statistics together (i.e.,
it is as if the method were not inlined). This combining improves advice across different ap-
plications, but may conflate distinct behaviors (though ourresults suggest that this issue is not
significant for the programs we investigate).

From the trace we compute max live size, total allocation, and the normalized birth and
death times for each object.

4The slowdown factor to produce perfectly accurate traces with Merlin is about 75–500x; for traces at a granularity
of 4K bytes, which we believe sufficient for pretenuring judgments, the factor is 20-80x. One must also analyze the
traces, which at present is slow because we have not investedin building fast analysis programs.
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3.1.2 Object Classification.For each object allocated at a given site, we classify it into
one of three bins:short, long, or immortal. We use the following algorithm:

(1) If an object dies later than halfway between its time of birth and the end of the program,
we classify it asimmortal.

(2) Otherwise, if an object’s age is less thanTa×max live sizebytes, then we classify it as
short. We useTa = 0.45 in our experiments below.5

(3) In all other cases, we classify an object aslong.

Our immortalclassification criterion is based on our previously noted observation that ob-
jects that will never be copied have a lower space requirement than objects that may be copied:
the latter must have space reserved into which to copy them. Because in an Appel-style gen-
erational collector, the reserved space overhead is 100% (half the heap), it is reasonable to
classify an object as immortal ifdead time≤ lifetime for that object, where dead time is the
time from when the object dies to the end of the program.6 Figure 1 illustrates this categoriza-
tion. Note that one could use a different threshold value, but this threshold has a good intuitive
motivation, and it also turns out that varying the thresholdhas little impact because few objects
have values lying close to the threshold.7

Of course, our immortal category is heuristic. The following scenario is possible. We allo-
cate object A near the start of the run and it dies a bit after the middle of the run, so it is clas-
sified immortal. Shortly before A dies, we make it point to some large recently allocated data
structure B, which dies when A does (or shortly thereafter).Classifying A immortal causes B
to be effectively immortal as well, an extreme case of nepotism. Such scenarios appear to be
exceedingly rare. Section 7 considers ways to ameliorate this potential problem. If we increase
the threshold for designating objects immortal, we will tend to reduce the magnitude of this
problem (should it occur), but we also reduce the benefit of pretenuring.

3.1.3 Allocation Site Classification.Having classified eachobject, we then classify each
site. Given an allocation sites that allocates a fractionSs of short-lived objects,Ls of long-
lived objects, andIs of immortal objects, whereSs, Ls, andIs are in terms of volume, i.e., bytes
allocated (not number of objects),8 we classify the site using homogeneity thresholdsHi f and
Hl f , as follows:

(1) If Is > Ss+Ls+Hi f , we classify the site asimmortal.
(2) Otherwise, ifIs+Ls > Ss+Hl f , we classify the sitelong.
(3) In all other cases, we classify the siteshort.

5Previously [Blackburn et al. 2001] we usedTa = 0.2, however have we found that0.45 works better since0.2
corresponds to a very modest nursery, while0.45 is more realistic.0.2 is overly aggressive for pretenuring.
6The same principle applies to any collector with a non-copiedimmortal space and a need to reserve copying space
for one or more younger generations. In particular it applies to the Older First and Beltway collectors with which we
compare later.
7Previously we first separated out theshortcategory and then discriminatedlong versusimmortal [Blackburn et al.
2001]. We found that the new order works better because objects living until near the end of the program tend to be
allocated at sites that allocate immortal objects. Classifying these objectsshortcaused us to miss sites we should treat
asimmortal.
8This approach refines our previous work [Blackburn et al. 2001] and is more accurate for arrays whose sizes at the
same allocation site can differ. We also tried space rental (size times lifetime) as a way to weight objects, but this
over-emphasizes long-lived objects.
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The homogeneity thresholds control the “aggressiveness” of the classification. For example,
if Hi f = 0, then we will classify a siteimmortal if the majority of the objects allocated there
areimmortal. If Hi f = 0.99, then we require virtually all objects to be immortal (Is > 0.995).

In our previous work, we used a single homogeneity factor,H f , but (as we shall show) the
cost/benefit factors are quite different for classifyingimmortalversus classifyinglong. If an
object does live a very long time, we save significant CPU timewhen we classify itimmortal
because we avoid copying it not only in the initial nursery collection, but also in all later full-
heap collections. Further, the space savings from having nocopy reserve for theimmortal
region stave off future GCs (i.e., in effect it increases theheap size). On the other hand, if
we classify a site aslong, all we save is one copying of the object out of the nursery, and we
actuallyreduceeffective available space because we cannot reclaim the object except through
a full-heap GC.

We now consider how to pick a good value forHi f . If Hi f is too low, then too many sites
will be classified immortal, causing too many non-immortal objects to be allocated in immortal
space; ifHi f is too high, then too few sites will be classified immortal, causing too little
immortal allocation in immortal space to gain benefit. In Figure 2 we varyHi f from −0.33
to 1.00. (It is possible forIs to be larger thanSs andLs in the region[−0.33,0] even though
Is < 0.50. See the labels on the top x-axis.) The figure includes three curves. Consider first the
curve labeled “Vol. of Immortal Objs in Imm. Space”, whose scale is on the left y-axis. This
curve gives the geometric mean (across benchmarks) of the ratio: volume of immortal objects
that would be allocated into immortal space for a given valueof Hi f / total allocation. We
see that this volume is very insensitive toHi f for values from 0.0 to 0.9. Going farther to the
right will reduce the volume (and thus the potential benefit). Now consider the curve labeled
“Vol. of Short+Long+Immortal Objs in Imm. Space”, whose scale is also on the left y-axis.
It shows the ratio:total volumeof objects allocated into the immortal space for each value of
Hi f / total allocation. We see that it stays close to the first curve except forHi f < 0. The third
curve shows theaccuracyof the pretenuring, i.e., the ratio: total volume of immortal objects
allocated in immortal space / total allocation in immortal space (the ratio of the two previous
curves). Its scale is on theright y-axis. It shows quite clearly that accuracy drops off rapidly
for Hi f < 0.

One desires maximum benefit (greatest volume, hence smallest Hi f ) consistent with ade-
quate accuracy (low accuracy “pollutes” immortal space andis risky, since we never reclaim
the “polluting” objects). We useHi f = 0.0 from here on, and it seems to make this trade-off
well, though values between 0.0 and 0.9 should all work aboutas well.

Now that we have fixedHi f , we consider the effect ofHl f . Figure 3 is similar to Figure 2
in its structure (but note the difference in vertical scales). However, it ignores sites already
classified as immortal usingHi f = 0.0, and considers only the short/long trade-off for the
remainder of the sites (and objects). The first curve shows the fraction of long-lived objects
(long+immortal) actually allocated into long space for each valueof Hl f . (Again, we plot the
geometric mean of this value across the benchmarks.) As withHi f , we find that there is a long
flat region. In terms of accuracy, any value ofHl f greater than 0.25 should be all right, but
since the benefit of long pretenuring is small, we demand highaccuracy. We useHl f = 0.60 in
the remainder of the paper. We observe that, compared with immortal sites, the homogeneity
of the (remaining) sites where long-lived objects dominateis not as good.
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3.1.4 Pruning Allocation Sites.Finally, we drop sites whose total allocation is small, i.e.,
less thanv times the total allocation of the program.9 We usedv = 0.000002. Our primary
reason for doing this is that allocation advice for a site takes a certain amount of dynamically
allocated table space in the JVM, effectively reducing the heap size, so we should drop sites
whose pretenuring will have very little total effect. One can also claim that when the volume
of a site is relatively low, we do not have adequate evidence to pretenure that site’s objects.

3.1.5 Combining Classifications from Different Program Executions. We also combine
data from different program executions to generate pretenuring advice. Our trace combining
algorithm works as follows. For each sites, we generate new combined binsSc,s, Lc,s, Ic,s. For
each tracet, we first compute a weightwt for each site:wt = vs/vt , wherevs is the volume
allocated at the site, andvt is the total volume of allocation in the trace. We then compute the
combined bins using weighted averages for all sites with trace information. Letwc = ∑n

t=1 wt .
We useSs(t) to mean the value ofSs for tracet, etc. We show only the formula forSc,s; Lc,s

andIc,s are computed analogously:

Sc,s = (
n

∑
t=1

Ss(t)∗wt)/wc

With these bins, we then use the same classification algorithm as above but with a different
homogeneity factor. Unlike the case ofHi f and Hl f , when combining information across
traces (programs), we found it important to be conservativefor both immortal and long advice.
Therefore we use a single homogeneity factor, calledHc f , which we set to0.9.

3.2 Jikes RVM Builds and Compilation Strategies

In our previous work [Blackburn et al. 2001], we used an optimization strategy in Jikes RVM
that optimizeseverymethod to the highest available optimization level. We callthis “build”
of the systemOpt. Optimizing every method is not realistic for modern JVMs, because it
performs much optimization of “cold” methods that does not pay back. In Jikes RVM (because
it is written in Java) it also induces much additional heap allocation and increases GC load.
Thus using Opt will tend to bias towards pretenuring for the compiler, which performs well
but may miss opportunities in individual applications. We always optimize to the highest level
the methods included in the system image, but treat application methods differently since they
are compiled at run time in this methodology.

In contrast to Opt, the typical compilation strategy today is adaptive. For example, in Jikes
RVM the Adaptive Optimization System(AOS) [Arnold et al. 2000] detects, as the program
runs, which methods the application uses most frequently, and compiles those at progressively
higher levels of optimization. It determines highly-used methods via sampling triggered by
timers. Thus the AOS is non-deterministic (because it is timing dependent), making it some-
what problematic for experimentation where we wish to vary only one factor at a time.

Hence we developed a newreplay approach.10 Here we run an application a number of
times (say 7) and determine, for each method, the highest optimization level to which the

9In our previous work, we ranked sites according to their total space rental, i.e., sum of (object size)× (object lifetime)
across all objects allocated at the site [Blackburn et al. 2001]. This mechanism includes some low-volume (but high
space rental) sites, particularly with perfect traces (because they dramatically reduce the reported lifetimes of most
(short-lived) objects). Using volume is thus a better choice.
10Xianglong Huang and Narendran Sachindran jointly implemented the Replay compilation mechanism. This tech-
nique was previously termed “Pseudo-Adaptive” [Huang et al. 2004], but “Replay” is more suggestive of its function.
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method is optimized in a majority of the runs. We put this information in anadvice file. The
Replay system reads the advice file, and when it first compilesa listed method, optimizes it
directly to the advised level. (If there is no advice, it compiles using the simple, non-optimizing
compiler.) It suppresses all adaptive recompilation. The effect is that the total compilation load
is very similar to a typical Adaptive run, but the system is deterministic.

We present the bulk of our results using the Replay methodology, but also present the effects
of pretenuring using the Adaptive and Opt compilation strategies in Section 6.8. As expected,
Adaptive and Replay builds behave quite similarly, with andwithout pretenuring, but Opt
builds allocate much more in the heap, and more often the compilation work, both in time and
space, outweighs the application work.

By default, we profile an Opt build to produce the pretenuringadvice, but Section 6.8 shows
that using Replay builds for advice instead produces comparable accuracy.

4. PRETENURING ADVICE RESULTS

Profile-driven pretenuring is premised on homogeneous object lifetimes at each allocation site.
Previous work shows that ML programs are amenable to a classification of sites as short and
long, where long means “usually survives one nursery collection” (for a specific system con-
figuration) [Cheng et al. 1998]. C programs are not homogeneous at each call site, but require
the dynamic call chain to predict similar classes of lifetimes [Barrett and Zorn 1993; Seidl and
Zorn 1998]. We show in this section that the allocation sitesin our set of Java programs have
adequately homogeneous lifetimes, with respect to our classification scheme, for pretenuring
to work reliably.

4.1 Benchmark Programs

For evaluating both classification (here) and performance (Section 6), we use all eight pro-
grams from the SPEC JVM98 suite:210 compress, 202 jess, 205 raytrace, 209 db, 213 -
javac, 222 mpegaudio, 227 mtrt, and 228 jack, pluspseudojbb11 andhealth, the Olden C
program that models a health care system [Cahoon and McKinley 2001; Rogers et al. 1995]
rewritten in object-oriented Java. We run all benchmarks single-threaded.

Table I shows the total allocation in bytes, maximum live size in bytes, and the ratio between
the two, for each benchmark, under the Opt and Replay configurations. The maximum live
sizes are mostly similar, but the total allocation volume often differs a lot.

4.2 Homogeneity of Applications

The homogeneity of an allocation site can be defined using theinformation theoretic notion of
entropy. Using bits as the unit, the entropy of a set of discrete probabilities Pj is:

entropy = −(∑
j

Pj ∗ log2Pj), where ∑
j

Pj = 1

Smaller entropy implies higher homogeneity, i.e., fewer bits needed to encode the labels (im-
mortal, long, short) on a set of objects drawn in random orderwith these probabilities. If an
allocation site is completely homogeneous, 100% with one label and 0% in others, its entropy
is 0.00. If an allocation site is completely heterogeneous, 50% and50% (in two categories),

11SPECjbb runs a fixed period of time and reports the number of iterations it executes, a throughput measure. We
changed it to run a fixed number of transactions (70,000) and call the resulting programpseudojbb. It thus produces
the same allocation load regardless of heap size, collector, etc. Its execution times are on the order of 10 seconds on
our platform.

11



Opt runs Replay runs
Max Live Alloc Alloc / Max Live Alloc Alloc /

Benchmark (bytes) (bytes) Max Live (bytes) (bytes) Max Live

compress 8,826,084 199,944,756 22 8,819,296 116,641,428 13
jess 5,485,280 482,996,388 88 4,508,272 299,788,860 66
raytrace 6,839,684 233,821,460 34 6,863,452 124,286,536 18
db 10,709,640 178,830,988 16 10,732,380 86,687,156 8
javac 12,068,700 618,946,020 53 12,146,436 298,486,240 24
mpegaudio 4,410,732 134,921,104 30 3,599,032 27,684,656 7
mtrt 9,923,760 247,688,648 24 2,570,348 39,690,456 15
jack 5,810,536 533,734,388 91 3,947,152 346,126,536 87
pseudojbb 29,913,388 636,525,664 20 30,254,784 365,554,384 12
health (6-128) 4,349,588 40,283,616 9 4,163,776 29,013,560 6

Table I. Benchmark Characteristics:Max Liveis the maximum live size andAlloc is total allocation.

its entropy is1.00. Here is how we calculate site entropy when we consider short, long, and
immortal labels:

short : −(Ss∗ log2Ss)− (Ls+ Is)∗ log2(Ls+ Is)

long : −(Ls∗ log2Ls)− (Ss+ Is)∗ log2(Ss+ Is)

immortal : −(Is∗ log2 Is)− (Ls+Ss)∗ log2(Ls+Ss)

Figure 4 shows the homogeneity curves of the geometric mean over all benchmarks before
pretenuring, varying entropy from0 to 1. We call those sites for whichIs > Ls and Is >
Ss immortal domsites (i.e., whereimmortal objects dominate the other two categories), and
similarly we havelong domandshort domsites. For each entropy value, we calculate the
total allocation volume of sites whose entropy is less than or equal to that value. There are
three curves in the graph, one for immortaldom sites, one for immortaldom plus longdom
sites, and one for all sites. We normalize all volumes to the total allocation of the application.
We use the right y-axis for the scale of the top curve (for all sites), and the left y-axis for the
other two curves. The bottom x-axis is the value of entropy, and the top x-axis shows the
corresponding fraction of the dominating category. The flatness of the immortaldom curve in
Figure 4 shows us that immortaldom sites have extremely high homogeneity, most possessing
entropy less than0.2: immortal objects make up at least 96.9% of the volume of these sites.
On the other hand, the steep increase at the right end of the immortal dom plus longdom curve
tells us that a good portion of longdom sites arenot homogeneous. We should definitely not
pretenure those sites. The homogeneity of all sites is pretty high, more than 90% have more
than 85% of one kind, short, long, or immortal.

Figure 5 shows the homogeneity curves of the geometric mean over all benchmarksafter
pretenuring. Note that “before pretenuring” data have to do with sites classified by which
lifetime dominates (immortal, long, or short), whereas “after pretenuring” data have to do
with how we havelabeledthe sites, not which lifetime dominates by allocation volume. Our
hope is that we choose only very homogeneous sites to pretenure. We plot this graph (Figure 5)
according to our site classification usingHi f = 0.00andHl f = 0.60. It also has three curves:
immortal, immortal plus long, and all sites. This graph is almost the same as Figure 4, except
that the jump in the right end of the immortal plus long curve nearly disappears, indicating
that our pretenuring method is effective in filtering out theheterogeneous sites, and chooses to
pretenure only sites with high homogeneity.
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bin % classi-
site # objects volume vol % short long immortal fication

javac
1676 145492 60421512 9.761 99.59 0.04 0.37 s
1064 1496486 47887552 7.739 100.00 0.00 0.00 s

13 759989 32802440 5.300 92.84 0.04 2.98 s
1501 654754 20952128 3.385 100.00 0.00 0.00 s
692 602886 19588556 3.141 97.13 2.46 0.40 s

3269 145636 4077808 0.659 6.87 75.38 17.75 l
3278 49812 1793232 0.290 4.07 62.94 32.98 l
3296 40156 1766864 0.285 5.45 61.81 32.74 l
4126 45372 1633392 0.264 11.04 74.65 14.30 l
3326 96696 1547136 0.250 6.47 84.76 8.77 l
1747 5523 829228 0.133 0.83 2.34 96.84 i
551 157 590276 0.095 0.00 0.00 100.00 i
662 5 327740 0.055 0.00 0.00 100.00 i
529 1617 174636 0.028 0.00 0.00 100.00 i

1780 1 163852 0.027 0.00 0.00 100.00 i

combined
1070 7044399 225420768 15.764 100.00 0.00 0.00 s
1513 3096079 99074528 6.928 100.00 0.00 0.00 s
693 2773149 89818452 6.281 92.08 6.86 1.06 s
848 2033521 65075872 4.551 89.25 9.41 1.34 s
747 956207 45897936 3.210 87.72 10.63 1.65 s
565 972 11664 0.001 4.83 1.77 93.40 l
25 10 380 0.000 2.52 2.52 94.95 l

454 10 360 0.000 2.63 2.63 94.74 l
324 20 320 0.000 2.94 2.94 94.12 l
353 20 320 0.000 2.94 2.94 94.12 l

1765 17118 4260740 0.298 1.05 0.53 98.43 i
664 52 3408496 0.238 0.00 0.00 100.00 i
555 638 2248540 0.157 0.00 0.00 100.00 i
726 10 1638520 0.115 0.00 0.00 100.00 i
727 10 1638520 0.115 0.00 0.00 100.00 i

Table II. Per-site Object Binning and Classification

We present two types of results in the remainder of this section. For thejavac benchmark
and for our combined advice, we illustrate our binning and classifications for a number of call
sites in each. We then present aggregate advice summaries for each benchmark and the actual
behavior of the sites to demonstrate the quality of our advice.

4.3 Detailed Classification Results

Table II shows some of our per-site object classifications for javac and for our combined advice
for the Jikes RVM build-time system. We include the top 5 sites classified as immortal, top 5
long, and top 5 short. We rank these by their allocation volume.

We include the number and volume of objects the site allocates, and show the percentage of
objects that are binned as short, long, or immortal. UsingTa = 0.45, Hi f = 0.00, Hl f = 0.60,
andHc f = 0.90, we show our resulting classification. Notice that many allocation sites are
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Immortal Space % Long Space % Overall

Program vol% io∧is
is

lo∧is
is

so∧is
is

vol% io∧ls
ls

lo∧ls
ls

so∧ls
ls

accuracy

compress 0.97 96.06 0.07 3.87 0.034 1.76 78.48 19.76 95.52
jess 0.68 98.23 0.40 1.37 0.001 3.58 96.42 0.00 98.23
raytrace 2.11 99.66 0.05 0.29 0.002 38.66 59.09 2.25 99.65
db 5.49 93.61 0.97 5.42 0.656 0.11 99.89 0.00 94.29
javac 0.65 98.41 0.49 1.10 4.468 24.31 69.75 5.94 94.61
mpegaudio 2.31 96.05 0.08 3.87 0.051 1.73 84.02 14.24 94.82
mtrt 0.95 99.29 0.09 0.62 2.074 47.88 52.12 0.00 99.78
jack 0.46 99.33 0.11 0.56 1.948 5.63 81.12 13.25 89.16
health 12.84 79.67 3.53 16.80 0.002 40.64 59.36 0.00 79.67
pseudojbb 0.56 96.96 2.30 2.74 3.417 49.76 50.00 0.24 99.37
Geo Mean 97.82 0.24 1.94 9.05 85.22 5.73 97.39

Table III. Per-program Pretenuring Decision Accuracy (percent, weighted by volume)

homogeneous: the majority of objects at a site are in a singlebin. For some sites, especially
in the combined trace, objects are well distributed among bins. Forjavac, we classify many
sites as long (l), and in the combined trace, several sites asimmortal (i). Thus, we find sites to
pretenure into the long lived and immortal space.

Immortal Objects % Long Objects % Overall %

Program vol% io∧(is∨ls)
io

io∧ss
io

vol% lo∧ls
lo

lo∧ss
lo

lo∧is
lo

good neut bad

compress 1.26 74.13 25.87 18.02 0.15 99.85 0.00 4.99 95.01 0.00
jess 0.99 66.89 33.11 1.75 0.04 99.80 0.16 24.23 75.67 0.10
raytrace 2.71 77.66 22.34 2.24 0.06 99.90 0.04 42.51 57.47 0.02
db 5.62 91.42 8.58 1.75 37.42 59.54 3.04 78.59 20.69 0.72
javac 2.31 74.73 24.27 5.22 59.69 40.25 0.06 64.30 35.66 0.04
mpegaudio 2.75 80.66 19.34 5.77 0.75 99.22 0.03 26.55 73.43 0.02
mtrt 2.52 76.85 23.15 2.60 41.65 58.32 0.03 58.99 40.99 0.02
jack 0.82 79.70 30.30 4.85 32.59 67.40 0.01 27.94 62.05 0.01
health 10.89 93.94 6.06 1.08 0.10 57.96 41.94 85.48 10.74 3.78
pseudojbb 4.26 52.65 47.35 3.62 47.23 52.72 0.05 50.16 49.82 0.02
Geo Mean 78.18 21.82 3.18 96.68 0.14 46.16 53.78 0.06

Table IV. Per-program Pretenuring Decision Coverage (percent, weighted by volume)

To consider the issue of binning in summary form across all sites of a benchmark, we
consider the fraction of short, long, and immortal objects that end up being allocated in short,
long, and immortal space (as determined by our labels for theallocation sites). Wherex and
y range overs, l , and i (for short, long, and immortal, respectively), we definexo∧ ys to be
the volume ofx category objects allocated iny space. Thusio∧ss is the volume of immortal
objects allocated in short space. Similarly, we definexo∧ys

ys
to be the ratio of the volume of

objects of categoryx allocated into spacey to the total volume of objects allocated into space
y. For example,io∧is

is
means the volume of immortal space allocation used for immortal objects

(an accurate classification), whileso∧is
is

means the volume of immortal space allocation used
for short objects (an inaccurate classification). We changethe denominator when we wish to
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indicate disposition according to the labelling of objectsrather than by space; thusio∧ss
io

is

the fraction of immortal object volume that is in short space, distinct from io∧ss
ss

, which is the
portion of short space consumed by immortal objects.

The nine decision pairs fall into three categories,neutral, bad, andgood, with respect to
the non-pretenured status quo. Neutral pretenuring adviceallocates objects into the nursery
(so∧ss, lo∧ss, andio∧ss). Bad pretenuring advice allocates objects into a longer lived region
than appropriate (so∧ ls, lo∧ is, andso∧ is). Following bad advice tends to waste space and
induce more frequent collection. Good pretenuring advice allocates objects into longer lived
regions, but not too long lived (io ∧ is, lo ∧ ls, and io ∧ ls). Following good advice reduces
copying without wasting space.

Table III gives these summary statistics for each benchmarkand overall, stated as percent-
ages. It also indicates the percent of total allocation volume that goes to the immortal and
long spaces, and the percentage (by volume) of pretenured objects coming from the “good”
categories. Put another way, of the volume of objects pretenured, it tells how much is “cor-
rect”. We see that, with the exception ofhealth, where we allocate a significant volume of
short objects into immortal space, our accuracy is quite high.

A converse question is this: of the total volume of immortal (long) objects, i.e., allocated
acrossall sites, what percentage do we pretenure? This we call thecoverage, and we show
it in Table IV. Put another way, this indicates how much of thevolume of immortal and

long objects ended up appropriately pretenured. The table uses the notationio∧(is∨ls)
io

, which
means the fraction of the immortal objects that are pretenured, into either immortal or long
space (expressed as a percentage). While there is noticeable variation across benchmarks,
on average we pretenure the bulk of immortal objects, around80%. Because we are much
more conservative about classifying sites as long, we do notpretenure a large fraction of long
objects, only a few percent. Overall, we give mostly good andneutral advice and very little
bad advice (even forhealth less than 4%).

Figure 6 shows howHi f affects the accuracy and the coverage, by fixingHl f at 0.60 and
varying Hi f from -0.33 to 1.00. We use the left y-axis for the accuracy curve and the right
y-axis for the coverage curve. This graph shows the geometric mean of all benchmarks. We
see that the accuracy increases quickly to 98% asHi f goes up to 0.00, and then grows much
more slowly. AlthoughHi f has little impact on the coverage, we reach a maximum around
Hi f = 0.00. This is because we classify immortal sites before long sites: whenHi f is small,
we pull more long objects into immortal space.

Figure 7 shows the impact ofHl f by fixing Hi f at 0.00 and varyingHl f from -0.33 to
1.00. Clearly,Hl f has much larger impact on the coverage thanHi f does. IfHl f is too large
(meaning we are very conservative), the coverage drops rapidly, and if Hl f is too small, the
accuracy drops to an unacceptable level, although we have much better coverage. Both graphs
confirm that we have chosen goodHi f andHl f values for our experiments.

5. PERFORMANCE EVALUATION METHODOLOGY

We first describe how we modify memory allocation to use pretenuring advice, then overview
additional relevant aspects of Jikes RVM and GCTk (the garbage collection toolkit we built to
work with Jikes RVM), and finally discuss how we measure and configure our system.
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5.1 Using Pretenuring Advice

The generational, Older First, and Beltway collectors havethree object insertion points: a
primary allocation point (the nursery), a primary copy point (the second generation, copy
zone, and the second belt respectively), and an allocation point in permanent (immortal) object
space. Our advice classifications map allocations to these insertion points in the obvious way.

We modified the Jikes RVM compilers to generate an appropriate allocation sequence when
compiling eachnew bytecode if the compiler has pretenuring advice for that bytecode. We
provide advice to the compiler as a file of〈site string,advice〉 pairs, where the site string
identifies a particularnew bytecode within a class. By providing advice to the compilerat
build time (when building the Jikes RVM boot image [Alpern et al. 2000]), allocation sites
compiled into the boot image, including the Jikes RVM run-time system and key Java libraries,
can pretenure. If advice is provided to the compiler atrun time, allocation sites compiled at
run time, including those in the application, can pretenure.

The advicepart of a pair indicates which of the three insertion points to use. Since the
nursery is the default, we provide advice only for long-lived and immortal sites.

In application-specific pretenuring, we useself advice [Barrett and Zorn 1993], i.e., the
benchmark executions use the same input when generating andusing advice. In build-time
pretenuring, we use combined advice, omitting informationfrom the application to be mea-
sured, which is calledtrue advice.

Using an advice file is not the only way one might communicate pretenuring advice to a
JVM; bytecode rewriting is another possibility when one does not have access to the JVM
internals. BIT is a bytecode modification tool that facilitates annotation of arbitrary bytecodes
[Lee and Zorn 1997]. Similarly, IBM’s Jikes Bytecode Toolkit12 allows bytecode manipu-
lation. Since our pretenuring advice is implemented insideJikes RVM, we manipulate the
intermediate representation directly. Also, for build-time pretenuring, we avoid modifying a
large number of Jikes RVM class files by using just one simple text file for all pretenuring
advice.

5.2 Jikes RVM and GCTk

Jikes RVM is a high performance JVM written in Java; its performance is comparable to
commercial JVMs on the same (PowerPC) platform [Alpern et al. 2000]. Because Jikes RVM
uses its own compiler to build itself, a simple change to the compiler gave us pretenuring
capability with respect to both the JVM run-time and user applications. The clean design of
Jikes RVM means that the addition of pretenuring to Jikes RVM(beyond the garbage collectors
and allocators themselves) is limited to writing a simple advice file parser and making the
above minor change to the compiler. These changes totaled only a few hundred lines of code.

We developed GCTk, a new garbage collection toolkit for Jikes RVM and the precursor to
its current toolkit, MMTk [Blackburn et al. 2004b; 2004a]. GCTk is an efficient and flexible
platform for GC experimentation, that exploits the object-orientation of Java and the JVM-
in-Java property of Jikes RVM. GCTk implements a number of copying GC algorithms, and
their performance is similar to prior monolithic Jikes RVM GC implementations. Our Appel-
style generational collector, which we callAppelsimply as a convenient shorthand name, is
well tuned and uses a fast address-order write barrier [Stefanović et al. 1999] to detect and
remember references from the old generation to the nursery.13 When performing a full heap

12Available at http://www.alphaworks.ibm.com/tech/jikesbt.
13It records the exact address of the older-to-younger pointer and thus is fast for both the mutator and the collector.
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collection, it traces through boot image objects, which arenever themselves collected, rather
than apply a write barrier to that region.14 We extend the algorithm in a straightforward way
to include an uncollected region for immortal objects. Since the immortal region is generally
small, we scan it for references to younger objects rather than apply a write barrier and main-
tain a remembered set. We implemented the Older First GC algorithm [Stefanović et al. 1999;
Stefanović et al. 2002] and Beltway [Blackburn et al. 2002]using the GCTk, and added an
immortal region to them as well.

5.3 Experimental Setting and GC Configuration

We performed our experimental timing runs on a Macintosh Power Mac 4e. It has one 733
MHz PowerPC 7450 processor, 32KB on-chip L1 data and instruction caches, 256KB unified
L2 cache, and 512MB of memory, and runs PPC Linux 2.4.

As indicated in Section 3.1, a time-space trade-off is at theheart of each pretenuring deci-
sion. In order to understand better how that trade-off is played out and to make fair compar-
isons, we conduct all of our experiments with a range of fixed heap sizes. We express heap
size as a function of the minimum heap size for the benchmark in question. We define themin-
imum heap sizefor a benchmark to be the smallest heap in which the benchmarkcan run when
using an Appel-style generational collector without pretenuring. This amount is at least twice
the max live size. We determine it experimentally, and show this size for each benchmark in
Table V.

Benchmark program Minimum heap size (MB)

201 compress 18
202 jess 10
205 raytrace 14
209 db 21
213 javac 24
222 mpegaudio 8
227 mtrt 20
228 jack 9

health6 128 9
pseudojbb 56

Table V. Minimum Heap Size at which Programs Run (Non-Pretenuring)

For the generational algorithm, we collect when the sum of the space consumed by the three
allocation regions (nursery, older generation, and permanent object space) and the reserved
region reaches the heap size. We collect the older generation, as per the Appel algorithm,
when it approaches the size of the reserved region. In this scheme, the nursery varies from
being as large as (half of) the heap down to a small minimum size.

5.4 Second Iteration Experimental Methodology

An ordinary run of a benchmark program performs one iteration of the program, inducing
loading and compilation of application classes as needed. As soon as a method is needed, we
use the Replay system to optimize it to the same optimizationlevel it acquired in a majority of

14This is a tradeoff between a more complex write barrier, incurring overhead on every pointer store, and a faster write
barrier with more GC time overhead.
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Adaptive runs. Thus, the run of the program includes compilation time. Further, Jikes RVM’s
compilers, being written in Java, allocate their data structures into the application heap. Hence
the run includes compiler allocation as well, placing additional load on the collector. We
measure this first iteration including compilation time. Eeckhout et al.’s [Eeckhout et al. 2003]
results show that Jikes RVM’s behavior can still dominate the application in this measurement.
We therefore run the application fortwo iterations, and use the Replay technique. In the first
iteration, because of Replay we attain high code quality forfrequently executed methods. We
then perform a full heap collection, disable further optimization, and iterate the application.
This second-iteration measurement includes no compile time, only application and collection
time, and does not include the full heap collection that we inserted between the iterations.

This methodology is also closer to the many JVMs that use a compiler written in C, and
which allocate “on the side”, not in the Java heap. The seconditeration measurements also
approximate applying our profile-directed pretenuring only to the Java libraries in other sys-
tems.

6. PERFORMANCE EVALUATION RESULTS

We now present execution time and other results using generational collection for build-time
pretenuring, application-specific pretenuring with our advice and CHL advice (as used by
[Cheng et al. 1998]), and the combination of build-time and application-specific pretenuring.
We present single-iteration results and second-iterationresults.

We demonstrate that our advice is collector-neutral by showing that it improves very dif-
ferent collectors as well, the Older First collector and theBeltway collector. In all of the
experiments, we use the pretenuring advice parametersTa = 0.45, Hl f = 0.60, Hi f = 0.00,
andHc f = 0.90as described in Section 3.1.1.

We generally report times normalized with respect to the non-pretenured case. We report
measurements for a range of heap sizes, normalized with respect to the minimum size at which
the program will run in the non-pretenuring collectors (as shown in Table V). The range we
used was from that minimum size to three times that size. We stopped there because most
curves have reached or nearly reached their asymptotes by that point. We also report cache
and translation look-aside buffer (TLB) misses using performance counters.

We begin with some basic measurements of the benchmarks, andalso examine the non-
pretenuring case to see what room for improvement there may be.

6.1 Non-pretenuring Measurements

To help interpret the magnitude of improvement we obtain, wepresent in Figures 8 and 9 the
percent of total execution time spent in GC for the non-pretenuring case. Assuming there is
minimal impact on mutator execution time, these results give an upper bound on the improve-
ment we can obtain by speeding up GC. The x-axis of the graphs gives the normalized heap
size. The y-axis is percent of total execution time spent in GC. Since later we will be pre-
senting results from both first and second iterations of eachbenchmark programs, the graphs
include two curves, one for the first iteration of the benchmark and one for the second. Note
that the percentages are computed from the ratio of the GC time to the execution time ofeach
iteration separately.

We observe that the percent of time spent collecting tends tobe higher for second iterations.
This difference is partly because the optimizing compiler (invoked only in the first iteration)
is computation intensive compared to the volume it allocates. The compiler also allocates
a significant amount, which explains why the first-iterationcurves are high for small heaps.
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Fig. 8. SPEC Benchmarks: Percent of Time Spent Collecting (No-Pretenuring)
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Fig. 9. Olden Health (6,128) andpseudojbb: Number of GCs; Percent of Time Collecting

Another factor that contributes to the difference is that, in obtaining the second-iteration mea-
surements, we enable explicit GC, which is attempted by the SPEC harness and also byjavac.
We enabled explicit GC so that we could cause a full-heap GC between the first and second
iteration, and thus give the second iteration a clean slate.The first-iteration numbers are from
different runs using our default settings, which disable explicit GC.

Another effect is that many of the second-iteration curves are nearly flat. This is partly
because of explicit GC invocations, which result in essentially fixed GC time independent of
heap size. (The graphs of second-iteration number of GCs in Figures 24 and 26 bear this re-
sult out.) Another reason for the flat second-iteration behavior is that many programs produce
mostly garbage after initially allocating some longer lived objects. At a heap size large enough
to contain first-iteration compilation data structures, the second-iteration data fit quite com-
fortably and the heap size quickly reaches a value requiringa minimal number of full-heap
GCs, and it is these GCs that are responsible for most of the GCtime.

6.1.1 Basic GC Speed.We also measured the non-pretenuring collector’s “raw” speed,
using theFixedLive test program, part of the Jikes RVM distribution. It first creates a chosen
volume of live objects arranged in a binary tree structure. Then it creates objects that it imme-
diately discards, so as to force the live objects to be collected repeatedly. We created 100 MB
of live objects, each 24 bytes in size (8-byte header plus two4-byteint fields plus two 4-byte
reference fields). This experiment gave a tracing (live object copying) rate of 17.2 MB/s and
an allocation rate of 131 MB/s. If we keep the same volume but increase the object size to 192
bytes, we obtain a tracing rate of 50 MB/s and allocation rateof 308 MB/s. Clearly there are
significant per-object overheads. A simple regression fit onfour points suggests that per-object
tracing cost is about 950-1000 ns and per-byte copying cost is about 15-20 ns.

The rates we obtained forFixedLive undergcj 4.0.1 (Boehm collector) on the same machine
are 52 MB/s tracing and 92 MB/s allocation. We would expect our copying collector to be
slower than a mark-sweep collector on this kind of benchmark(little fragmentation), because
of its copying work. Also, the Boehm collector does deferredsweeping, which would affect
the allocation rate, not the tracing rate, as they are reported by this benchmark. While we must
conclude that our collector’s speed could be improved, it isfast enough that there would still be
useful savings from pretenuring for a somewhat faster collector, especially in relatively small
heaps (where GC time is a substantial fraction of total time).
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6.2 Build-Time Pretenuring

Build-time advice is true advice; in these experiments, we combine advice (Section 3.1.1)
from each of theotherbenchmarks. Because pretenuring will occur only at sites pre-compiled
into the Jikes RVM boot image, build-time advice does not result in pretenuring of allocation
sites within an application. However, because considerable allocation occurs from those sites
compiled into the boot image (quite notably from the Jikes RVM optimizing compiler and key
Java libraries), build-time advice has the distinct advantage of delivering pretenuring benefits
without requiring the user to profile the application.

Figure 10 shows the total performance improvement for each benchmark, using build-time
pretenuring normalized with respect to the generational collector without pretenuring. The
x-axis is the heap size, in multiples of the minimum heap size, for 33 points from 1 to 3;
the y-axis is execution time relative to not pretenuring. All our results use the same x-axis.
(Figures 17, 18, 19, 20, and 21 show individual program results for total performance, garbage
collection time, number of collections, and copying work. We discuss them in Section 6.4.)

Notice that there is a lot ofjitter for each benchmark in these graphs. This jitter is present in
our raw performance results for each specific allocator as well as in the normalized improve-
ment graphs we show. The jitter is mostly due to variations inthe number of collections at a
given heap size. Small changes in the heap size can trigger collections either right before or
after significant object death, which affects both the effectiveness of a given collection and the
number of collections. This effect illustrates that GC evaluation should, as we do, use many
heap configurations, not just two or three. Pretenuring neither dampens nor exaggerates this
behavior, but is subject to it.

In some cases, build-time pretenuring degrades total performance by a few percent, but for
most configurations, programs improve, sometimes significantly. Improvements tend to de-
cline as the heap size gets larger because the contribution of garbage collection time to total
time declines as the heap gets bigger, simply because there are fewer collections. Pretenuring
thus has fewer opportunities to improve performance, but pretenuring still achieves an im-
provement on average of around 3% even for large heaps. All programs improve on average,
and for javac, mtrt, andpseudojbb, in a number of configurations the improvement is more
than 50%. These improvements result from reducing copying and saving copy reserve in the
garbage collector, and the significant decrease in GC time improves overall execution time.

6.3 Application-Specific Pretenuring

This section compares our classification scheme to the CHL scheme [Cheng et al. 1998] using
application-specific (self) advice. Given an application running with a generational collector
with a fixed nursery size, CHL advice generation first measures the proportion of object in-
stances that survive at least one minor collection on a per-allocation site basis. CHL classifies
as long-lived those allocation sites for which a high proportion survive (we implemented their
approach with the same 80% threshold they used). CHL then pretenures (allocates) objects
created at these sites into the older generation, and allocates objects from all the other allo-
cation sites into the nursery in the usual way. Because of allocation-site homogeneity in ML
(which we also observed in Section 4 for our Java programs), their approach is fairly robust to
the threshold.

The key differences between the two classification schemes are (a) that our advice is neutral
with respect to the garbage collector algorithm and configuration, and (b) that we include an
immortal category and our collector puts immortal objects into a region that it never collects.
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The first of these makes our approach more general and the second improves performance. Our
pretenuring allocates on average 4% of objects into the immortal space (see Table III), and
these decisions are overwhelmingly correct (because our decisions to pretenure to immortal
space are so conservative). Since both schemes get the same total heap size in our experiments,
allocation into the immortal region (because it requires nocopy reserve) increases the space
available to the generational collector (see Figure 16). While 4% may not sound like much, in
tight heaps it can result in a large proportional increase innursery size, and can thus lower GC
time significantly.

Figure 11 compares CHL and our application-specific pretenuring, using the generational
collector, which has a flexible nursery size. The figure showsthe average relative execution
time using a geometric mean of our benchmark programs. On average our advice performs at
least 2% better than CHL advice, except in a tight heap where the impact of immortal objects
is highest and our advice performs significantly better.

Because CHL advice generation is specific to program, collector, and collector configura-
tion, it cannot be combined for build-time pretenuring without significant change to the algo-
rithm. We make no further comparisons with CHL because of this drawback and because, as
we have just illustrated, our three-way classification offers better performance than the CHL
two-way scheme on average, and much better performance thanCHL for tight heaps.

6.4 Combining Build-Time and Application-Specific Pretenuring

In this section we show that combining build-time and application-specific pretenuring results
in better performance than either one alone. For these threepretenuring schemes, we present
results using the geometric mean of the benchmarks for relative mark/cons ratio in Figure 12,
the geometric mean of the relative garbage collection time in Figure 13, and the geometric
mean of the relative execution time in Figure 14.

Figure 12 shows the mark/cons ratio for each pretenuring scheme, relative to not pretenur-
ing. The mark/cons ratio is the ratio of bytes copied (“marked”) to bytes allocated (“cons’ed”).
The figure explainswhy pretenuring works: it reduces copying. In all cases, pretenuring re-
duces the volume of objects the collector copies. Reductions range from 10% to 81%, which
is quite significant when minimum heap sizes can be as large 60MB (pseudojbb).

Figure 16 offers additional insights. Figure 16(a) shows heap usage over time for a run of
the javac benchmark without pretenuring, and Figure 16(b) shows it with pretenuring. Both
runs use a heap size of 24MB. The top line in each graph shows the total heap consumption
immediately before each GC. The second line shows the space consumed by the older genera-
tion immediately before each GC (both nursery and full heap collections). Finally, the bottom
line shows the immortal space consumption, which is always zero in Figure 16(a).

Note that in pretenuring, allocation to immortal space effectively increases the size of the
heap because it does not need to reserve space to copy immortals. (Of course the total space
available is the same in both cases.) Thus the pretenuring graph’s totaloccupiedheap size is
larger. Because the copy reserve is smaller, the nursery is larger (by half the occupancy of the
immortal space). This larger nursery delays the growth of the older generation and defers older
generation collections, in addition to reducing the frequency of nursery collections. The lowest
points in space consumption of the older generation (the second line) are very similar in both
graphs, which shows that pretenuring does not allocate manyimmortal objects inappropriately
(if it did, the second line would be higher for pretenuring).Also note that the shapes of the
four troughs in the second lines towards the right side of thefigures. When not pretenuring, the
bottoms of the troughs are flat, showing that there is no direct allocation to the older generation.
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Fig. 16. Comparison of Heap Usage Over Time Without and With Pretenuring

With pretenuring, they show an upward slope to the right, indicating direct allocation to the
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older generation.
In summary, pretenuring performs better because it does less copying. It reduces copying

in two ways: direct allocation into the older spaces avoids copying to promote longer lived
objects; and the immortal space effectively increases the size of the heap, thus reducing the
number of GCs and the amount of copying.

Figure 13 shows that the reduction in copying cost significantly and consistently reduces
GC time, especially considering the advice is true rather than self advice for build-time pre-
tenuring. In particular, combined (application and build-time) pretenuring improves collector
performance between 40 and 80% for most heap sizes. Combinedpretenuring is on aver-
age the most effective of the three. In large heaps, application-specific pretenuring is on av-
erage nearly as good, but build-time pretenuring offers significantly higher advantage than
application-specific in small heaps, because it includes a higher volume of immortal alloca-
tion.

These results carry over to execution time (Figure 14). We see that all the pretenuring
schemes improve performance. Average improvements are usually between 1% and 6% in
larger heaps and 11% to 36% in very tight heaps, but as shown inFigures 17 and 21, some
individual programs improve more.

It may strike one as surprising that pretenuring consistently gives benefits even at the larger
heap sizes, which have fewer collections. As we will see in Section 6.9, part of the benefit,
about 2–3% on average, is from improved locality (fewer cache and TLB misses). The other 2–
3% average improvement in execution time is from reduced GC time. Recall that pretenuring
reduces the cost of nursery collection, and the percentage improvement in GC time will be
higher when GC is invokedlessoften (same amount of copying saved, but less total copying).
Also, the heap sizes we use are not large enough for GC improvements to disappear relative to
total execution time. One would need rather larger heaps to obtain that effect.

6.5 Immortal-only and Long-only Pretenuring

We investigated the relative importance of immortal and long pretenuring by refining our ad-
vice as follows:

(1) Immortal-only: Take the advice previously generated and discard anylongadvice (those
sites will be treated asshort). We retain theimmortaladvice.

(2) Long-only: Take all immortal advice and treat it aslong. All short advice remains the
same.

(3) Both: Keep both theimmortalandlong classifications as before.

Figure 15 shows results using these three sets of advice. Thefigure reveals that long-only
gives a robust average improvement of about 5% at larger heapsizes, but its cost increases
noticeably at smaller heap sizes (because it forces more frequent collections) overcoming its
benefits. Immortal-only is always beneficial, enormously soin tight heaps, because it increases
the effective heap size (as shown in Figure 16 forjavac). At larger sizes it does not give quite
as much benefit as long-only. Doing both kinds of pretenuringrobustly obtains both benefits.

6.6 Comments on Specific Benchmarks

We now analyze noteworthy features of the individual benchmark results. Figures 17, 18, 19,
20, and 21 show individual program results for total performance, garbage collection time,
number of collections, and mark/cons ratio.
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jess, jack, andmpegaudio. Application-specific pretenuring does not help much, and oc-
casionally degrades performance slightly because of nepotism. Bothjess and jack have very
small nursery survival rates (less than 1% forjess, and 3% forjack). Since the application-
specific objects are mostly short-lived, application-specific pretenuring puts only a very small
volume of objects into higher spaces. A similar pattern exists for mpegaudio, which has a
higher nursery survival rate but does very little allocation and so places little stress on the
garbage collector. Pretenuring shows benefit with build-time advice since the survival rates
for Jikes RVM objects are higher. For example, injess, application-specific pretenuring al-
locates 210KB of immortal objects and 450KB of long objects,while build-time pretenuring
produces 2700KB of immortal objects.

mtrt andraytrace. Both build-time and application-specific pretenuring offer substantial
performance improvement, up to 10% and 50% in tight heaps, because of the heap space
saved by pretenuring immortal objects. For larger heaps, build-time pretenuring gives only
slight improvement, but application-specific pretenuringimproves performance by 4–6%, and
the combination gives an additional 1–2% improvement.

javac. This program has a substantial number of long and immortal sites, and thus build-
time pretenuring is relatively less important. In tight heaps, most of the benefit comes from
build-time pretenuring at immortal sites (by saving copy reserve space), and application-
specific pretenuring has much less benefit, or even degrades total execution time. The reason
is that javac suffers from nepotism, which we also observe inpseudojbb. Larger heaps re-
duce the effects of nepotism, and the benefit of less copying shows up. Here we observe that
application-specific pretenuring gives about 5–6% performance improvement.

health anddb. These applications have some large data structures that areused throughout
the execution. Thus application-specific pretenuring can bring benefits by saving copying
cost. Forhealth, application-specific pretenuring improves performance by up to 27% for
tight heaps, and 8–13% for larger heaps. Although build-time pretenuring alone does not have
much benefit, the combination yields an additional 5% improvement.

pseudojbb. Application-specific pretenuring suffers from nepotism intight heaps, and gives
only slight improvement (about 1%) in larger heaps. Build-time pretenuring gives huge im-
provement, up to 60%, by saving copy reserve. For larger heaps,pseudojbb spends most of its
time in the mutator, usually spending less than 10% of its time in GC. Hence, although we are
able to reduce GC time by more than 10% in most cases, the improvement in total execution
time is limited to around 1%.

compress. Application-specific pretenuring has little effect, but build-time pretenuring pro-
duces large variation in performance across heap sizes. This variation comes from large varia-
tion in the volume of objects copied, as can be seen in the mark/cons ratio graph forcompress.
This variation is not so much because of pretenuring itself but because the pretenuring causes
the moments when GC is triggered to move a bit, andcompress uses a number of large short
lived objects. If one collects at a “bad” moment, one ends up copying these large objects and
then throwing them away at the next full-heap collection (which will come sooner than in a
“good” run, because we promoted a large object that will die soon). The effect is more pro-
nounced at smaller heap sizes because more frequent GCs makeit more likely that we promote
a large short-lived object, but this behavior, though repeatable (deterministic), is chaotic with
respect to heap size. (It is one way in whichjitter arises.)
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Fig. 17. SPEC Benchmarks: Execution Time Relative to Non-Pretenuring
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Fig. 18. SPEC Benchmarks: GC Time Relative to Non-Pretenuring
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Fig. 19. SPEC Benchmarks: Mark/Cons Ratio Relative to Non-Pretenuring
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Fig. 20. SPEC Benchmarks: Number of Garbage Collections
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Fig. 21. Olden Health (6,128) andpseudojbb: Execution Time, GC Time, Mark/Cons Ratio, and Number of GCs
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6.7 Second Iteration Results

We previously described the first- and second-iteration experimental methodology. We now
present these results for second-iterations of the SPEC benchmarks: execution time (relative
to non-pretenuring second-iteration time) in Figure 22, GCtime (relative to non-pretenuring
second-iteration GC time) in Figure 23, and number of GCs in Figure 24. The corresponding
results forhealth andpseudojbb appear in Figures 25 and 26, along with graphs showing the
geometric mean of all the benchmarks.

While there are some individual variations, as to be expected, second-iteration relative per-
formance is quite comparable to first-iteration, which shows at least these two things: (a) our
scheme is improving application performance overall, not just the Jikes RVM compilers; and
(b) our approach is likely to give useful benefits to JVMs withrun-time systems that do not
allocate into the application heap (i.e., ones written in C).

6.8 Effects of Compilation Strategy and Trace Generation

Section 3.2 describes various compilation strategies for Jikes RVM, namely Opt, Adaptive, and
Replay. Figures 27(a), (b), and (c) show results using thesethree compilation strategies, all
with the same advice (developed from traces generated from Opt builds). These graphs show
two important things for our purposes. First, the similarity between Figures 27(b) and (c)
demonstrates that Adaptive and Replay behave virtually thesame with respect to pretenuring.
Second, while Figures 27(a) and (b) are a little less similar, they retain the same trends. The
primary difference is that the Opt runs do much more optimizing compilation, which results in
more allocation at build-time pretenured sites. Hence build-time pretenuring is relatively more
important for Opt runs.

By default, we profile Opt runs to produce advice. Figures 27(c) and (d) compare generating
advice from Replay runs versus Opt runs. We see there is essentially no difference.

6.9 Locality Effects

Since pretenuring results in possibly rather different placement of objects in the heap, one
might wonder how it impacts memory reference locality. In particular, does it increase or
decrease cache and translation look-aside buffer (TLB) misses? We performed runs that col-
lected hardware performance monitor statistics on Level 1 (L1) and Level 2 (L2) cache misses
and TLB misses, presented in Figure 28(a, b, c). As usual, thex-axis is relative heap size. The
y-axis isrelativemissrate. More specifically, for each run where we measured L1 (L2, TLB)
misses, we computed the miss rate as the number of misses divided by the number of cycles
the run took. The graphs show these rates for pretenuring relative to the rates without pre-
tenuring. We show this for build-time, application-specific, and combined pretenuring, each a
separate curve in each graph. These are all for the Appel Replay collector, and we present the
geometric mean across all benchmarks.

To interpret the results and see why we developed them this way, consider a point at which
overall execution time improves with pretenuring. If the improvement is because there are
fewer total cycles and proportionately fewer misses, we would obtain a miss rate ratio of 1.0,
meaning that there is no locality difference and the improvement has to do with number of
instructions executed rather than cache performance. If the ratio is less than 1.0, then at least
some of the improvement is coming from improved locality (lower missrate), and if the ratio is
greater than 1.0, we are seeing overall improvement in the face of a higher miss rate (unlikely
but theoretically possible).
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Fig. 22. SPEC Benchmarks: Second Iteration Execution Time Relative to Non-Pretenuring
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Fig. 23. SPEC Benchmarks: Second Iteration GC Time Relative to Non-Pretenuring
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Fig. 24. SPEC Benchmarks: Second Iteration Number of GCs

39



0%

20%

40%

60%

80%

100%

120%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 G
C

 ti
m

e 
(s

ec
on

d 
ru

n)

Heap size relative to minimum heap size

Olden health (6, 128)

Application PT
Build PT

Application & Build PT

(a) Health GC 2

75%

80%

85%

90%

95%

100%

105%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
(s

ec
on

d 
ru

n)

Heap size relative to minimum heap size

Olden health (6, 128)

Application PT
Build PT

Application & Build PT

(b) Health Exec 2

0%

20%

40%

60%

80%

100%

120%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 G
C

 ti
m

e 
(s

ec
on

d 
ru

n)

Heap size relative to minimum heap size

SPEC pseudojbb

Application PT
Build PT

Application & Build PT

(c) PseudoJBB GC 2

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
(s

ec
on

d 
ru

n)

Heap size relative to minimum heap size

SPEC pseudojbb

Application PT
Build PT

Application & Build PT

(d) PseudoJBB Exec 2

40%

50%

60%

70%

80%

90%

100%

110%

120%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 G
C

 ti
m

e 
(s

ec
on

d 
ru

n)

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build PT

Application & Build PT

(e) Geometric Mean GC 2

65%

70%

75%

80%

85%

90%

95%

100%

105%

110%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
(s

ec
on

d 
ru

n)

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build PT

Application & Build PT

(f) Geometric Mean Exec 2

Fig. 25. Olden Health (6,128) andpseudojbb results, and Geometric Means: Second Iteration GC and Execution Time
Relative to Non-Pretenuring

Generally, we see improvements in locality rather than degradations. The L1 miss rate
ratio curves are similar to our performance curves, the L2 miss rate ratios indicate general
improvement, and the TLB miss rate ratios show that build-time and combined pretenuring
usually reduce TLB miss rates but application-specific pretenuring sometimes gives reductions
and sometimes improvements. Therefore, pretenuring is notoverly disturbing the good locality
of nursery allocation in a contiguous region [Blackburn et al. 2004a], nor is it degrading GC
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Fig. 26. Olden Health (6,128) andpseudojbb: Second Iteration Number of GCs

70%

75%

80%

85%

90%

95%

100%

105%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build PT

Application & Build PT

(a) Appel Opt

70%

75%

80%

85%

90%

95%

100%

105%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build PT

Application & Build PT

(b) Appel Adaptive

60%

65%

70%

75%

80%

85%

90%

95%

100%

105%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build BT

Application & Build PT

(c) Appel Replay: Advice from Opt traces

60%

65%

70%

75%

80%

85%

90%

95%

100%

105%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build PT

Application & Build PT

(d) Appel Replay: Advice from Replay traces

Fig. 27. Comparing Pretenuring Under Different Compilation Options

locality.
Finally, we ask the question: How does pretenuring affectmutatorexecution time (as op-

posed to the collector)? This indirectly indicates locality benefits, since mutator instruction
execution should be quite comparable with and without pretenuring. Figure 29 shows just
mutator time under build-time, application-specific, and combined pretenuring, each relative
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Fig. 28. Comparing Cache and TLB Locality

to no pretenuring. There is a set of bars for each benchmark program and for the geometric
mean. We see there is one case of more than minimal slow down: 4% for build-time pretenur-
ing on raytrace. In most cases there is little effect, but in several cases there is considerable
reduction in mutator time under pretenuring, most notabledb and to a lesser extenthealth. We
observe thatdb is known to be highly sensitive to exact layout of heap data, since it repeatedly
traverses long singly-linked lists, which cautions reading too much from thedb results. Still,
we find on average a slight reduction in mutator time when pretenuring.

6.10 Application-Specific Advice with Other Inputs

Space precludes thorough consideration of how well application-specific advice collected from
one program run (trace) affects execution of the same program with different inputs. However,
since the SPEC benchmarks come with different inputs “sizes”, we performed some simple
comparisons. The “sizes” available are 1 (intended only fortesting that a program runs), 10,
and 100. We use size 100 runs to develop our traces and in all the other evaluations presented
here. Figure 30 shows the geometric mean of size 10 performance relative to non-pretenuring.
This averages the eight SPEC benchmarks, plushealth run at with parameters (5,128).15 As
the figure shows, we still see improvement, though not as great a fraction, probably because

15It seemed pointless to runpseudojbb just for a shorter time, since the behavior would be so self-similar. The same
may be true of some SPEC benchmarks.

42



 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

Geopjbbhealthjackmtrtmpegjavacdbrtracejesscomp

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e
Application Only
Build-Time Only

Application & Build-Time

Fig. 29. Comparing Mutator Time to Estimate Mutator Locality Effects

these runs are so short and thus do relatively less allocation and collection. Still, we see that
the advice is never harmful, that build-time pretenuring remains useful, and that application-
specific and build-time pretenuring provide cumulative benefit.

We also explored developing advice from size 10 traces, but found that they did not run long
enough to produce very useful application-specific advice:the runs were dominated relatively
more by compilation. Also, in short runs there is an increased risk of labeling as immortal
objects (and sites) that should not be, just because the run was not long enough for our criterion
to weed them out.

6.11 Pretenuring with Other Collectors

We now consider the question of how well our pretenuring advice works with other age-based
collectors. Specifically, we consider the Beltway and the Older First (OF) collectors. It is
important to emphasize that we useexactlythe same collector-neutral pretenuring advice for
all three collectors.

6.11.1 Pretenuring with the Beltway Collector.For the Beltway collector, we use the con-
figuration 25.25.100, which is reported to perform well [Blackburn et al. 2002]. This config-
uration has three belts. The first belt is the nursery and its size is 25% of the usable space
(12.5% of the total heap size, which includes the copy reserve). When the nursery belt is full,
Beltway promotes survivors of nursery collections to the second belt, which consists of four
increments, each sized up to 25% of the usable space. This belt can grow, provided the heap is
not full. When the second belt is full, Beltway collects the oldest window of the belt, and pro-
motes survivors to the third belt. The third belt has only onewindow, which can be as large as
100% of the usable space (50% of the total heap size). Collections on the third belt guarantee
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Fig. 30. Relative Execution Time of Size=10 Runs with Size=100 Advice

completeness of the collector (i.e., that it eventually collects any garbage object). When the
heap is full and the other belts are empty, Beltway collects the third belt. These collections are
rare.

We added to Beltway animmortal belt that is never collected. With pretenuring advice,
Beltway directly allocates immortal objects on the immortal belt. It puts long-lived objects
into the youngest window of the second belt, so that they can stay on the second belt for the
longest possible time before Beltway collects them.

Figure 31 shows the geometric mean of the relative performance for all our benchmarks
with the modified Beltway collector, normalized with respect to the Beltway collector with-
out pretenuring. We show build-time, application-specific, and combined pretenuring results.
Application-specific Beltway pretenuring always improvesperformance by about 4–6%, ex-
cept only for the tightest heap sizes, wherejavac and pseudojbb suffer from nepotism and
experience degradation of 30% and 8%, respectively. All other benchmarks have substan-
tial improvement with application-specific pretenuring attight heap sizes, so we observe only
a 3% degradation in the geometric mean. Build-time Beltway pretenuring improves perfor-
mance by up to 12% in tight heaps, and by about 2% for larger heaps. The improvements for
combined Beltway pretenuring are about 15% in tight heaps, and 7% in larger heaps. Note
that we achieve less benefit from pretenuring in tight heaps than we do for the Appel-style
generational collector. Beltway’s performance advantages over generational collection with-
out pretenuring come partly because Beltway uses a dynamic copy reserve and thus uses heap
space more efficiently. Hence, pretenuring gives relatively less benefit to Beltway.

6.11.2 Pretenuring with the OF Collector.We found that the same advice can improve
an Older First (OF) collector [Stefanović et al. 1999]. TheOF collector organizes the heap

44



84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

104%

 1  1.25  1.5  1.75  2  2.25  2.5  2.75  3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Heap size relative to minimum heap size

Geometric mean for all benchmarks

Application PT
Build PT

Application & Build PT

Fig. 31. Relative Execution Time for Pretenuring with the Beltway Collector
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Fig. 32. Relative Execution Time for Pretenuring with the OF Collector
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in allocation order. View the heap as a queue; the oldest objects are at the tail and the OF
allocator inserts newly allocated objects at the head of thequeue. OF begins by positioning
the window of collection at the end of the queue, which contains the oldest objects. During a
collection, it copies and compacts the survivors in place, returns free blocks to the head of the
queue, and then positions the window closer to the front of the queue, just past the survivors
of the current collection. When it bumps into the allocationpoint for the youngest objects, it
resets the window to the oldest objects. See Stefanović et al. for more details [Stefanović et al.
1999].

With pretenuring advice, OF puts immortal objects in a reserved space that is never col-
lected. OF allocates long-lived objects at the copy point for the previous collection, which
gives them the longest possible time before OF will considerthem for collection. OF con-
tinues to put short-lived objects at the head of the queue. Aswith the generational collector,
we use a fixed sized heap, reduced by the space allocated to immortal objects. We set the
collection window size to0.3× heap size.

Figure 32 shows the geometric mean of the relative performance for all our benchmarks,
normalized with respect to the OF collector without pretenuring, for build-time, application-
specific, and combined pretenuring. Application-specific OF pretenuring improves perfor-
mance in all cases, ranging from 3% to 8% Again, build-time pretenuring improves perfor-
mance, and additional improvements from combined pretenuring are consistent and signifi-
cant, ranging from 4% to 12%.

Since the OF collector visits older objects more regularly than the generational collector,
there is potential for better improvements, and it is realized in these results. However, our
implementation of the OF collector is currently not well tuned, and does not include key details
such as an address order write barrier [Stefanović et al. 1999]. These drawbacks prevent direct
comparisons between the performance of the OF and generational collectors with or without
pretenuring. Indeed, these comparisons are not pertinent to the subject of this work. The key
point of this section is that we can use the same advice in these vastly different collectors and
it improves performance as well.

7. USING PRETENURING IN PRACTICE

Here we used GC configurations suited to clarity of experimental methodology. In practice
one would probably adjust some of the policies to produce a system more convenient for
production use:

—We used a fixed total size for the heap to ease comparisons, but in practice adaptive heap
growth and shrinkage is more appropriate. If a program runs amoderate length of time
and accumulates some amount of garbage in the immortal space(and nepotism in the long
space), growing may be an easy way to handle the problem if thespace “leak” is not very
great. (One may also adjust heap size in response to available real memory, as explored by
Yang et al. [Yang et al. 2004].)

—While our technique appears reliable, it does notguaranteeto bound growth of the immortal
space [Boehm 2002] or of objects in other spaces retained because of nepotism. Thus one
might apply a “back up” collector from time to time, e.g., global marking, either separately
or as part of an older generation collection. This can determine the volume of dead objects
in the immortal space, and of those objects retained in otherspaces because of them. If the
dead immortal volume is relatively large, one could apply sliding compaction (say) to the
immortal space. (Current versions of GCTk’s successor package, MMTk [Blackburn et al.
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2004b; 2004a], make this relatively easy to build and configure.) If the volume is relatively
small, one could zero out the bodies of the dead immortal objects, preventing long-term
nepotism.

—An additional concern is programs that have popular allocation sites with poor lifetime
homogeneity, or that profiling mispredicts so that we generate inappropriate immortal or
long advice for them. One possible direction is to apply pretenuringadaptively[Harris
2000; Jump et al. 2004]. These designs would need extensionsto deal with an immortal
space. It may be reasonable to use a simpler mechanism, wherewe mark all immortals
objects with their allocation site (or perhaps just a sampled fraction of them). If our backup
immortal space collection mechanism detects particular offending allocation sites, we can
patch the site to allocate to a shorter lived space.

—A particular concern about quality of advice is that certain coding practices may increase
the lifetime heterogeneity of allocation sites. In particular, factory methods, i.e., methods
whose purpose is to allocate an object on behalf of their caller, may tend to contain allocation
sites with more heterogeneous lifetimes. This effect is mitigated if the factory methods are
inlined. Increased lifetime heterogeneity will usually just reduce the potential benefit of
pretenuring by disqualifying more allocation sites.

—The concept of pretenuring applies to generational systems, and is not particular to copying
GCs. Would our pretenuring scheme be effective for, say, a system uses linear allocation into
a nursery, but manages older objects with mark-sweep or occasional sliding compaction?
One expects some shifting of design points, but we argue thatthe same general approach
is likely to produce useful benefits, though perhaps not as great as seen with copying. In
our scheme the immortal space is particularly helpful because it needs no copy reserve
and this effectively frees space for allocation in younger generations. That is, it effectively
increases the heap size. In non-copying systems or ones thatcopy out of a nursery to non-
copying spaces, there would be no (additional) space benefit. However, one still obtains
a processing time benefit, assuming that the strategy for most collections does not need to
examine most of immortal space. (Thus one would prefer remembered sets that usually
remember particular referringslotsrather than remembering referringobjects.)

7.1 Online Pretenuring?

Our approach is based on feeding back profile information from previous, instrumented runs
of programs. Could it be applied online? While we compile into generated machine code the
region into which each allocation site is to allocate, it is possible to change the allocation site
on the fly by patching, or regenerating the code, or insertinga test. However, it is conceptually
problematic to apply online anything like our definition of immortal objects, since it depends
on knowing when the program will end. As we discuss in more detail below, neither of the
online pretenuring schemes [Harris 2000; Jump et al. 2004] obtain much improvement.

7.2 Whither Profile Feedback?

Doing profile feedback is tedious for users, so the most obvious way to exploit our approach
is to use build-time pretenuring, which has significant benefit and may be more reliable than
application-specific pretenuring decisions. Also, even though Merlin is much faster than previ-
ous techniques, the slowdown for even a granulated trace is 20–80x, further suggesting build-
time pretenuring as being more reasonable in most instances.
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However, one can imagine collecting, at modest overhead, somewhat coarse-grained object
lifetime statistics from many runs and integrating them into a database. One could run an
analyzer and advice generator on this database periodically, and future runs could use the
advice. This is a way to make the feedback automatic and non-intrusive, an interesting idea
for future work.

8. RELATED WORK

We first compare our work to previous research on generational garbage collectors, object life-
time prediction, and pretenuring. We then relate it to work on prediction and object segregation
for C programs with explicit allocation and freeing.

Ungar pioneered the use of generational copying garbage collection to effect quick reclama-
tion of the many short-lived objects in Smalltalk programs [Ungar 1984]. Performance studies
with a variety of languages demonstrate that well-tuned generational collector performance
generally ranges from 10% to 40% of the total execution time [Ungar and Jackson 1988; Zorn
1989; Ungar and Jackson 1992; Barrett and Zorn 1995; Tarditiand Diwan 1996; Cheng et al.
1998; Blackburn et al. 2004a].

Ungar and Jackson use online profiling to identify longer-lived objects in a two generation
collector for Smalltalk [Ungar and Jackson 1988; 1992]. Their tenured object space corre-
sponds roughly to our immortal space, in that they never collect it. However, they do not
pretenure (allocate any objects directly into tenured space). Rather, they copy into tenured
space objects that survive a given number of nursery collections. They adjust this number, the
tenuring threshold, by keeping track of the volume of nursery objects that has survived one
collection, two collections, etc. Thus, their system keepslong-lived objects in the nursery,
repeatedly copying them to keep from tenuring them, in orderto avoid tenured garbage. They
use the object demographics that they obtain from a given nursery collection to set the tenuring
threshold for the next collection. The goal is to tenure as few bytes as possible while keeping
the nursery space from growing too large and thus exhibitingunacceptable pause times when
it is collected. They further outline a multi-generationalapproach that would copy the long-
lived objects fewer times. They notice immortal objects, but since those were insignificant in
their system, they take no special action. We allocate immortal objects directly into a perma-
nent space. We thus never copy immortal objects. We also havethe potential never to copy
long-lived objects, but we may.

Cheng et al. (CHL) evaluate pretenuring and lifetime prediction for ML programs in the
context of a generational collector [Cheng et al. 1998]. Similar to Ungar and Jackson, they
divide the heap into two regions: a fixed size nursery and an older generation. They collect
the nursery on every collection, and both spaces when the entire heap fills up. They gener-
ate pretenuring advice based on profiles of this collector, and classify call sites as short-lived
or long-lived. Most objects are short-lived, and allocation sites are bimodal: either almost
all objects are short-lived, or all are long lived. Their advice is dependent on their collec-
tion algorithm and the specific configuration, whereas our pretenuring advice is based on two
collector-neutral statistics: age and time of death. We therefore can and do use it with different
configurations of a generational collector, and with altogether different collectors, Older First
and Beltway.

CHL statically modify those allocation sites where 80% or more of objects are long-lived to
allocate directly into the older generation, which is collected less frequently than the nursery.
We allocate instead into three areas: the nursery, the oldergeneration, or the permanent space.
We never collect our permanent space. At collection time, their systemmust scanall pre-
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tenured objects because they believed that the write barrier cost for storing pointers from the
pretenured objects into the nursery would be prohibitive. We instead perform the write barrier
as needed; this cost is very small in our case. The cost of scanning is significant [Cheng et al.
1998; Stefanović et al. 1999], and as they point out, it reduces the effectiveness of pretenur-
ing in their system. We never collect immortal objects, and only collect long-lived objects
later when they have had time to die. In summary, our pretenuring classification is more gen-
eral, and our collectors more fully realize the potential ofpretenuring. Most importantly, the
more general mechanism we use to gather statistics and generate advice enables our system
to combine advice from different executions and perform build-time pretenuring, which is not
possible in their framework.

Harris, and Jump et al., present dynamic pretenuring schemes. Harris [Harris 2000] sam-
ples using Agesen and Garthwaite’s [Agesen and Garthwaite 2000] approach, which inserts
weak pointers and after a collection computes object lifetime statistics. Harris then pretenures
into the older generation of a two generation collector, andsamples older objects to stop pre-
tenuring, and thus can react to phase changes. He does not report accuracy or overhead, but
does not improve performance. The dynamic pretenuring approach of Jump et al. [Jump et al.
2004] improves only one program,javac. However, they develop an inexpensive and accurate
mechanism for tracking object lifetimes based on frequent samples (one object out of every
256 bytes allocated).

For many benchmarks, dynamic pretenuring will always suffer because programs often al-
locate a high proportion of immortal and long-lived objectsat the very beginning of the pro-
gram [Jump et al. 2004], before any dynamic scheme has time totrain itself. Since static
pretenuring relies on prior runs, it is not subject to this drawback. Furthermore, it is accurate
and improves performance. However, it does require a profiling run and does not respond to
phase changes.

For explicit allocation and deallocation in C programs, Hanson performs object segregation
of short-lived and all other objects on a per allocation sitebasis with user specified object
lifetimes [Hanson 1990]. Barrett and Zorn extend Hanson’s algorithm by using profile data to
predict short-lived objects automatically [Barrett and Zorn 1993]. To achieve accurate results,
their predictor uses the dynamic call chain and object size,whereas we show that in Java pre-
diction does well with only the allocation site. Subsequentwork by Seidl and Zorn predicts
short-lived objects with only the call chain [Seidl and Zorn1998]. In these three studies, a ma-
jority of objects are short-lived, and the goal is to group them together to improve locality (and
thus performance) by reusing the same memory quickly. Barrett and Zorn’s allocator dynami-
cally chooses between a special area for the short-lived objects, and the default heap. Because
we attain accurate prediction for an allocation site, we indicate statically where to place each
object in the heap, which is cheaper than dynamically examining and hashing on the call chain
at each allocation. Since in their context “long-lived” is the conservative assumption, Barrett
and Zorn predict “short-lived” only for call chains where 100% of the allocations profile to
short lived. In a garbage collected system, our conservative prediction is instead “short-lived”.
We also differentiate between long-lived and immortal objects, which they do not.

Demers et al. [Demers et al. 1990] looked at other ways of identifying allocation sites with
context, in particular using stack pointer values as a cheapapproximation to detailed calling
context. On contrast to this run-time technique, We need astaticprediction, since we compile
in the choice of allocation area. Of course it might be possible to apply our static prediction
to highly homogeneous sites and a more contextual one to moreheterogeneous sites, but we
obtained good results with the static predictor.
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The work we present here adds several dimensions over our prior work [Blackburn et al.
2001]. We now use exact life time information to generate advice, while our previous advice
used frequent collections (e.g., every 64K bytes of allocation), a technique that over-estimates
object lifetimes. This change prompted a revised advice classification scheme whose sensitivi-
ties we explore experimentally. Our new technique improvesthe quality of our advice. Conse-
quently, this advice significantly improves application pretenuring. Now application pretenur-
ing improves performance consistently, whereas in our previous work it did not. We further
use a more modern Java compilation strategy (Adaptive), modified to produce deterministic,
yet realistic results (Replay), and see that it affects the relative impact of application-specific
versus build-time pretenuring—because there is less allocation by the optimizing compiler,
build-time pretenuring has relatively less impact, thoughit is usually still useful. We also add
a richer set of benchmarks, more in-depth analysis, and the Beltway collector to our results.
We also include here second-iteration results, cache and TLB miss performance, results from
using long-run advice for short runs, and more statistics for the non-pretenuring collector that
is the standard against which we compare. These additions further demonstrate the applicabil-
ity and generality of our approach.

A technique somewhat complementary to pretenuring is alarge object space(LOS) [Caudill
and Wirfs-Brock 1986; Ungar and Jackson 1992; Hicks et al. 1998]. One allocates large
objects (ones exceeding a chosen size threshold) directly into a non-copying space, effectively
applying mark-sweep techniques to them. This technique avoids ever copying these objects,
and can noticeably improve performance. GCTk does not support LOS, so we do not compare
here the relative benefits of LOS and pretenuring. Some JVMs allocate large objects directly
into older spaces; i.e., they use size as a criterion for pretenuring. (These older spaces may also
be mark-sweep, so they are effectively implementing pretenuringandLOS.) While pretenuring
large objects may be generally helpful in a two-way classification system (a point that requires
further analysis), it could be disastrous to pretenure intoour immortal space using size as the
sole criterion. Thecompress benchmark is an example of this: it allocates and discards large
arrays.

9. CONCLUSIONS

This paper makes several unique contributions. It offers a new mechanism for collecting and
combining pretenuring advice, and a novel and generalizable classification scheme. We show
application-specific pretenuring using profiling works well for Java. Our per-site classification
scheme for Java finds many opportunities to pretenure objects; to reduce copying, garbage col-
lection time; and to reduce total time, sometimes significantly. We show that the combination
of build-time and application-specific pretenuring offersthe best improvements. We are the
first to demonstrate the effectiveness of build-time pretenuring, and we do so usingtrue ad-
vice. Because Jikes RVM is written in Java for Java, we profileit and any libraries we choose
to include, combine the advice, then build the JVM and libraries with that advice, and ship.
User applications thus can benefit from pretenuring withoutany profiling. These results thus
demonstrate an advantage of the Java-in-Java approach.
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