Profile-Based Pretenuring

STEPHEN M BLACKBURN
Australian National University
MATTHEW HERTZ

University of Massachusetts, Amherst
KATHRYN S McKINLEY

University of Texas at Austin

J ELIOT B MOSS

University of Massachusetts, Amherst
TING YANG

University of Massachusetts, Amherst

Pretenuring can reduce copying costs in garbage collebymallocating long-lived objects into regions that the
garbage collector will rarely, if ever, collect. We exteng\ygous work on pretenuring as follows. (1) We produce
pretenuring advice that is neutral with respect to the ggelmllector algorithm and configuration. We thus can and
do combine advice from different applications. We find for banchmarks that predictions using object lifetimes at
each allocation site in Java programs are accurate, whigbli§ies the pretenuring implementation. (2) We gather and
apply advice to both applications and Jikes RVM, a compibef iin-time system for Java written in Java. Our results
demonstrate that building combined advice into Jikes Rvnfrdifferent application executions improves perfor-
mance regardless of the application Jikes RVM is compiling executing. Thibuild-timeadvice thus gives user
applications some benefits of pretenuring without any apfibn profiling. No previous work uses profile feedback
to pretenure in the run-time system. (3) We find that appboabnly advice also consistently improves performance,
but that the combination of build-time and application<sfie advice is almost always noticeably better. (4) Our same
advice improves the performance of generational, Oldest,Fand Beltway collectors, illustrating that itésllector
neutral (5) We include arimmortal allocation space in addition to a nursery and older germratind show that
pretenuring to immortal space has substantial benefit.

Categories and Subject Descriptors: D.34dgramming L anguages]: Processors-miemory management(garbage
collection)

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Garbage collectiongoaing, lifetime prediction, profiling

1. INTRODUCTION

Garbage collection (GC) is a technique for storage managethat automatically reclaims
unreachable program data. In addition to sparing the pnogrer the effort of explicit storage
management, garbage collection removes two sources ofgmoging errors: memory leaks
due to missing or deferred reclamation; and memory comuaptiirough dangling pointers

This material is based upon work supported by the Nationarsel Foundation under grant numbers CCR-0085792,
CCR-0311829, CCR-0311829, and EIA-0303609, DARPA F3363-&@1106, and IBM. Any opinions, findings,
conclusions, or recommendations expressed in this mbaeeidhose of the authors and do not necessarily reflect the
views of the NSFCOACM, 2007. This is the author’s version of the work. It is pastere by permission of ACM for
your personal use. Not for redistribution. The definitivesien was published in ACM Transactions on Programming
Languages and Systems, 29, 1, (January 2007). http://dobeg/10.1145/1180475.1180477

ACM Transactions on Programming Languages and SystemsTB@&l, No. TDB, Month Year, Pages 1-53.



because of premature reclamation. The growing use and grityudf Java and C#, in which
garbage collection is a required element, makes attainirogl gollector performance key to
good overall performance. Here our goal is to improve ctdleperformance by reducing
GC costs for long-lived objects. We focus ganerational copying collectiopAppel 1989;
Lieberman and Hewitt 1983; Ungar 1984] and demonstrate #memlity of our approach
using theOlder First [Stefanovic et al. 1999] anBeltway[Blackburn et al. 2002] collectors.

Generational copying GC partitions the heap into age-bgeedrations of objects, where
age is measured in the amount of allocation (the acceptetiggan the GC literature). Newly
allocated objects go into the youngest generationntimsery Collection consists of three
phases: (1) identifying roots for collection; (2) identifg and copying into a new space any
objects transitively reachable from those roots (callége"lobjects); and (3) reclaiming the
space vacated by the live objects. Rather than collectiagtiire heap and incurring the cost
of copying all live objects, generational collectors calléhe nursery, place survivors in the
next older generation, and collect successively older iggioas only if necessary. Because
the rate of death among the young objects is typically higibject-oriented languages, gener-
ational collectors usually offer performance advantages full heap collectors (this property
is called theweak generational hypothegis

Pretenuringallocates some objects directly into older generationsprétenured objects
are indeed long-lived, then the pretenuring avoids copitiegobjects from the nursery into
the generation where they are allocated. An ideal pretegualgorithm would inform the
allocator of the exact lifespan of a new object, and then tloeator would select the ideal
generation in which to place the object. The collector wahlgs consider an object only after
it has sufficient time to die, avoiding ever copying it. If abject will die before the next
nursery collection, then the allocator would place it in thesery (the default), whereas if
the object lives until the termination of the program, thiee allocator would place it into a
permanent region.

We develop pretenuring advice from application profiling agper allocation-site basis. For
our suite of Java programs, we show that allocation-sitécadesults in accurate predictions,
and that these predictions are robust over different inpta.dn contrast, languages such as C
require calling context to produce accurate predictioragf@t and Zorn 1993; Seidl and Zorn
1998]; Section 8 discusses these alternative predictiarharmsms.

We extend the approach of Cheng, Harper, and Lee (CHL) [Chtaly 1998], whose work
inspired our research. Firstly, our advice generation ggsclassifies each objectiagnor-
tal—its time of death was close to the end of the prograhart lived—its lifetime was less
than a threshold value, tong lived—everything else. CHL instead classify objects (allocated
at a particular allocation site) that usually survive a etysollection in a generational collec-
tor aslong lived and those that do not akort lived Secondly, CHL profile a given application
and generational collector configuration (including a #feheap size) to generate pretenur-
ing advice. We instead use precise object allocation trax®ained using the Merlin precise
trace generation tool [Hertz et al. 2002; 2005], to gendifggéme statistics from which we
derive our advice, a more costly, but offline, process. Bgedlnese statistics are collector- and
configuration-neutral, they are more general, which ouegrpental results confirm. Finally,
we normalizeour statistics according to the application’s maximum wwduof live objects and
its total allocation, making our advice more scale-invaria

The generality of our pretenuring advice results in two kaéyaatages over previous work.
(1) Since we normalize advice with respect to total allarator a specific execution, we can
and do combine advice from different applications that stzdliocation sites (e.g., classes in-

2



ternal to the JVM, and libraries). (2) We can and do use thécadw improve three distinct
collectors that segregate objects based on their age: agl-Appe generational collector [Ap-
pel 1989], an Older First collector [Stefanovit et al. 1p@&d the Beltway collector [Black-
burn et al. 2002], on ten benchmarks, eight from SPECjvm98.

In our experiments, we use Jikes RVM (formerly called JatapdAlpern et al. 1999;
Alpern et al. 2000], a compiler and run-time system for Jasitten in Java, extended with the
garbage collectors we investigate. We profile all our beraths) and then combine their pre-
tenuring advice to improve the performance of Jikes RVMfitsee call this systenbuild-time
pretenuring This advantage is unique to the Java in Java implementatibareas C JVMs
instead must manually manage their data structures. Whesuriag the effectiveness of our
build-time pretenuring, we omit the application itselfrindhe combined advice profile. Such
advice is calledrue advice [Barrett and Zorn 1993].

We show that build-time pretenuring improves the perforoeanf Jikes RVM running our
benchmarks an average of 30% for tight heaps without anyicapioin-specific pretenuring.
As the heap size grows, the impact of garbage collection éintepretenuring on total execu-
tion time decreases, but pretenuring still improves ctdlegerformance. Because CHL profile
advice is specific to both the application and collector cpurition, their system cannot read-
ily combine advice for this purpose. Building pretenurimgoi the JVM before distribution
means users will benefit from pretenuring without profilingit applications.

Using only our application-specific profile advice alwaypnoves performance, too: up
to 10% on average for tight heaps. Our advice also yields enage significantly better
performance than CHL advice, giving more than 10% improvenretight heaps and 5% in
large heaps. Combining our build-time and applicationcgjmeadvice always yields the best
performance: it decreases garbage collection time on gedyp 40% to 70% for most heap
configurations. It improves total execution time on averag86% for a tight heap.

We organize the remainder of the paper as follows. Sectioffielsssome background on
pretenuring and its expected benefits and costs. Secticsc@sdies our approach to pretenur-
ing and the collection and generation of pretenuring advigection 4 analyzes the lifetime
behaviors of objects in our Java applications. We then desour performance methodology
and setting in Section 5. Section 6 presents execution timder@lated measurement results
for pretenuring with generational collection for Jikes R\&lbuild-time, application-specific
pretenuring with CHL and our advice, and the combinationpgflization-specific and build-
time advice. We further demonstrate the generality of ourcedby showing the same advice
improves an Older First collector and a Beltway collectore ¥énsider issues of using pre-
tenuring in practice (Section 7), compare related work waitin approach (Section 8), and
conclude (Section 9).

2. THE PRETENURING COLLECTOR, EXPECTED BENEFITS AND COSTS

For this work, we built an Appel-style generational coltedtAppel 1989] that partitions the
heap into a nursery and a second, older, generation. It als@lseparate, permanent space
(which we callimmortal) that is never collected. The nursery sizdléxible it is the space
not used by the older generation and the permanent spacex ‘e tiotal heap size to make
fair comparisons. Some heap space is always reserved fgingofthis space must be at least
as large as sum of the nursery and the older generation im trdgiarantee that collecting
the nursery and then the older generation will not fail). Wih# but the reserved heap space
is consumed, the collector collects the nursery, promates\sng objects into the older gen-
eration, and makes the freed space the new nursery. Aftersenmyucollection, if the old

3



generation’s size is close to that of the reserved spacéeggers collection of the older gener-
ation. We call this collectoAppelas a convenient shorthand and to emphasize its varying-size
nursery, but one should keep in mind that it is just in the galngtyle of Appel’s original
collector.

Expected benefit of immortal spatc@ng-lived objects allocated into immortal space avoid
all copying, both the first copy from the nursery into the olgeneration, and the copy made
each time we collect the older generation. There is also eespanefit. Because we never
collect the immortal space, we need not reserve additigradesinto which to copy it, which
frees space for use by the nursery and older generation.

Expected cost of immortal spad&/e never reclaim objects allocated in the immortal space,
so if we pollute the space with objects that die quickly weeetifrely reduce the heap size
(possibly running out of space entirely). However, we cdartde some pollution because
each object in immortal space commits half the space it wtakd if allocated elsewhere. A
more subtle effect is that a short-lived object allocate@rimortal space can cause retention
of objects reachable from it. This effect is knownrepotism{Ungar and Jackson 1988]. It
does not appear to occur very often, but suggests being m@tise in pretenuring.

Expected benefit of old generation pretenurine save the work of copying the object
from the nursery, if it survives nursery collection.

Expected cost of old generation pretenurinfthe object is shorter-lived and would have
been reclaimed by a nursery collection, we pollute the aj@ereration and cause an old gen-
eration collection sooner than we otherwise would. Nepotisay also occur.

It would appear that the space and time benefits of immortalespvhen it is a good choice,
are much larger (on a per-object basis) than those of oldrgeéoe pretenuring. The overall
benefit depends, of course, on the relative volume of shoedium-, and long-lived objects,
and whether their allocation occurs in patterns we can é&xplo

Although we use the Appel-style generational collectoehitermotivate and describe pre-
tenuring, our approach is general. We describe the apiglicatf pretenuring to two other
collectors, Older First and Beltway. Similar benefits skicatcrue to parallel and concurrent
collectors in terms of overall GC effort, perhaps reflectetiipher throughput, fewer rounds
of GC, better memory utilization, etc.

3. PRETENURING ADVICE METHODOLOGY

Two objectives are central to our approach: producing roéng general pretenuring advice,
and understanding and testing the premise of per-siténieehomogeneity on which the suc-
cess of profile-driven pretenuring rests.

3.1 Gathering Information and Generating Pretenuring Advice

Any algorithm for generating pretenuring advice must cdesithe two major cost compo-
nents:relative copying costandrelative space consumptiofthe copying cost includes scan-
ning and copying an object when it survives a collection.c8pznst has an indirect impact in
that higher space overhead forces more frequent GCs. Onéovweayceptualize space cost is
in terms ofspace rental the space required by an object times the length of timeds tisat
space. On the two extremes, pretenuring advice that recoasr@etenuringll objects into
permanent space minimizes copying costs but increasee spatal; and advice that recom-
mends pretenuringo objects tends to minimize space rental at the expense oéhagipying
costs.



One of our goals is to generate advice that is neutral witheeido any particular collection
algorithm or configuration. This goal precludes the use eftietric used by CHL [Cheng et al.
1998], which pretenures if the collector usually copiesoty allocated at a particular site in
the context of a specific generational collector configoratiOur approach is instead based
on two fundamental object lifetime statisticage andtime of death Object age indicates
how long an object lives, and time of death indicates thetgnithe allocation history of the
program at which the object becomes unreachable.

We normalize age with respectitaax live sizefollowing the garbage collection convention
of equating time to bytes allocatedilax live sizerefers to the maximum volume (bytes) of
live objects in a program execution, which indicatestti@oreticalminimum memory require-
ment of a program. This normalization will reduce differeadetween different runs of the
same program where the size of the program’s heap datawstads different. Object age is
expressed as a fraction or multiple of the max live size. lkan®le, an age of 0.25 means
that during the lifetime of the objedd, 25 x max live sizebytes of allocation occurred.

We normalize time of death with respect to total allocafioffor example, consider an
object allocated toward the end of the program that dieg #fe last allocation. It has a
normalized time of death of 1.00. This normalization hasstmme intent as the one we apply
to object age: to reduce differences in characterizingedhffit runs of the same program, and
thus to make our characterizations and our advice more érdimt of scale.

We illustrate the relationships between object age, timdeaith, max live size, and total
allocation in Figure 1 for a Java versiontafalth [Cahoon and McKinley 2001; Rogers et al.
1995] running a small input set, where we plot one point fartheage and time of death
combination that has a volume of objects exceeding a chbsestold® The bottom and right
axes normalize “time” with respect to total bytes allocdt@mtthat program, while the top and
left axes show time with respect to the program’s max live sizhich relates to a “heap full”
of allocation. Note that the scales on opposite sides (&g.and bottom) are only showing
normalization to different units. For the illustrated ranpoint at (7,2) in terms of max live
size is at about (0.77,0.22) in terms of total allocationctBa point represents an object that
died 77% of the way through the run (in terms of bytes allatpgsnd whose age was 22% of
total allocation (and hence was allocated 55% of the wayutjindhe run).

This figure shows that a large number of objects have shetirties, and the horizontal
“lines” of points indicate that throughout the executiortlod program objects are most likely
to die when they reach one of a small number of ages (for exaripbut 0.2 and.45 x
max live siz.2 There are also times of death at which many objects die simedtus, which
appear as vertical “lines” in the figure.

The figure also illustrates how our object classificatioscdssed in detail in Section 3.1.2,
puts objects into short-lived, long-lived, and immortair’.

3.1.1 Ohbject Lifetime Profiling.We analyze age and lifetime statistics using an execu-
tion profile for each application. We obtain the profile by gwoing a precise object allo-

1The relationship between max live size and total allocasanfunction of allocation behavior. In our Java programs,
total allocation ranges from 9 to 91 times max live size.

2pJotting a point for every object obscures where the scpttiis more and is less dense.

3This effect is particularly evident ihealth: it places objects in a queue and processes them and digbarisin
FIFO order (or requeues them). Thus these objects tend toumifeem lifetimes. For many other programs it would
be more common to see clustering of time-of-death: datatstres built over time and then discarded at a particular
point in execution.



Object time of death relative to max live size
0 1 2 3 4 5 6 7 8 9

Immortal {o7

1 0.6

Object age ralative to max live size
Object age ralative to total allocation

B I3 ~ X i X 0
0 01 02 03 04 05 06 07 08 09 1\/

Short Object time of death relative to total allocation

Fig. 1. Object Age and Death Distributions fagalth (6-128)

cation and death trace. We produce these traces using tHa Nl [Hertz et al. 2002;
2005]. Merlin produces precise traces at much lower cost finavious approaches, making
precise traces possible where in the past they were infedsilm an earlier version of this
work [Blackburn et al. 2001], we instead did full-heap coflens after every 64KB of alloca-
tion, over-estimating lifetimes by around 32KB on averagéhough this approach leads to
few classification errors, it requires us to adjust our pretimg advice strategy a little because
it distorts the space-rental calculations that indicatelaate sites for pretenuring. We ended
up abandoning space-rental as our primary measure of gierfence and now use allocation
volume.

An object lifetime trace gives a sequence of object alloratind object death records, in-
cluding the time of allocation, time of death, size of theeajparticularly relevant for arrays,
since the size may not be known until run time), and the aflonssite. An allocation site
corresponds to a particulaew bytecode, i.e., Java class, method, and bytecode offdeiwit
the method. Since inlining can vary from run to run in an aivepand dynamically compiled
system, if inlining induces cloning of allocation sites, gi@up their statistics together (i.e.,
it is as ifthe method were not inlined). This combining improves ag\dcross different ap-
plications, but may conflate distinct behaviors (thoughresults suggest that this issue is not
significant for the programs we investigate).

From the trace we compute max live size, total allocatior e normalized birth and
death times for each object.

4The slowdown factor to produce perfectly accurate tracels Mirlin is about 75-500x; for traces at a granularity
of 4K bytes, which we believe sufficient for pretenuring jutnts, the factor is 20-80x. One must also analyze the
traces, which at present is slow because we have not inviestelding fast analysis programs.



3.1.2 Object Classification.For each object allocated at a given site, we classify it into
one of three binsshort long, orimmortal We use the following algorithm:

(1) If an object dies later than halfway between its time oftband the end of the program,
we classify it asmmortal

(2) Otherwise, if an object’s age is less thRnx max live sizebytes, then we classify it as
short We useT, = 0.45in our experiments below.

(3) Inall other cases, we classify an object@s.

Ourimmortal classification criterion is based on our previously notesepization that ob-
jects that will never be copied have a lower space requiréthan objects that may be copied:
the latter must have space reserved into which to copy thesnadgse in an Appel-style gen-
erational collector, the reserved space overhead is 10@%t{ie heap), it is reasonable to
classify an object as immortal dfead time< lifetime for that object, where dead time is the
time from when the object dies to the end of the progPafigure 1 illustrates this categoriza-
tion. Note that one could use a different threshold valuettis threshold has a good intuitive
motivation, and it also turns out that varying the threshad little impact because few objects
have values lying close to the threshdéld.

Of course, our immortal category is heuristic. The follogvgtenario is possible. We allo-
cate object A near the start of the run and it dies a bit aftentiddle of the run, so it is clas-
sified immortal. Shortly before A dies, we make it point to solarge recently allocated data
structure B, which dies when A does (or shortly thereaft€tqssifying A immortal causes B
to be effectively immortal as well, an extreme case of nepotiSuch scenarios appear to be
exceedingly rare. Section 7 considers ways to amelior&g@ttential problem. If we increase
the threshold for designating objects immortal, we willdgn reduce the magnitude of this
problem (should it occur), but we also reduce the benefit efigmuring.

3.1.3 Allocation Site ClassificationHaving classified eacbbject we then classify each
site Given an allocation site that allocates a fractioBs of short-lived objectsl_s of long-
lived objects, andis of immortal objects, wherg&;, Ls, andls are in terms of volume, i.e., bytes
allocated (not number of object¥)ye classify the site using homogeneity threshdigsand
H¢, as follows:

(1) Ifls> S+ Ls+ Hif, we classify the site asnmortal
(2) Otherwise, ifis+ Ls > S+ H;, we classify the sitéong.
(3) Inall other cases, we classify the siteort

SPreviously [Blackburn et al. 2001] we usdg = 0.2, however have we found th&45 works better sincé.2
corresponds to a very modest nursery, whik5 is more realistic0.2 is overly aggressive for pretenuring.

6The same principle applies to any collector with a non-cojmietiortal space and a need to reserve copying space
for one or more younger generations. In particular it apgticethe Older First and Beltway collectors with which we
compare later.

"Previously we first separated out tsleort category and then discriminatémhg versusimmortal [Blackburn et al.
2001]. We found that the new order works better because tstjeing until near the end of the program tend to be
allocated at sites that allocate immortal objects. Clgsgifthese objectshortcaused us to miss sites we should treat
asimmortal

8This approach refines our previous work [Blackburn et al. 2@@H is more accurate for arrays whose sizes at the
same allocation site can differ. We also tried space restaé times lifetime) as a way to weight objects, but this
over-emphasizes long-lived objects.



Volume (Percent of Total Allocation)

Volume (Percent of Total Allocation)

2.4%
2.3%
2.2%
2.1%
2.0%
1.9%
1.8%
1.7%
1.6%
1.5%
1.4%
1.3%
1.2%
1.1%
1.0%
0.9%
0.8%

Fig. 2.

1.7%

1.6%

1.5%
1.4%
1.3%
1.2%
1.1%
1.0%
0.9%
0.8%
0.7%
0.6%
0.5%
0.4%
0.3%
0.2%
0.1%
0.0%

Immortal Fraction: (1 + Hy;)/2

"’lVo

l.of S

Vi
hort+L
Pct

ol. of |
ong+l
of Im

mmor
mmorf
m. Spi

al Ob
al Ob
ace th

s in In
sinIn
atis Ir

nm. S
nm. S

pace (
pace (
bjs (ri

eft sc
eft sc
ght sc

ale) —
ale) -

ale) -r----

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

0
100%

99%
98%
97%
96%
95%
94%
93%
92%
91%
90%
89%
88%
87%
86%
85%
84%

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Immortal Homogeneity Factor: H

Immortal Classification Accuracy by Volume—Georitetnean for all benchmarks

Long Fraction: (1 + Hy)/2

5 Pet

Vol.

/Vol.

of Lo

of Short+Lol
./of Long Space that is Long+I

ng+Iimm Ob,
ng+imm Ob

s in Long Space (
s in Long Space (
mm Objs (ri

eft scale) ——
left scale) -
ght scale) ------

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

0
100%

98%
96%
94%
92%
90%
88%
86%
84%
82%
80%
78%
76%
74%
2%
70%
68%
66%

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Long Homogeneity Factor: Hy

Fig. 3. Long Classification Accuracy by Volume—Geometric méa all benchmarksHij; = 0.00)

Pretenuring Accuracy

Pretenuring Accuracy



The homogeneity thresholds control the “aggressivendsléclassification. For example,
if Hi = 0, then we will classify a sittmmortalif the majority of the objects allocated there
areimmortal If His = 0.99, then we require virtually all objects to be immorth) £ 0.995).

In our previous work, we used a single homogeneity fattgr, but (as we shall show) the
cost/benefit factors are quite different for classifyimgnortal versus classifyindgong. If an
object does live a very long time, we save significant CPU tivhen we classify itmmortal
because we avoid copying it not only in the initial nurserifezzion, but also in all later full-
heap collections. Further, the space savings from havingopy reserve for thémmortal
region stave off future GCs (i.e., in effect it increases lieap size). On the other hand, if
we classify a site along, all we save is one copying of the object out of the nurserg,\ae
actuallyreduceeffective available space because we cannot reclaim tleetdxcept through
a full-heap GC.

We now consider how to pick a good value fdy . If Hi; is too low, then too many sites
will be classified immortal, causing too many non-immortajkeets to be allocated in immortal
space; ifH;s is too high, then too few sites will be classified immortalusiag too little
immortal allocation in immortal space to gain benefit. Inufigg2 we varyH;s from —0.33
to 1.00. (It is possible foils to be larger tharss andLs in the region[—0.33,0] even though
Is < 0.50. See the labels on the top x-axis.) The figure includes thrages. Consider first the
curve labeled “Vol. of Immortal Objs in Imm. Space”, whosealscis on the left y-axis. This
curve gives the geometric mean (across benchmarks) oftibe valume of immortal objects
that would be allocated into immortal space for a given vaifiél;s / total allocation. We
see that this volume is very insensitiveHgy for values from 0.0 to 0.9. Going farther to the
right will reduce the volume (and thus the potential benefiypw consider the curve labeled
“Vol. of Short+-Long+Immortal Objs in Imm. Space”, whose scale is also on the lefkig.

It shows the ratiototal volumeof objects allocated into the immortal space for each vafue o
His / total allocation. We see that it stays close to the first ewxcept foHi; < 0. The third
curve shows thaccuracyof the pretenuring, i.e., the ratio: total volume of immbuhjects
allocated in immortal space / total allocation in immorfaase (the ratio of the two previous
curves). Its scale is on thrgght y-axis. It shows quite clearly that accuracy drops off rgpid
for His < 0.

One desires maximum benefit (greatest volume, hence siéllgsconsistent with ade-
guate accuracy (low accuracy “pollutes” immortal space iarrisky, since we never reclaim
the “polluting” objects). We useli; = 0.0 from here on, and it seems to make this trade-off
well, though values between 0.0 and 0.9 should all work absutell.

Now that we have fixedH;s, we consider the effect dfis. Figure 3 is similar to Figure 2
in its structure (but note the difference in vertical scal@dowever, it ignores sites already
classified as immortal usinglis = 0.0, and considers only the short/long trade-off for the
remainder of the sites (and objects). The first curve shoedrtiction of long-lived objects
(long+immortal) actually allocated into long space for each valtiel ;. (Again, we plot the
geometric mean of this value across the benchmarks.) Asiyjthwe find that there is a long
flat region. In terms of accuracy, any valuehdf greater than 0.25 should be all right, but
since the benefit of long pretenuring is small, we demand &igliracy. We uske|s = 0.60in
the remainder of the paper. We observe that, compared witioial sites, the homogeneity
of the (remaining) sites where long-lived objects domirgteot as good.



3.1.4 Pruning Allocation SitesFinally, we drop sites whose total allocation is small, i.e.
less tharwv times the total allocation of the progratriWe usedv = 0.000002 Our primary
reason for doing this is that allocation advice for a siteeta#t certain amount of dynamically
allocated table space in the JVM, effectively reducing thafhsize, so we should drop sites
whose pretenuring will have very little total effect. Onenadso claim that when the volume
of a site is relatively low, we do not have adequate evideaqadtenure that site’s objects.

3.1.5 Combining Classifications from Different Program ExecntioWe also combine
data from different program executions to generate pretegadvice. Our trace combining
algorithm works as follows. For each sgewe generate new combined biiss, L¢ s, l¢cs. FOr
each tracd, we first compute a weight; for each sitew; = vs/w, wherevs is the volume
allocated at the site, angl is the total volume of allocation in the trace. We then corephe
combined bins using weighted averages for all sites wittetiaformation. Letve = 31! ; W.
We useSs(t) to mean the value d&s for tracet, etc. We show only the formula f&s; Lcs
andl¢ s are computed analogously:

Ss = (tiSS(t) * W) /We

With these bins, we then use the same classification algorth above but with a different
homogeneity factor. Unlike the case Hfi and H;s, when combining information across
traces (programs), we found it important to be conservédivboth immortal and long advice.
Therefore we use a single homogeneity factor, catleg which we set td.9.

3.2 Jikes RVM Builds and Compilation Strategies

In our previous work [Blackburn et al. 2001], we used an ojzation strategy in Jikes RVM
that optimizeseverymethod to the highest available optimization level. We t&8 “build”

of the systemOpt Optimizing every method is not realistic for modern JVMsgcause it
performs much optimization of “cold” methods that does ret pack. In Jikes RVM (because
it is written in Java) it also induces much additional hedpcaltion and increases GC load.
Thus using Opt will tend to bias towards pretenuring for tbenpiler, which performs well
but may miss opportunities in individual applications. Vilgagys optimize to the highest level
the methods included in the system image, but treat apjglicatethods differently since they
are compiled at run time in this methodology.

In contrast to Opt, the typical compilation strategy todagdaptive For example, in Jikes
RVM the Adaptive Optimization SystefAOS) [Arnold et al. 2000] detects, as the program
runs, which methods the application uses most frequemttycampiles those at progressively
higher levels of optimization. It determines highly-usedthods via sampling triggered by
timers. Thus the AOS is non-deterministic (because it isnindependent), making it some-
what problematic for experimentation where we wish to varly @ne factor at a time.

Hence we developed a neweplay approacH? Here we run an application a number of
times (say 7) and determine, for each method, the highesniaation level to which the

°In our previous work, we ranked sites according to theid &giace rental, i.e., sum of (object size)object lifetime)
across all objects allocated at the site [Blackburn et @120This mechanism includes some low-volume (but high
space rental) sites, particularly with perfect traces gbse they dramatically reduce the reported lifetimes oftmos
(short-lived) objects). Using volume is thus a better choic

10xjanglong Huang and Narendran Sachindran jointly impleteéithe Replay compilation mechanism. This tech-
nique was previously termed “Pseudo-Adaptive” [Huang €2@04], but “Replay” is more suggestive of its function.

10



method is optimized in a majority of the runs. We put this mfiation in anadvice file The
Replay system reads the advice file, and when it first compilésted method, optimizes it
directly to the advised level. (If there is no advice, it calepusing the simple, non-optimizing
compiler.) It suppresses all adaptive recompilation. Tfextis that the total compilation load
is very similar to a typical Adaptive run, but the system itetlainistic.

We present the bulk of our results using the Replay meth@yphwut also present the effects
of pretenuring using the Adaptive and Opt compilation styas in Section 6.8. As expected,
Adaptive and Replay builds behave quite similarly, with amithout pretenuring, but Opt
builds allocate much more in the heap, and more often the itatiop work, both in time and
space, outweighs the application work.

By default, we profile an Opt build to produce the pretenugduice, but Section 6.8 shows
that using Replay builds for advice instead produces coafgb@@accuracy.

4. PRETENURING ADVICE RESULTS

Profile-driven pretenuring is premised on homogeneousblifetimes at each allocation site.
Previous work shows that ML programs are amenable to a fitzg&in of sites as short and
long, where long means “usually survives one nursery cidliet (for a specific system con-

figuration) [Cheng et al. 1998]. C programs are not homogenabeach call site, but require
the dynamic call chain to predict similar classes of lifetgjBarrett and Zorn 1993; Seidl and
Zorn 1998]. We show in this section that the allocation sitesur set of Java programs have
adequately homogeneous lifetimes, with respect to ousitiestion scheme, for pretenuring
to work reliably.

4.1 Benchmark Programs

For evaluating both classification (here) and performais&etion 6), we use all eight pro-
grams from the SPEC JVM98 suite10_compress, _202_jess, 205 _raytrace, 209_db, 213_-
javac, _222_mpegaudio, _227_mtrt, and_228_jack, pluspseudojbb®! andhealth, the Olden C
program that models a health care system [Cahoon and MgK2t181; Rogers et al. 1995]
rewritten in object-oriented Java. We run all benchmarkglsithreaded.

Table I shows the total allocation in bytes, maximum liveesizbytes, and the ratio between
the two, for each benchmark, under the Opt and Replay coafigns. The maximum live
sizes are mostly similar, but the total allocation volumeeiofdiffers a lot.

4.2 Homogeneity of Applications

The homogeneity of an allocation site can be defined usingtbemation theoretic notion of
entropy Using bits as the unit, the entropy of a set of discrete (ibitias P; is:

entropy = —( Pyxlog,Pj),  where 3 Pj=1
] ]

Smaller entropy implies higher homogeneity, i.e., fewés heeded to encode the labels (im-
mortal, long, short) on a set of objects drawn in random ovdtr these probabilities. If an
allocation site is completely homogeneous, 100% with obelland 0% in others, its entropy
is 0.00. If an allocation site is completely heterogeneous, 50%%0% (in two categories),

11SPEC|bb runs a fixed period of time and reports the number eftitms it executes, a throughput measure. We
changed it to run a fixed number of transactions (70,000) atidhe resulting prograrpseudojbb. It thus produces
the same allocation load regardless of heap size, collestiorits execution times are on the order of 10 seconds on
our platform.

11



Opt runs Replay runs
Max Live Alloc Alloc / Max Live Alloc Alloc /

Benchmark (bytes) (bytes) Max Live (bytes) (bytes) Max Live
compress 8,826,084 | 199,944,756 22 8,819,296 | 116,641,428 13
jess 5,485,280 | 482,996,388 88 4,508,272 | 299,788,860 66
raytrace 6,839,684 | 233,821,460 34 6,863,452 | 124,286,536 18
db 10,709,640 178,830,988 16 || 10,732,380 86,687,156 8
javac 12,068,700 618,946,020 53 || 12,146,436| 298,486,240 24
mpegaudio 4,410,732 | 134,921,104 30 3,599,032 27,684,656 7
mtrt 9,923,760 | 247,688,648 24 2,570,348 39,690,456 15
jack 5,810,536 | 533,734,388 91 3,947,152 | 346,126,536 87
pseudojbb 29,913,388| 636,525,664 20 || 30,254,784| 365,554,384 12
health (6-128) 4,349,588 | 40,283,616 9 4,163,776 29,013,560 6

Table . Benchmark Characteristiddlax Liveis the maximum live size andllloc is total allocation.

its entropy is1.00. Here is how we calculate site entropy when we consider shoorg, and
immortal labels:

short: —(Ss*100, Ss) — (Ls+ 1s) x10gy(Ls+ Is)
long: —(Ls*logyLs) — (Ss+1s) x10g,(Ss+ 1s)
immortal: —(Isxlogyls) — (Ls+ S5) *logy(Ls + S5)

Figure 4 shows the homogeneity curves of the geometric meamatl benchmarks before
pretenuring, varying entropy frofd to 1. We call those sites for whichs > Ls andls >
S immortaldomsites (i.e., wherémmortal objects dominate the other two categories), and
similarly we havelong.domand shortdomsites. For each entropy value, we calculate the
total allocation volume of sites whose entropy is less thaaqual to that value. There are
three curves in the graph, one for immortiim sites, one for immortalom plus longdom
sites, and one for all sites. We normalize all volumes to ¢ &llocation of the application.
We use the right y-axis for the scale of the top curve (foriédls3, and the left y-axis for the
other two curves. The bottom x-axis is the value of entropy] the top x-axis shows the
corresponding fraction of the dominating category. Theélas of the immortatlom curve in
Figure 4 shows us that immortdbm sites have extremely high homogeneity, most possessing
entropy less thaf.2: immortal objects make up at least 96.9% of the volume ofelsites.
On the other hand, the steep increase at the right end of theiitaLdom plus longdom curve
tells us that a good portion of longom sites ar@ot homogeneous. We should definitely not
pretenure those sites. The homogeneity of all sites isyphégh, more than 90% have more
than 85% of one kind, short, long, or immortal.

Figure 5 shows the homogeneity curves of the geometric meanadl benchmarksfter
pretenuring Note that “before pretenuring” data have to do with sitesssified by which
lifetime dominates (immortal, long, or short), whereastéafpretenuring” data have to do
with how we havdabeledthe sites, not which lifetime dominates by allocation votun®ur
hope is that we choose only very homogeneous sites to pretéhe plot this graph (Figure 5)
according to our site classification usifgg = 0.00andH,; = 0.60. It also has three curves:
immortal, immortal plus long, and all sites. This graph imas$t the same as Figure 4, except
that the jump in the right end of the immortal plus long cuneary disappears, indicating
that our pretenuring method is effective in filtering out beterogeneous sites, and chooses to
pretenure only sites with high homogeneity.

12



Volume (Percent of Total Allocation): Imm, Imm+Long

Volume (Percent of Total Allocation): Imm, Imm+Long

Geometric mean for all benchmarks

100.0% 98.7% 96.9% 94.7% 92.0% 89.0% 85.4% 81.1% 75.7% 68.4% 50.0%
5% 100%
,—/_"_f
90%
. . /_//
1% All sites (right scale) 80%
-
70%
3% . 60%
immortal_dom-+long_dom (left scale)
50%
2% 40%
immortal-dom-(left scale) 30%
1% [ 20%
10%
0% 0%
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Entropy
Fig. 4. Homogeneity before Pretenuring
Geometric mean for all benchmarks
100.0% 98.7% 96.9% 94.7% 92.0% 89.0% 85.4% 81.1% 75.7% 68.4% 50.0%
5% 100%
,—/_"_f
% . 0,
All sites (right scale) 90%
4% 80%
-
70%
3% 60%
Immortal+Lon (Icft Sbalc) 50%
2% 40%
Immortal (left scale) 30%
1% [ 20%
10%
0% 0%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Entropy

Fig. 5. Homogeneity after Pretenurinig;s = 0.00 H;; = 0.60

13

1

Volume (Percent of Total Allocation): All

Volume (Percent of Total Allocation): All



bin % classi-
site # | objects volume vol % short | long | immortal | fication
javac

1676 | 145492 | 60421512 9.761| 99.59 | 0.04 0.37 s
1064 | 1496486 47887552| 7.739| 100.00| 0.00 0.00 S

13 759989 | 32802440| 5.300| 92.84| 0.04 2.98 S
1501 | 654754 | 20952128 3.385| 100.00| 0.00 0.00 s
692 602886 | 19588556| 3.141| 97.13| 2.46 0.40 S
3269 | 145636 4077808| 0.659 6.87 | 75.38 17.75 I
3278 49812 1793232| 0.290 4.07 | 62.94 32.98 |
3296 40156 1766864 | 0.285 5.45| 61.81 32.74 |
4126 45372 1633392 0.264| 11.04 | 74.65 14.30 I
3326 96696 1547136| 0.250 6.47 | 84.76 8.77 |
1747 5523 829228 | 0.133 0.83| 234 96.84 i
551 157 590276 | 0.095 0.00 | 0.00 100.00 i
662 5 327740| 0.055 0.00 | 0.00 100.00 i
529 1617 174636 | 0.028 0.00 | 0.00 100.00 i
1780 1 163852 | 0.027 0.00 | 0.00 100.00 i

combined

1070 | 7044399 | 225420768| 15.764 | 100.00 | 0.00 0.00 S
1513 | 3096079 | 99074528 6.928 | 100.00| 0.00 0.00 s
693 | 2773149| 89818452 6.281| 92.08| 6.86 1.06 s
848 | 2033521| 65075872 4.551| 89.25| 9.41 1.34 S
747 | 956207 | 45897936| 3.210| 87.72| 10.63 1.65 s
565 972 11664 | 0.001 4.83 1.77 93.40 |

25 10 380 | 0.000 252 | 252 94.95 I
454 10 360 | 0.000 2.63| 2.63 94.74 I
324 20 320 0.000 294 | 294 94.12 |
353 20 320 | 0.000 294 | 294 94.12 I
1765 17118 4260740| 0.298 1.05 0.53 98.43 i
664 52 3408496 0.238 0.00 | 0.00 100.00 i
555 638 2248540| 0.157 0.00 | 0.00 100.00 i
726 10 1638520| 0.115 0.00 | 0.00 100.00 i
727 10 1638520 0.115 0.00 | 0.00 100.00 i

We present two types of results in the remainder of this @ecti-or thejavac benchmark
and for our combined advice, we illustrate our binning ardsifications for a number of call
sites in each. We then present aggregate advice summariescto benchmark and the actual

Table Il.  Per-site Object Binning and Classification

behavior of the sites to demonstrate the quality of our avic

4.3 Detailed Classification Results

Table Il shows some of our per-site object classificationgaf@c and for our combined advice
for the Jikes RVM build-time system. We include the top 5ssitassified as immortal, top 5
long, and top 5 short. We rank these by their allocation valum

We include the number and volume of objects the site allscated show the percentage of
objects that are binned as short, long, or immortal. USig: 0.45, Hjs = 0.00, H;+ = 0.60,
andH¢; = 0.90, we show our resulting classification. Notice that manyatmn sites are

14




Immortal Space % Long Space % Overall
Program | vol% ‘o '—0% S | voloe '°ASIS '—‘ﬁﬁ 5’/5\'5 accuracy
compress 0.97 96.06 0.07 3.84 0.034 1.76 78.48 19.7¢ 95.52
jess 0.68 98.23 0.40 1.37 0.001 3.58 96.42 0.0¢ 98.23
raytrace 211 99.66 0.05 0.29 0.002 38.66 59.09 2.2% 99.65
db 549 9361 0.97 547 0.656 0.11 99.89 0.0(¢ 94.29
javac 0.65 98.41 0.49 1.1Q 4468 24.31 69.75 594 9461
mpegaudio| 2.31 96.05 0.08 3.87 0.051 1.73 84.02 14.24 94.82
mtrt 0.95 99.29 0.09 0.64 2.074 47.88 52.12 0.0 99.78
jack 0.46 99.33 0.11 0.5 1.948 5.63 81.12 13.2% 89.16
health 12.84 79.67 3.53 16.8) 0.002 40.64 59.36 0.0 79.67
pseudojbb | 0.56 96.96 2.30 2.74 3.417 49.76 50.00 0.24 99.37
Geo Mean 9782 024 194 9.05 85.22 5.73 97.39

Table lll.  Per-program Pretenuring Decision Accuracy ¢pet, weighted by volume)

homogeneous: the majority of objects at a site are in a sinigleFor some sites, especially
in the combined trace, objects are well distributed amomg.bForjavac, we classify many
sites as long (l), and in the combined trace, several sitearasrtal (i). Thus, we find sites to
pretenure into the long lived and immortal space.

Immortal Objects % Long Objects % Overall %
Program | vol% "’—A(:EV—IS) '—"IAD—SS vol% '°AD'5 '°ADSS '°ﬁi5 good neut bad
compress 1.26 74.13 25.87/ 18.02 0.15 99.85 0.00 4.99 95.01 0.00
jess 0.99 66.89 33.11 1.75 0.04 99.80 0.16 24.23 75.67 0.10
raytrace 2.71 77.66 2234 224 0.06 99.90 0.04 4251 57.47 0.02
db 5.62 9142 858 1.75 37.42 59.54 3.04 78.59 20.69 0.72
javac 231 74.73 24.27) 522 59.69 40.25 0.06 64.30 35.66 0.04
mpegaudio| 2.75 80.66 19.34 5.77 0.75 99.22 0.03 26.55 73.43 0.02
mtrt 252 76.85 23.15 2.60 41.65 58.32 0.03 58.99 40.99 0.02
jack 0.82 79.70 30.30 4.85 32.59 67.40 0.01 27.94 62.05 0.01
health 10.89 93.94 6.060 1.08 0.10 57.96 41.94 85.48 10.74 3.78
pseudojbb | 4.26 52.65 47.35 3.62 47.23 52.72 0.0% 50.16 49.82 0.02
Geo Mean 78.18 21.82 3.18 96.68 0.14] 46.16 53.78 0.06

Table IV. Per-program Pretenuring Decision Coverage @#raveighted by volume)

To consider the issue of binning in summary form across &issof a benchmark, we
consider the fraction of short, long, and immortal objehtt €nd up being allocated in short,
long, and immortal space (as determined by our labels foallbeation sites). Wherg and
y range ovess, |, andi (for short, long, and immortal, respectively), we defige\ ys to be
the volume ofx category objects allocated inspace. Thug, A S is the volume of immortal
objects allocated in short space. Similarly, we def?ﬁé@'—s to be the ratio of the volume of
objects of category allocated into spacg to the total volume of objects allocated into space
y. For example'oA'S means the volume of immortal space allocation used for intehobjects

(an accurate classification), wh@ﬁ means the volume of immortal space allocation used
for short objects (an inaccurate cIaSS|f|cat|on) We chahgalenominator when we wish to

15



indicate disposition according to the labelling of objecther than by space; thdﬁ is

the fraction of immortal object volume that is in short spadistinct from '°SA:S, which is the
portion of short space consumed by immortal objects.

The nine decision pairs fall into three categoriesutral bad andgood with respect to
the non-pretenured status quo. Neutral pretenuring adiiceates objects into the nursery
(S9N Ss, loASs, andip A Ss). Bad pretenuring advice allocates objects into a longediregion
than appropriatesy Als, lo Ais, ands, Ais). Following bad advice tends to waste space and
induce more frequent collection. Good pretenuring adviteEates objects into longer lived
regions, but not too long livedd A s, 1o Als, andig Als). Following good advice reduces
copying without wasting space.

Table Il gives these summary statistics for each benchraadkoverall, stated as percent-
ages. It also indicates the percent of total allocation mauthat goes to the immortal and
long spaces, and the percentage (by volume) of pretenuijedtslzoming from the “good”
categories. Put another way, of the volume of objects puegsh it tells how much is “cor-
rect”. We see that, with the exception lealth, where we allocate a significant volume of
short objects into immortal space, our accuracy is quitb.hig

A converse question is this: of the total volume of immortah@) objects, i.e., allocated
acrossall sites, what percentage do we pretenure? This we caltdberage and we show
it in Table IV. Put another way, this indicates how much of ttedume of immortal and
long objects ended up appropriately pretenured. The tedds the notanoM which
means the fraction of the immortal objects that are pretmhunto either |mmortal or long
space (expressed as a percentage). While there is nogceatihition across benchmarks,
on average we pretenure the bulk of immortal objects, ar@@%. Because we are much
more conservative about classifying sites as long, we dpraténure a large fraction of long
objects, only a few percent. Overall, we give mostly good aedtral advice and very little
bad advice (even fdrealth less than 4%).

Figure 6 shows how;; affects the accuracy and the coverage, by fixitig at 0.60 and
varying Hjs from -0.33 to 1.00. We use the left y-axis for the accuracyewand the right
y-axis for the coverage curve. This graph shows the geommeteian of all benchmarks. We
see that the accuracy increases quickly to 98%liaggoes up to 0.00, and then grows much
more slowly. AlthoughH;s has little impact on the coverage, we reach a maximum around
His = 0.00. This is because we classify immortal sites before longsiéhenH;s is small,
we pull more long objects into immortal space.

Figure 7 shows the impact df; by fixing Hj; at 0.00 and varyinddj; from -0.33 to
1.00. ClearlyHs+ has much larger impact on the coverage thigndoes. IfH s is too large
(meaning we are very conservative), the coverage dropdlyajind if Hs is too small, the
accuracy drops to an unacceptable level, although we hach better coverage. Both graphs
confirm that we have chosen gobigt andH,s values for our experiments.

5. PERFORMANCE EVALUATION METHODOLOGY

We first describe how we modify memory allocation to use pratig advice, then overview
additional relevant aspects of Jikes RVM and GCTk (the ggeluallection toolkit we built to
work with Jikes RVM), and finally discuss how we measure andigare our system.

16



Accuracy

Accuracy

100%

98%

96%

94%

92%

90%

88%

86%

84%

82%

80%

100%

98%

96%

94%

92%

90%

88%

86%

84%

82%

80%

Geometric mean for all benchmarks
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

L

e

Accuracy
vaerage

65%

60%

55%

50%

45%

40%

35%

30%

25%

20%

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Homogeneity Factor: Hj

Fig. 6.

Impact oHj; on Accuracy and Coverageél(; = 0.60)

Geometric mean for all benchmarks

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

L e B

7 Accuracy ——
vaerage e

0
65%

60%

55%

50%

45%

40%

35%

30%

25%

20%

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Homogeneity Factor: Hy

Fig. 7.

Impact oH; on Accuracy and Coveragelf = 0.00)

17

Coverage

Coverage



5.1 Using Pretenuring Advice

The generational, Older First, and Beltway collectors hidwee object insertion points: a
primary allocation point (the nursery), a primary copy pdihe second generation, copy
zone, and the second belt respectively), and an allocation in permanent (immortal) object
space. Our advice classifications map allocations to thmssstion points in the obvious way.

We modified the Jikes RVM compilers to generate an apprapakdcation sequence when
compiling eachnew bytecode if the compiler has pretenuring advice for thatbgtie. We
provide advice to the compiler as a file (dite stringadvice pairs, where the site string
identifies a particulanew bytecode within a class. By providing advice to the compiler
build time (when building the Jikes RVM boot image [Alpern et al. 200@Jocation sites
compiled into the boot image, including the Jikes RVM rumdisystem and key Java libraries,
can pretenure. If advice is provided to the compilerwat time allocation sites compiled at
run time, including those in the application, can pretenure

The advicepart of a pair indicates which of the three insertion poiotsise. Since the
nursery is the default, we provide advice only for long-tiand immortal sites.

In application-specific pretenuring, we uself advice [Barrett and Zorn 1993], i.e., the
benchmark executions use the same input when generatingsamgl advice. In build-time
pretenuring, we use combined advice, omitting informafiem the application to be mea-
sured, which is callettue advice.

Using an advice file is not the only way one might communicattgnuring advice to a
JVM; bytecode rewriting is another possibility when one sloet have access to the JVM
internals. BIT is a bytecode modification tool that factis annotation of arbitrary bytecodes
[Lee and Zorn 1997]. Similarly, IBM's Jikes Bytecode Todalfiallows bytecode manipu-
lation. Since our pretenuring advice is implemented inglittes RVM, we manipulate the
intermediate representation directly. Also, for buildéi pretenuring, we avoid modifying a
large number of Jikes RVM class files by using just one simgke file for all pretenuring
advice.

5.2 Jikes RVM and GCTk

Jikes RVM is a high performance JVM written in Java; its perfance is comparable to
commercial JVMs on the same (PowerPC) platform [Alpern e2@00]. Because Jikes RVM
uses its own compiler to build itself, a simple change to tbmpgiler gave us pretenuring
capability with respect to both the JVM run-time and userligppons. The clean design of
Jikes RVM means that the addition of pretenuring to Jikes R\&)ond the garbage collectors
and allocators themselves) is limited to writing a simpleiegl file parser and making the
above minor change to the compiler. These changes totalgédew hundred lines of code.
We developed GCTKk, a new garbage collection toolkit forJiR&M and the precursor to
its current toolkit, MMTk [Blackburn et al. 2004b; 2004a].G3k is an efficient and flexible
platform for GC experimentation, that exploits the objedentation of Java and the JVM-
in-Java property of Jikes RVM. GCTk implements a number giying GC algorithms, and
their performance is similar to prior monolithic Jikes RYMCGmplementations. Our Appel-
style generational collector, which we c&lppelsimply as a convenient shorthand name, is
well tuned and uses a fast address-order write barrierd@oefc et al. 1999] to detect and
remember references from the old generation to the nutdéwhen performing a full heap

2pvailable at http://www.alphaworks.ibm.com/techijikes
13t records the exact address of the older-to-younger poimte thus is fast for both the mutator and the collector.

18



collection, it traces through boot image objects, whichreeeer themselves collected, rather
than apply a write barrier to that regidfi.We extend the algorithm in a straightforward way
to include an uncollected region for immortal objects. 8itite immortal region is generally
small, we scan it for references to younger objects rattear #pply a write barrier and main-
tain a remembered set. We implemented the Older First GCitidgo[Stefanovit et al. 1999;
Stefanovic et al. 2002] and Beltway [Blackburn et al. 2002ing the GCTk, and added an
immortal region to them as well.

5.3 Experimental Setting and GC Configuration

We performed our experimental timing runs on a Macintosh é&tdWac 4e. It has one 733
MHz PowerPC 7450 processor, 32KB on-chip L1 data and instrucaches, 256KB unified
L2 cache, and 512MB of memory, and runs PPC Linux 2.4.

As indicated in Section 3.1, a time-space trade-off is atiert of each pretenuring deci-
sion. In order to understand better how that trade-off iggaout and to make fair compar-
isons, we conduct all of our experiments with a range of fixedphsizes. We express heap
size as a function of the minimum heap size for the benchmmegkéstion. We define thrain-
imum heap sizéor a benchmark to be the smallest heap in which the bencheaarkun when
using an Appel-style generational collector without pneténg. This amount is at least twice
the max live size. We determine it experimentally, and shuw $ize for each benchmark in
Table V.

[ Benchmark program| Minimum heap size (MB)|

_201.compress 18
_202jess 10
_205 raytrace 14
_209.db 21
_213javac 24
_222 mpegaudio 8
_227_mitrt 20
_228jack 9
health6_128 9
pseudojbb 56

Table V.  Minimum Heap Size at which Programs Run (Non-Prateq)

For the generational algorithm, we collect when the sumesghace consumed by the three
allocation regions (nursery, older generation, and peemtnbject space) and the reserved
region reaches the heap size. We collect the older generasper the Appel algorithm,
when it approaches the size of the reserved region. In thisnse, the nursery varies from
being as large as (half of) the heap down to a small minimum siz

5.4 Second lteration Experimental Methodology

An ordinary run of a benchmark program performs one itenatib the program, inducing
loading and compilation of application classes as needsdsoan as a method is needed, we
use the Replay system to optimize it to the same optimizégieel it acquired in a majority of

14This is a tradeoff between a more complex write barrier, inngroverhead on every pointer store, and a faster write
barrier with more GC time overhead.

19



Adaptive runs. Thus, the run of the program includes cortipitetime. Further, Jikes RVM’s
compilers, being written in Java, allocate their data $tn&s into the application heap. Hence
the run includes compiler allocation as well, placing add&l load on the collector. We
measure this first iteration including compilation time cideout et al.'s [Eeckhout et al. 2003]
results show that Jikes RVM's behavior can still dominatedpplication in this measurement.
We therefore run the application fowo iterations, and use the Replay technique. In the first
iteration, because of Replay we attain high code qualityrequently executed methods. We
then perform a full heap collection, disable further opsiation, and iterate the application.
This second-iteration measurement includes no compile, tonly application and collection
time, and does not include the full heap collection that veeited between the iterations.

This methodology is also closer to the many JVMs that use gpdemwritten in C, and
which allocate “on the side”, not in the Java heap. The sedendtion measurements also
approximate applying our profile-directed pretenuringydol the Java libraries in other sys-
tems.

6. PERFORMANCE EVALUATION RESULTS

We now present execution time and other results using gemeahcollection for build-time
pretenuring, application-specific pretenuring with ouvied and CHL advice (as used by
[Cheng et al. 1998]), and the combination of build-time apglization-specific pretenuring.
We present single-iteration results and second-iteraieults.

We demonstrate that our advice is collector-neutral by smgwhat it improves very dif-
ferent collectors as well, the Older First collector and Bedtway collector. In all of the
experiments, we use the pretenuring advice parameters0.45, Hjs = 0.60, Hjs = 0.00,
andH¢s = 0.90as described in Section 3.1.1.

We generally report times normalized with respect to the-pi@tenured case. We report
measurements for a range of heap sizes, normalized witeeegpthe minimum size at which
the program will run in the non-pretenuring collectors (hsven in Table V). The range we
used was from that minimum size to three times that size. Wepsid there because most
curves have reached or nearly reached their asymptotesabpdimt. We also report cache
and translation look-aside buffer (TLB) misses using penfance counters.

We begin with some basic measurements of the benchmarkslsmégxamine the non-
pretenuring case to see what room for improvement there may b

6.1 Non-pretenuring Measurements

To help interpret the magnitude of improvement we obtainpvesent in Figures 8 and 9 the
percent of total execution time spent in GC for the non-pretimg case. Assuming there is
minimal impact on mutator execution time, these resulte giv upper bound on the improve-
ment we can obtain by speeding up GC. The x-axis of the graphks the normalized heap
size. The y-axis is percent of total execution time spent @ Gince later we will be pre-
senting results from both first and second iterations of émctthmark programs, the graphs
include two curves, one for the first iteration of the benctit@nd one for the second. Note
that the percentages are computed from the ratio of the G€ttirthe execution time afach
iteration separately

We observe that the percent of time spent collecting tentle tagher for second iterations.
This difference is partly because the optimizing compilevdked only in the first iteration)
is computation intensive compared to the volume it allozat€he compiler also allocates
a significant amount, which explains why the first-iteratmmmnves are high for small heaps.

20



The percentage of time spent in GC (non-PT) The percentage of time spent in GC (non-PT) The percentage of time spent in GC (non-PT)

The percentage of time spent in GC (non-PT)

30%

25%

N
S
8

15%

10%

5%

)
8

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

90%

80%

70%

60%

50%

40%

30%

20%

10%

70%

60%

50%

40%

30%

20%

10%

SPEC _201_compress

SPEC _202_jess

Heap size relative to minimum heap size

r r r - © 50% r r T n
Firstrun -—-+--- o Firstrun -—-+---
Second run ---<--- S 45% Second run ---<---
3
g 40%
= 350% [
G 30% [¢
&
o 25%
g 2%
2 20%
o
> 15% B
£ OO0 000000000000
. ' g 10% SN
By o 2 50 i PPN o
O S e S 2
. . . . P S i £ ow b . . . . . . . .
1 1.25 15 175 2 225 25 275 1 1.25 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
T T T T T T = 14% 7 T T T T T
Firstrun --—-«--- a P First run - -
= Second run ---¢--- s B Second run ---<---
; 212%
! 0
; 2 10%
it =
' 2 8%
PO @
. 2 :
" £ 6 [
S k] S0
y o Y
*, gy,
A 5 A0 0000000000 00000 G000 O OO
- -4 A A Ak A A A A A A A kA Ak Ak Ak
o
I I I I I I I I £ 0% L I I I I I I I I
1 125 15 175 2 225 25 275 1 125 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _213_javac SPEC _222_mpegaudio
r r r r - £ 25% [ r r T n
+ Firstrun -—-+--- o Firstrun -—-+---
i Second run ---<--- 5 bl Second run ---<--
3 i
O 20% [
o H
< i
§ 15% [
a :
@ :
o ;
E ;
= iaa
2 10%
o
) g
e S G S P £ =% B R R
SPPOOSE LN 8
P B )
- o R RTA
1 1 1 1 1 . . . < . ) At s
F 0%
1 1.25 15 175 2 225 25 275 1 1.25 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
T T T T T = 50% rroeoe T T T T T
First run - a--- 'E © First run - a---
- Second run ---%--- 5 45% .l Second run ---%---
i £ L
8 40%
=
E 35%
-4
@
o 30% e
E Aty
; 5 25% ey
a ) P "o 0m0
B R 8 - 00009
00000630 0000006 0 0+ 01 00+ 0= 01060+ 0+ - G 6o s 20% il
» 8 ran,, SO0 000
e 2 15% A
o A aaa
I I I I I I I I £ 100 oL I I I I I N | t
1 125 15 175 2 225 25 275 1 125 15 175 2 225 25 275 3

Heap size relative to minimum heap size

Fig. 8. SPEC Benchmarks: Percent of Time Spent CollectingRMienuring)

21




Olden health (6, 128) SPEC pseudojbb

= 35% = 90%
= T T T T T T T = T T T T T
a First run - -~ o © First run &
S By Second run ---%--- < 80% [4 Second run ---o--- 3
£ 30% : £ 2
o Q 70% [-4
O i o &
' i o
£ 250 i £ 60% 3
= N = H
@ i @ £
=3 2 50% Ly
o 20% o u,
£ £ 40% 2
b i bl 22
S H S P
© 15% oot © 30% o
& Doy, AeaA L A & PSS
8 06 SUSPUEY A 8 )
I 069'6'&0 - eﬁ&*"“"‘ E .t g 20% 8255
© 10% - Sy @ o POSY
g oo | 2 10% B S o S
o P o Rt S 2 s O
£ 5o Lt \ \ \ \ \ \ \ S E gw b \ \ \ \ \ pESEET
1 125 15 1.75 2 2.25 25 275 3 1 125 15 1.75 2 2.25 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size

Fig. 9. Olden Health (6,128) anbeudojbb: Number of GCs; Percent of Time Collecting

Another factor that contributes to the difference is thaplbtaining the second-iteration mea-
surements, we enable explicit GC, which is attempted by BieCSharness and also fayac.
We enabled explicit GC so that we could cause a full-heap G®dmn the first and second
iteration, and thus give the second iteration a clean sHie.first-iteration numbers are from
different runs using our default settings, which disableliek GC.

Another effect is that many of the second-iteration curvesreearly flat. This is partly
because of explicit GC invocations, which result in essdigtfixed GC time independent of
heap size. (The graphs of second-iteration number of GCigurés 24 and 26 bear this re-
sult out.) Another reason for the flat second-iteration bighas that many programs produce
mostly garbage after initially allocating some longer thabjects. At a heap size large enough
to contain first-iteration compilation data structureg #econd-iteration data fit quite com-
fortably and the heap size quickly reaches a value requaingnimal number of full-heap
GCs, and it is these GCs that are responsible for most of then®C

6.1.1 Basic GC SpeedWe also measured the non-pretenuring collector’s “rawedpe
using theFixedLive test program, part of the Jikes RVM distribution. It firstates a chosen
volume of live objects arranged in a binary tree structuteerTit creates objects that it imme-
diately discards, so as to force the live objects to be catbcepeatedly. We created 100 MB
of live objects, each 24 bytes in size (8-byte header plusdtbgteint fields plus two 4-byte
reference fields). This experiment gave a tracing (live alijepying) rate of 17.2 MB/s and
an allocation rate of 131 MBY/s. If we keep the same volumerreiase the object size to 192
bytes, we obtain a tracing rate of 50 MB/s and allocation c&®08 MB/s. Clearly there are
significant per-object overheads. A simple regression ffoonpoints suggests that per-object
tracing cost is about 950-1000 ns and per-byte copying s@idut 15-20 ns.

The rates we obtained f&ixedLive undergcj 4.0.1 (Boehm collector) on the same machine
are 52 MBY/s tracing and 92 MB/s allocation. We would expect @apying collector to be
slower than a mark-sweep collector on this kind of benchn(iittle fragmentation), because
of its copying work. Also, the Boehm collector does defersaeeping, which would affect
the allocation rate, not the tracing rate, as they are reddny this benchmark. While we must
conclude that our collector’s speed could be improved fé#ssenough that there would still be
useful savings from pretenuring for a somewhat faster ctte especially in relatively small
heaps (where GC time is a substantial fraction of total time)

22



6.2 Build-Time Pretenuring

Build-time advice is true advice; in these experiments, wmltine advice (Section 3.1.1)
from each of thetherbenchmarks. Because pretenuring will occur only at sitescompiled
into the Jikes RVM boot image, build-time advice does notiitéa pretenuring of allocation
sites within an application. However, because consideralbcation occurs from those sites
compiled into the boot image (quite notably from the JikedvRyptimizing compiler and key
Java libraries), build-time advice has the distinct adageatof delivering pretenuring benefits
without requiring the user to profile the application.

Figure 10 shows the total performance improvement for eacictimark, using build-time
pretenuring normalized with respect to the generationécor without pretenuring. The
x-axis is the heap size, in multiples of the minimum heap,siae 33 points from 1 to 3;
the y-axis is execution time relative to not pretenuringl @\r results use the same x-axis.
(Figures 17, 18, 19, 20, and 21 show individual program te$at total performance, garbage
collection time, number of collections, and copying worke Wiscuss them in Section 6.4.)

Notice that there is a lot gitter for each benchmark in these graphs. This jitter is present in
our raw performance results for each specific allocator dsasen the normalized improve-
ment graphs we show. The jitter is mostly due to variationthénnumber of collections at a
given heap size. Small changes in the heap size can trigiectoons either right before or
after significant object death, which affects both the ¢ifeaess of a given collection and the
number of collections. This effect illustrates that GC awatibn should, as we do, use many
heap configurations, not just two or three. Pretenuringheeilampens nor exaggerates this
behavior, but is subject to it.

In some cases, build-time pretenuring degrades total paéiace by a few percent, but for
most configurations, programs improve, sometimes signifizalmprovements tend to de-
cline as the heap size gets larger because the contributigaribage collection time to total
time declines as the heap gets bigger, simply because treefeveer collections. Pretenuring
thus has fewer opportunities to improve performance, betepuring still achieves an im-
provement on average of around 3% even for large heaps. éddgirams improve on average,
and forjavac, mtrt, andpseudojbb, in a number of configurations the improvement is more
than 50%. These improvements result from reducing copyimbsaving copy reserve in the
garbage collector, and the significant decrease in GC tinpeawes overall execution time.

6.3 Application-Specific Pretenuring

This section compares our classification scheme to the CHémse [Cheng et al. 1998] using
application-specific (self) advice. Given an applicatianring with a generational collector
with a fixed nursery size, CHL advice generation first meastie proportion of object in-
stances that survive at least one minor collection on a lereation site basis. CHL classifies
as long-lived those allocation sites for which a high praéiporsurvive (we implemented their
approach with the same 80% threshold they used). CHL theemprees (allocates) objects
created at these sites into the older generation, and s®abjects from all the other allo-
cation sites into the nursery in the usual way. Because otatlion-site homogeneity in ML
(which we also observed in Section 4 for our Java prograrmsiy, approach is fairly robust to
the threshold.

The key differences between the two classification scheneg@gathat our advice is neutral
with respect to the garbage collector algorithm and conéitjom, and (b) that we include an
immortal category and our collector puts immortal objeats ia region that it never collects.

23



Normalized execution time

Normalized execution time

110%

100%

90%

80%

70%

60%

50%

40%

30%

20%

105%

100%

95%

90%

85%

80%

75%

70%

65%

60%

Build-time pretenuring for each benchmark

@ SPEC_201_compress =
YA SPEC_202_jess --©--
SPEC_205_raytrace ---e---
i SPEC_209_db -

& SPEC_213_javac

SPEC_227_mtrt —

<4

SPEC_222_mpegaudio —s—

SPEC_228 jack <
4 Olden Health (6,128) e

‘ ‘ : s ‘ ‘ pseudojbb ---e-—
1 1.25 15 1.75 2 2.25 25 2.75 3

Heap size relative to minimum heap size

Fig. 10. Relative Execution Time for Build-Time Pretenuring

Geometric mean for all benchmarks

.;Z CHLPT -

Application PT —

N

Application+Build PT —+—

1 1.25 1.5 1.75 2 2.25 25 2.75
Heap size relative to minimum heap size

Fig. 11. Relative Execution Time for Application-Specifiefmuring

24

3




Geometric mean for all benchmarks

90%
80% s f &
N bS
FEEL N o
70% A9 RS : w2
o sy $ i A
© 4 s ‘
2 609 [ -
38 2 $
2 ¢ e i0*
g 50% ot
3 N B *
N 4 L * *
(_EU 40% & : * * * *
S ? * g & ¢ * *
P4 & * . . L
30% ¢t . *
* ¢ *
LR 4
20% g ¢ Application PT — ]
Build PT o
Application & Build PT e
10% L L L L L L L L L
1 1.25 1.5 1.75 2 2.25 25 2.75 3

Heap size relative to minimum heap size

Fig. 12. Comparing Application-Specific, Build-Time, andr@bined Pretenuring: Relative Mark/Cons Ratios

Geometric mean for all benchmarks

100%
@
90% 5
80% \
© :“ :. “:
£ 70% Py -
0 £ f ¥
o A H | :
& ie S e
§ 60% e .
-(_E o <>» :r‘ . . *
g / o . . ¢
B 50% : | ,‘v s *
z @ ! * 4 * *
§ Q.QO s g‘ . P .
40% 5 ' *
& .
*
*
30% r® - .
Vi i Application PT ---a---
§ Build PT o
. Application & Build PT -
20% 1 1 1 1 1 1 1 1 1
1 1.25 15 1.75 2 2.25 25 2.75 3

Heap size relative to minimum heap size

Fig. 13. Comparing Application-Specific, Build-Time, andr@bined Pretenuring: Relative Garbage Collection Time

25



105%

100%

95%

90%

85%

80%

75%

Normalized execution time

70%

65%

60%

Fig. 14.

105%

100%

95%

90%

85%

80%

75%

Normalized execution time

70%

65%

60%

Fig. 15. Comparing Long-only, Immortal-Only, and CombinedtBnuring: Relative Execution Time

Geometric mean for all benchmarks

NN S & &
5
¢
P
3 **
i
* Application PT -4~
¢ Build PT -o--
‘ ‘ ‘ ‘ ‘ _ Application & Build PT e
1 1.25 1.5 1.75 2 2.25 25 2.75 3

Heap size relative to minimum heap size

Comparing Application-Specific, Build-Time, andr@bined Pretenuring: Relative Execution Time

Geometric mean for all benchmarks

“‘“»A .
A PP ettt T ii
gy B e *
0‘0 o .
¢
4
.4
%’0
¢
:
év Long only -4
Immortal only -
‘ ‘ ‘ ‘ ‘ ‘ Long & Immortal -
1 1.25 15 1.75 2 2.25 25 2.75 3

Heap size relative to minimum heap size

26



The first of these makes our approach more general and thedsigeproves performance. Our
pretenuring allocates on average 4% of objects into the irtahspace (see Table IIl), and
these decisions are overwhelmingly correct (because ausides to pretenure to immortal
space are so conservative). Since both schemes get thestahieip size in our experiments,
allocation into the immortal region (because it requiresapy reserve) increases the space
available to the generational collector (see Figure 16)il&% may not sound like much, in
tight heaps it can result in a large proportional increasaiirsery size, and can thus lower GC
time significantly.

Figure 11 compares CHL and our application-specific preteguusing the generational
collector, which has a flexible nursery size. The figure shithesaverage relative execution
time using a geometric mean of our benchmark programs. Gage®ur advice performs at
least 2% better than CHL advice, except in a tight heap wherénpact of immortal objects
is highest and our advice performs significantly better.

Because CHL advice generation is specific to program, doligand collector configura-
tion, it cannot be combined for build-time pretenuring with significant change to the algo-
rithm. We make no further comparisons with CHL because af dnawback and because, as
we have just illustrated, our three-way classification reffieetter performance than the CHL
two-way scheme on average, and much better performance&tiarior tight heaps.

6.4 Combining Build-Time and Application-Specific Pretenuring

In this section we show that combining build-time and aglan-specific pretenuring results
in better performance than either one alone. For these grsgenuring schemes, we present
results using the geometric mean of the benchmarks foiwelatark/cons ratio in Figure 12,
the geometric mean of the relative garbage collection timEigure 13, and the geometric
mean of the relative execution time in Figure 14,

Figure 12 shows the mark/cons ratio for each pretenuringraehrelative to not pretenur-
ing. The mark/cons ratio is the ratio of bytes copied (“mdikéo bytes allocated (“cons’ed”).
The figure explainsvhy pretenuring works: it reduces copying. In all cases, pregieg re-
duces the volume of objects the collector copies. Redustiange from 10% to 81%, which
is quite significant when minimum heap sizes can be as larlyilBG@seudojbb).

Figure 16 offers additional insights. Figure 16(a) showaphaesage over time for a run of
thejavac benchmark without pretenuring, and Figure 16(b) shows tih wiretenuring. Both
runs use a heap size of 24MB. The top line in each graph shavothl heap consumption
immediately before each GC. The second line shows the spacseimed by the older genera-
tion immediately before each GC (both nursery and full hedjections). Finally, the bottom
line shows the immortal space consumption, which is always in Figure 16(a).

Note that in pretenuring, allocation to immortal space @féely increases the size of the
heap because it does not need to reserve space to copy iten¢@acourse the total space
available is the same in both cases.) Thus the pretenurapghigrtotaloccupiedheap size is
larger. Because the copy reserve is smaller, the nursesyger (by half the occupancy of the
immortal space). This larger nursery delays the growth@bider generation and defers older
generation collections, in addition to reducing the frauyeof nursery collections. The lowest
points in space consumption of the older generation (thergkline) are very similar in both
graphs, which shows that pretenuring does not allocate namprtal objects inappropriately
(if it did, the second line would be higher for pretenuring)so note that the shapes of the
four troughs in the second lines towards the right side ofithees. When not pretenuring, the
bottoms of the troughs are flat, showing that there is no tizlémcation to the older generation.

27



16

14
~ 12
o)
2
°
QL 10
o |
3 !
g ;
(5] |
<} Lo
=% 8 :
[ L.
(]
o 6
1S i ' i
p=}
o
> 4
2
Immortal
, Immortal + Gen 1 -
0 ‘ ‘ ‘ Immortal + Gen 1+ Gen 0

0 50 100 150 200 250 300
Time (allocation, MB)

(a) _213javac: Heap Profile Without Pretenuring

16

14

12

10

Volume of heap occupied (MB)

Immortal
Immortal + Gen 1 -
Immogtal +Genl+ Gpn 0 e

0 1 1 1
0 50 100 150 200 250 300

Time (allocation, MB)

(b) 213 javac: Heap Profile With Build-Time and Application-Specifiretenuring
Fig. 16. Comparison of Heap Usage Over Time Without and Wigtehuring
With pretenuring, they show an upward slope to the righticaihg direct allocation to the

28



older generation.

In summary, pretenuring performs better because it dossclgsying. It reduces copying
in two ways: direct allocation into the older spaces avoiolgying to promote longer lived
objects; and the immortal space effectively increasesitee the heap, thus reducing the
number of GCs and the amount of copying.

Figure 13 shows that the reduction in copying cost signiflgaand consistently reduces
GC time, especially considering the advice is true rathan thelf advice for build-time pre-
tenuring. In particular, combined (application and builde) pretenuring improves collector
performance between 40 and 80% for most heap sizes. Comphe¢ehuring is on aver-
age the most effective of the three. In large heaps, apitapecific pretenuring is on av-
erage nearly as good, but build-time pretenuring offersii@antly higher advantage than
application-specific in small heaps, because it includeglaeh volume of immortal alloca-
tion.

These results carry over to execution time (Figure 14). V¢etkat all the pretenuring
schemes improve performance. Average improvements a@lyifietween 1% and 6% in
larger heaps and 11% to 36% in very tight heaps, but as shoWwigures 17 and 21, some
individual programs improve more.

It may strike one as surprising that pretenuring consistgites benefits even at the larger
heap sizes, which have fewer collections. As we will see ictiSe 6.9, part of the benefit,
about 2—3% on average, is from improved locality (fewer ezanid TLB misses). The other 2—
3% average improvement in execution time is from reducedi®€.tRecall that pretenuring
reduces the cost of nursery collection, and the percentageovement in GC time will be
higher when GC is invokekbssoften (same amount of copying saved, but less total copying)
Also, the heap sizes we use are not large enough for GC impreves to disappear relative to
total execution time. One would need rather larger heapbt@imothat effect.

6.5 Immortal-only and Long-only Pretenuring

We investigated the relative importance of immortal andylpretenuring by refining our ad-
vice as follows:

(1) Immortal-only: Take the advice previously generated and discardamyadvice (those
sites will be treated ashorf). We retain themmortaladvice.

(2) Long-only: Take allimmortal advice and treat it ang. All shortadvice remains the
same.

(3) Both: Keep both themmortalandlong classifications as before.

Figure 15 shows results using these three sets of advice.fiJire reveals that long-only
gives a robust average improvement of about 5% at larger sieap, but its cost increases
noticeably at smaller heap sizes (because it forces mogedre collections) overcoming its
benefits. Immortal-only is always beneficial, enormousling@ht heaps, because it increases
the effective heap size (as shown in Figure 16doac). At larger sizes it does not give quite
as much benefit as long-only. Doing both kinds of pretenurifgistly obtains both benefits.

6.6 Comments on Specific Benchmarks

We now analyze noteworthy features of the individual beretkmesults. Figures 17, 18, 19,
20, and 21 show individual program results for total perfance, garbage collection time,
number of collections, and mark/cons ratio.

29



jess, jack, andmpegaudio. Application-specific pretenuring does not help much, and oc
casionally degrades performance slightly because of impoBothjess andjack have very
small nursery survival rates (less than 1% jirs, and 3% forjack). Since the application-
specific objects are mostly short-lived, application-#igepretenuring puts only a very small
volume of objects into higher spaces. A similar patterntexisr mpegaudio, which has a
higher nursery survival rate but does very little allocatend so places little stress on the
garbage collector. Pretenuring shows benefit with buittetadvice since the survival rates
for Jikes RVM objects are higher. For example jéss, application-specific pretenuring al-
locates 210KB of immortal objects and 450KB of long objeetkjle build-time pretenuring
produces 2700KB of immortal objects.

mtrt andraytrace. Both build-time and application-specific pretenuring offeibstantial
performance improvement, up to 10% and 50% in tight heapsause of the heap space
saved by pretenuring immortal objects. For larger heapid-time pretenuring gives only
slight improvement, but application-specific pretenuiimgroves performance by 4-6%, and
the combination gives an additional 1-2% improvement.

javac. This program has a substantial number of long and immortias$,sand thus build-
time pretenuring is relatively less important. In tight pgamost of the benefit comes from
build-time pretenuring at immortal sites (by saving copgeme space), and application-
specific pretenuring has much less benefit, or even degratié®xecution time. The reason
is thatjavac suffers from nepotism, which we also observepfieudojbb. Larger heaps re-
duce the effects of nepotism, and the benefit of less copyiogs up. Here we observe that
application-specific pretenuring gives about 5-6% peréoroe improvement.

health anddb. These applications have some large data structures thasedethroughout
the execution. Thus application-specific pretenuring cangbbenefits by saving copying
cost. Forhealth, application-specific pretenuring improves performangeaup to 27% for
tight heaps, and 8-13% for larger heaps. Although builaforetenuring alone does not have
much benefit, the combination yields an additional 5% imprognt.

pseudojbb. Application-specific pretenuring suffers from nepotisntigit heaps, and gives
only slight improvement (about 1%) in larger heaps. Buildet pretenuring gives huge im-
provement, up to 60%, by saving copy reserve. For largerdipapudojbb spends most of its
time in the mutator, usually spending less than 10% of ite imGC. Hence, although we are
able to reduce GC time by more than 10% in most cases, the yaprent in total execution
time is limited to around 1%.

compress. Application-specific pretenuring has little effect, butldttime pretenuring pro-
duces large variation in performance across heap sizes.vatiation comes from large varia-
tion in the volume of objects copied, as can be seen in the/ow@i& ratio graph forompress.
This variation is not so much because of pretenuring itagliflecause the pretenuring causes
the moments when GC is triggered to move a bit, emdpress uses a number of large short
lived objects. If one collects at a “bad” moment, one endsafymng these large objects and
then throwing them away at the next full-heap collection ighwill come sooner than in a
“good” run, because we promoted a large object that will deng. The effect is more pro-
nounced at smaller heap sizes because more frequent GCstrmake likely that we promote
a large short-lived object, but this behavior, though régdga (deterministic), is chaotic with
respect to heap size. (Itis one way in whijitter arises.)

30



Normalized execution time Normalized execution time Normalized execution time

Normalized execution time

108%
106%
104%
102%
100%
98%
96%
94%
92%
90%
88%
86%

110%
105%
100%
95%
90%
85%
80%
75%
70%
65%
60%

120%
110%
100%
90%
80%
70%
60%
50%
40%
30%
20%

110%

100%

90%

80%

70%

60%

50%

40%

SPEC _201_compress

SPEC _202_jess

T T T 105% T T T T
100% Adaaah AR x,,rg»r‘--.,:_ .
g o.a oS HEIE :
° G & *
£
a4 = 95%
LN ]
! 3 90%
1 £
b o
H E 85%
i H ®
fod E 8o%
i S
de | z
Lo Application PT ----a--- 75% Application PT ----4--- ]
— 1 Build PT ---<-- 3 Build PT ---<---
Application & Build PT - Application & Build PT e
1 1 1 1 1 N h . 1 70% L1 1 1 1 1 N h . 1
125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
T T T T 105% T T T T
00, oG
o 100% ? Weooﬁa OO0 50000 P05 00O
a 2 o O
s E &
5 95%
3
3
]
3 90%
°
o
N
E 85%
: 2
- - BRI S
Application PT -~ 80% [ FOSTY o-a e Rppitcaton BY et
i Build PT --<-- Tgag® Mt Build PT ---<--
Application & Build PT - bos Application & Build PT -

- I I I I 1 h I I 75% I I I I 1 h I I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size

SPEC _213_javac SPEC _222_mpegaudio
T T T T 110% T T T
-
i 105%
a EO0d S : o o
Prttstensewtitog’ 4 E
PR ES S 100% @y <o
%00y =]
G 8 k
& 4]
¥ s 95%
o °
s o
: N
H ® o
g £ 90%
i S
H z
Application PT s+ 85% Application PT -+ ]
Build PT ---0--- H Build PT ---<---
¢ Application & Build PT - “ Application & Build PT e
f 1 1 1 1 N h . 1 80% 1 1 1 1 N h . 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
T T T T 105% T T T
9 .
, 100% -
£
5 95%
3
3
]
3 90%
°
o i
N i
T 85% £
g i
5 hid
| = {
£ Application PT -—-a--- ] 80% - H Application PT - a--- 7]
Build PT ---o--- Wy ¢ Build PT ---o---
Application & Build PT - Application & Build PT -
I I I I I 1 h I I 7506 L I I I I 1 h I I
1 125 15 175 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3

Heap size relative to minimum heap size

Heap size relative to minimum heap size

Fig. 17. SPEC Benchmarks: Execution Time Relative to NoneRretng

31



Normalized GC time

Normalized GC time

Normalized GC time

Normalized GC time

700%

600%

500%

400%

300%

200%

100%

0%

160%

140%

120%

100%

o «
S g
EES

40%

20%

0%

120%

100%

80%

60%

40%

20%

0%

110%
100%
90%
80%
70%
60%
50%
40%
30%
20%

SPEC _201_compress

SPEC _202_jess

Heap size relative to minimum heap size

Fig. 18. SPEC Benchmarks:

Heap size relative to minimum heap size

GC Time Relative to Non-Pretegurin

32

T T 130%
120%
110%
o 100% A S
= 90%
(8]
g 80% “Q»‘ »-
2 70% T
< Gy
£ 60%
S
Z 50%
9
ition. PT. 0% Application PT -~
-+ Bl 30% Build PT - 3
Agplication &B‘:{Iu PY A Application & Build PT -
1 N . 1 209 EL 1 1 1 1 N h . 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
T T T T 100% [ T T T
9
90% Ceeg
80%
o PN
E 0% A aa
Q
2 60w s
o
& 50%
T
£
5 40% it
T
24 °Fo
luliR Appitcalion PT a1 Pose Application PT -~
- o Build PT ---o--- 20% F-v¢ Build PT ---o---
Application & Build PT - Application & Build PT -

I I I I I 1 h I I 109% EL I I I I 1 h I I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size

SPEC _213_javac SPEC _222_mpegaudio
T T T T 160% T T T
+
H 140%
s
3 120%
@ s
£ s .
& 100% ! - A
" ) o
T 80%
N
®
. £ 60%
s PR .
z ;oo o
40% > g &
bamd i ®
Application PT ----4--- 7] E i se g Application PT ----4---
Build PT --o--- 20% Fo $5¢ Build PT --o---
Application & Build PT - Application & Build PT e
1 1 1 1 1 N h . 1 0% L 1 1 1 1 N h . 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
110% [ T T T
100% PUT TS Sy a "‘71 pus Cal
B RS 2 90%
DR o2 g ° f”f"?' L
-
3 80% £ 2 b
N 3 R iy 4
S 2 . i :
A = 70% " 9-Q - Y
ot g [ AR S N
S HE g
Z 60% N s
.
o+ Applicafion PT - sg-® 5006 [#8....9% Application PT -+
3 . BUildPF 3 I Build PT --o---
Application & Build PT - w3 Application & Build PT -
I I I I 1 h I I 40% L I I I I 1 h I I
1 125 15 175 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3



Normalized mark/cons ratio Normalized mark/cons ratio Normalized mark/cons ratio

Normalized mark/cons ratio

SPEC _201_compress

SPEC _202_jess

1200% T T T 110% T T T T
Iy
100% Lo R
o .
1000% o 9% .
g
800% g 80%
é 70%
o s o R
600% g 60% e SR
2 e Gy 2 RIS o
T 50% e
400% * T 8¢ e o .
£ 40% " 5
2 s o]
200% e Application PT --s---
20% —W'??ﬁ Build PT -
Application & Build PT -
0% E 109 £ 1 1 1 1 N h . 1
15 175 2 225 25 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
120% 110% [ . . . .
100%
9
100% o 90%
8
80% : g 80%
°1 8 1o%
=
60% e g 60%
°
T 50%
o £
0% g a0%
P £
S
z

s

*oy 30%
20% Applicafion PT -—-«--- 7 w oo Application PT ----a---
L i *Build PT ---o-- 20% e Build PT ---<---
¢ Application & Build PT - Application & Build PT -
0% L I I I I 1 h I I 109 EL I I I I 1 h I I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _213_javac SPEC _222_mpegaudio
120% [ T T T 140% T T T
.
100% 120%
o -
oo s Lok o PUIPPYETY
100% Fp g ppaaraa < s
80% 2 “ “
S .a
. S 80%
60% S g
o] T 60%
N
40% =
o £ 40% 9
i ad H B =1 e N
03 4 pog b ad DO N - g +
20% Application PT -—-4--- 7] 200% [ $e-En o0 ¥Application PT ----a--- <]
4 Build PT ---<--- - baad Build PT ---<---
Application & Build PT - Application & Build PT e
0% L 1 1 1 1 N h . 1 0% L 1 1 1 1 N h . 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
100% 100% [ T T T T T T
‘“‘A"k“ e Y A~ A Py
90% 20% o -
. o
80% ] & s
70% 2 o
S 70%
S .
60% =
g 6% Q'M*
50% - N A
- N 50% e
40% = :oo e
E P
30% [ ‘ S bot
i *. Applicagion PT - &% F #9506 Application PT - «---
200 FQ¥® ¥ A BUIGRT o 30% Frvecs Build PT -
Application & Build PT - Application & Build PT -
109 L1 I I I I 1 h I I 200 LL I I I I 1 h I I
1 125 15 175 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3

Heap size relative to minimum heap size

Heap size relative to minimum heap size

Fig. 19. SPEC Benchmarks: Mark/Cons Ratio Relative to Na@tePuring

33



Number of GCs

Number of GCs

Number of GCs

Number of GCs

SPEC _201_compress

SPEC _202_jess

100 T T T T T T 1000 T T T T T T
Non-PT —— Non-PT ——
Application PT ----a--- Application PT ----a---
Build PT ---<--- Build PT ---<---
Application & Build PT - Application & Build PT -+
@«
Q
[}
S
10 5 100
k-]
£
3
z
1 b 1 1 1 1 1 1 1 1 10 L 1 1 1 1 1 1 1 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
1000 T T T T T 100 T T T T T
Non-PT —+— Non-PT —+—
Application PT ----a--- Application PT ----a---
Build PT ---<--- Build PT ---<---
i ]\_\‘ Application & Build PT - Application & Build PT e
o 2t
100 oottt 8
ookadd: \ ) o
o LS 5
2 10
2
5
10 “"""i-\—u»,_, “
1 L I I I I I I I I 1 b I I I I I I I I
1 125 15 1.75 2 225 25 275 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _213_javac SPEC _222_mpegaudio
1000 T T T T T 100 T T T T T
Non-PT —+— Non-PT ——
Application PT ----a--- Application PT ----a---
Build PT ---<--- Build PT ---<---
Application & Build PT - Application & Build PT -
@«
Q
[}
S
100 5 10
k-]
£
3
z
10 L 1 1 1 1 1 1 1 1 1 b 1 1 1 1 1 1 1 1
1 125 15 175 2 225 25 275 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
1000 T T T T T T 1000 T T T T T T
Non-PT —+— Non-PT —+—
Application PT ----a--- Application PT ----a---
Build PT ---<--- Build PT ---<---
Application & Build PT - 1 Application & Build PT e
£ "
100 £y 8
23 o
S
5 100 K d
2
£
5
10 z
1 L I I I I I I I I 10 L I I I I I I I I
1 125 15 1.75 2 225 25 275 3 1 125 15 1.75 2 225 25 275 3

Heap size relative to minimum heap size

Heap size relative to minimum heap size

Fig. 20. SPEC Benchmarks: Number of Garbage Collections

34



Olden health (6, 128) pseudojbb

105% T T T 110% T T T T
100% 100% F-*x 2%y
P ® o
E 950 [ E 90%
S S
= 90% = 80% ¥
3 3 !
£ £ ;
3 85% 3 70% %
° 2 i
o o i
S 80% S 60% +
< < I
£ £ ¢
S 75% S 50% [
z : 2 |
“ A Application PT -4~ | Application PT ----&---
0% | Build PT o 7 40% Build PT o 7
s Application & Build PT - Application & Build PT e
65% Lt 1 1 1 1 N h . 1 3096 L 1 1 1 1 N h . 1
125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
Olden health (6, 128) pseudojbb
90% oo T T o o T T 110% 7o T T T
H P00 B R
80% — 2902 100%
o3 o
70% 90% o 2
o P Vi o .
E 60% [t i E go0% D e e,
Q o Q o
@ 50% [ooiot ey O 70% 2t ey
o Lo . —aa 5 i
o . A S
D400 ot A g £ 60%
T : ad ald i T
13 -0 £ 7
S 30% i S 50% ; .
z H z $
20% Fu 5 40% F
) Applicafio PT -~ «--- Application PT ----«---
10% [y POt nemnttinag ot ob TR At o] 30% PPl PT o
hathd Application & Build PT - ¢ Application & Build PT -
0% L I I I I 1 1 I I 200 L I I I I 1 h I I
1 125 15 175 2 225 25 275 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
Olden health (6, 128) pseudojbb
80% e T T T T T T 110% T T T
: B A FNPUPNR DY Ry 3
70% : ?eoo ©-0-¢ 0000 e .o 100%
° HE o o o
£ 60% £ 0%
2 2 80%
S 50% S
2 | 2z 70%
o o <
g 40% A g
= L ; s, S 60% w
2 30% S At et caa g :
‘s i S 50% [ .
£ 20 ; g ¢
ZD % Faiad ZD 40% ér &
. Application PT ----4--- ? Application PT ----a---
A SN o g BUIPT e 30% £ Build PT -
"ot t e A * Moplication & Build PY*e%® ¢ Application & Build PT -
0% Lt 1 1 1 1 h 1 . . 209 £ 1 1 1 1 N h . 1
1 1.25 15 175 2 225 25 275 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
Olden health (6, 128) SPEC pseudojbb
100 T T T T T T 1000 T T T T T T
Non-PT —+— Non-PT —+—
Application PT ----a--- Application PT ----a---
Build PT ---<--- Build PT ---<---
Application & Build PT - Application & Build PT e
8 8 100
0] 0]
k-] k-]
g 1© B
2 2
£ £
5 5
z z 10
1 b I I I I I I I I 1 L I I I I I I I I
1 125 15 175 2 225 25 2.75 3 1 125 15 1.75 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size

Fig. 21. Olden Health (6,128) amdeudojbb: Execution Time, GC Time, Mark/Cons Ratio, and Number of GCs

35



6.7 Second lteration Results

We previously described the first- and second-iteratioregrpental methodology. We now
present these results for second-iterations of the SPEChbwarks: execution time (relative
to non-pretenuring second-iteration time) in Figure 22, @ (relative to non-pretenuring
second-iteration GC time) in Figure 23, and number of GCsgurfé 24. The corresponding
results forhealth andpseudojbb appear in Figures 25 and 26, along with graphs showing the
geometric mean of all the benchmarks.

While there are some individual variations, as to be expececond-iteration relative per-
formance is quite comparable to first-iteration, which shawleast these two things: (a) our
scheme is improving application performance overall, net {he Jikes RVM compilers; and
(b) our approach is likely to give useful benefits to JVMs witim-time systems that do not
allocate into the application heap (i.e., ones written in C)

6.8 Effects of Compilation Strategy and Trace Generation

Section 3.2 describes various compilation strategieskes RVM, namely Opt, Adaptive, and
Replay. Figures 27(a), (b), and (c) show results using tttese compilation strategies, all
with the same advice (developed from traces generated frpinb@lds). These graphs show
two important things for our purposes. First, the similatietween Figures 27(b) and (c)
demonstrates that Adaptive and Replay behave virtuallgdnee with respect to pretenuring.
Second, while Figures 27(a) and (b) are a little less sirriteay retain the same trends. The
primary difference is that the Opt runs do much more optingziompilation, which results in
more allocation at build-time pretenured sites. Hencedbtiihe pretenuring is relatively more
important for Opt runs.

By default, we profile Opt runs to produce advice. Figurespad (d) compare generating
advice from Replay runs versus Opt runs. We see there istedbeno difference.

6.9 Locality Effects

Since pretenuring results in possibly rather differentefaent of objects in the heap, one
might wonder how it impacts memory reference locality. Imtjcalar, does it increase or
decrease cache and translation look-aside buffer (TLB3esiz We performed runs that col-
lected hardware performance monitor statistics on Levell} &nd Level 2 (L2) cache misses
and TLB misses, presented in Figure 28(a, b, c). As usuak-tés is relative heap size. The
y-axis isrelative missrate. More specifically, for each run where we measured L1 (L2, LB
misses, we computed the miss rate as the number of missegdlivly the number of cycles
the run took. The graphs show these rates for pretenuriagjivelto the rates without pre-
tenuring. We show this for build-time, application-spegiind combined pretenuring, each a
separate curve in each graph. These are all for the AppebRepllector, and we present the
geometric mean across all benchmarks.

To interpret the results and see why we developed them thisawasider a point at which
overall execution time improves with pretenuring. If thepmovement is because there are
fewer total cycles and proportionately fewer misses, weld/obtain a miss rate ratio of 1.0,
meaning that there is no locality difference and the impnoet has to do with number of
instructions executed rather than cache performancee Ifdtio is less than 1.0, then at least
some of the improvement is coming from improved locality@w missrate), and if the ratio is
greater than 1.0, we are seeing overall improvement in e dha higher miss rate (unlikely
but theoretically possible).

36



Normalized execution time (second run) Normalized execution time (second run) Normalized execution time (second run)

Normalized execution time (second run)

SPEC _201_compress

SPEC _202_jess

110% T T T 160% ¢ T T T
S 150% [
105% 2 140%
8 1309
100% % 130%
£ 120%
95% § 110%
E] T ey S gy
§ 100% oatstssaes
90% ) fad
- 90%
3 ey
; S 80% Fi
85% i Application PT —+-- ] £ i Application PT --s---
i Build PT ---<--- S 70% fﬁ Build PT ---o---
*% Application & Build PT - z Application & Build PT -+
8096 Lt . . . . n h . . 60% Er . . . . n h . .
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
106% [ T T T 102% T T
* = 9.
: < 3
104% - 5 100%
% 98%
102% § 96%
100% FREZOS
S o2 £ 4
98% . s S :
- 5 90% ¥
-
96% SIS eew ks
94% -5 2 3 E 86% o
& T =
006 % Application PT - ] g 8w LT eapliationt B 67
TE Build PT - S g% b I Build P¥ -
4 Application & Build PT - =z * ABplication & Build PT e
90% L I I I I N h I I 80% EL I I I I N h I I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _213_javac SPEC _222_mpegaudio
110% T T T 101% T T T
=
100% 2 100.5%
el B
s
90% e S 100%
<
80% g 99.5%
70% § o9
3
60% g 98.5%
-
50% g 9% |
i 5 ¥ }
Foa Application PT ---4--- 4 £ : Application PT —+--3,]
40% % Build PT - 5  978% i BUld PT - &
Application & Build PT - z ° Application & Build PT -~
3006 Lt . . . . N h . . 979 Lt . . . h n n . .
1 125 15 1.75 2 225 25 2.75 3 1 125 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
98% 105% [ . . . .
= aa
5 > - 4
= 100% Fasass: ad oy
96% z bbb, »,e—-gﬂs,,&-‘a-.e
% 95% o0l
94% b
g 90%
92% S 85%
2
e 2 80%
90% [5-5 3
o
¢ S 7%
88% -+ Application PT ----«--- 7] g 70% Application PT ----«--- 4
4 Build PT -~ <] ° Build PT <
M Application & Build PT - =z Application & Build PT -
869 LL I I I I i 1 I 650 LL I I I I N h I I
1 125 15 175 2 225 25 275 3 1 125 15 1.75 2 225 25 2.75 3

Heap size relative to minimum heap size

Heap size relative to minimum heap size

Fig. 22. SPEC Benchmarks: Second Iteration Execution TimatRelto Non-Pretenuring

37



200%
180%
160%
140%
120%
100%
80%
60%
40%
20%

Normalized GC time (second run)

0%

120%
_115%
110%
105%
100%

95%
90%
85%
80%
75%
70%

Normalized GC time (second run,

140%

120%

100%

80%

60%

40%

Normalized GC time (second run)

20%

0%

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

Normalized GC time (second run)

SPEC _201_compress

SPEC _202_jess

. . . 120% . . T
.
8 T S S U SN
2 100% st B
o
|5
]
S
i & TSNP »
7 Y 3 B0% P2 s
/ IR £ 8@'3
P T TR e S 38
o e i O 6% ;
i o H
T = ses
\ T Praaid
4 E 40% [
Application PT ----&--- 2 i Application PT ----&---
Build PT ---0--- pesd Build PT ---<---
Application & Build PT - Application & Build PT e
1 1 1 1 1 N h . 1 209 Lt 1 1 1 1 N h . 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
T T T T 160% T T T T T
e _ By T e S SN
.. £ 140% o
Ay kA A a. - 2 R T T S SR e
°
§ 120%
S
o
2
g 100%
= @ 00000000000 000-0-0:0-0:0:0:0-0:-6-0--0--0--0--0]
3 80%
°
8
eoeo0e FEITEIGIEISISISIEIEILISISISTS = 60%
269 S £
peLas ¥ £
el Application PT ----a--- 2 40% Application PT ---&--- ]
Eof Build PT - Build PT -0~
§5 Application & Build PT - Application & Build PT -
I I I I 1 h I I 200 LL I I I I 1 h I I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _213_javac SPEC _222_mpegaudio
T T T [V 7 me— MU —_
S o5%
o
|5
5]
S 90%
9'9_“:2—?»; e o S %
. £ g%
D N et - o
S}
°
3 80%
q * g
Fe Application PT =~ ] 8 75% [#ee:8e8:9800:0:88:8 4 98-8 08,85 0k p¢ 91109
Build PT ---<--- Build PT ---<---
Application & Build PT - Application & Build PT e
1 1 1 1 1 N h . 1 70% L 1 1 1 1 N h . 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
T T T T 120% T T T T
¢ ~ 110% 4
: €
2 | /
P 5 100% e S e
508 00.0:00:0-00 0 0 -6-0- o 000 5 “
S 90%
; kA
R 2 80%
£ $ e
Q 0 § 7
Q 0% it oo
: - [
> g 60% ¢
LI A AR Y K] bad
o v D e S e g ESO%“? i
Application PT ----a--- 2 o Application PT ----a---
Fre Build PT -0 40% Eid Build PT -
Application & Build PT - Application & Build PT -
bl I I I 1 h I I 3006 LL I I I I 1 h I I
125 15 175 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3

Heap size relative to minimum heap size

Heap size relative to minimum heap size

Fig. 23. SPEC Benchmarks: Second Iteration GC Time Relatiiéon-Pretenuring

38



Number of GCs (second run) Number of GCs (second run) Number of GCs (second run)

Number of GCs (second run)

SPEC _201_compress SPEC _202_jess

100 T T T T T T 1000 T T T T T T

Non-PT —+— | Non-PT —+—

Application PT ----a--- Application PT ----a---

Build PT ---<--- _ Build PT ---<---

Application & Build PT - S Application & Build PT -+
o
g
<]
S
o
2
10 & . - & 100
N =y g
S
|9
2
£
5
z
1 1 10 1 1 1
1 125 15 1.75 2 225 25 2.75 3 1 125 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _205_raytrace SPEC _209_db
1000 T T T T T T 1000 T T T T T T

Non-PT —+— Non-PT —+—

Application PT ----a--- Application PT ----a---

Build PT ---<--- Bui R

- Application & Build PT - Application & Build PT e

Number of GCs (second run)

=¥
1 L I I I I I I I I 1 L I I I I I I I I
1 125 15 1.75 2 225 25 275 3 1 125 15 1.75 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _213_javac SPEC _222_mpegaudio
1000 T T T T T 10 T T T T T T
Non-PT —+— Non-PT —+—
Application PT ----a--- Application PT ----a---
Build PT ---<--- _ Build PT ---<---
Application & Build PT - S Application & Build PT -
©
g
o
S
o
2
100 8
o
k-]
|9
2
£
5
z
10 L 1 1 1 1 1 1 1 1 1 b 1 1 1 1 1 1 1 1
1 125 15 175 2 225 25 275 3 1 1.25 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
SPEC _227_mtrt SPEC _228_jack
1000 T T T T T T 1000 T T T T T T
Non-PT —+— Non-PT —+—
Application PT ----a--- Application PT ----a---
Build PT ---<--- . Build PT ---<---
Application & Build PT - B Application & Build PT e
= L
o
2
S
8
@
o R,
8 100 e T
[}
S
]
1 =2
£
5
z
1 L I I I I I I I I 10 L I I I I I I I I
1 125 15 1.75 2 225 25 275 3 1 125 15 1.75 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size

Fig. 24. SPEC Benchmarks: Second Iteration Number of GCs

39



Normalized GC time (second run)

Normalized GC time (second run)

Normalized GC time (second run)

120%

100%

80%

60%

40%

20%

0%

120%

100%

80%

60%

40%

20%

0%

120%

110%

100%

90%

80%

70%

60%

50%

40%

Olden health (6, 128)

Olden health (6, 128)

Heap size relative to minimum heap size

(e) Geometric Mean GC 2

T T T 105% T T T
2 e0 PPN o S
LR NGV IR ! H 2 100%
: i : T 9%
: { £
: ;‘ 5§ 90%
; o E]
: 3
[ aa £
: . s 3 85%
@0 aa : 2
A% Application P g g 80% Application PT -+~ ]
AR SPSIE Build PT S £ Build PT ---o---
Apphicatioh @ Bliild PY %0 z Application & Build PT -+
. . . . . n h . A 7506 Lt . . . . n h . .
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Health GC 2 (b) Health Exec 2
SPEC pseudojbb SPEC pseudojbb
T T T T Py 110% prp T T T T T T
5 100% [ . e
- Sk ]
' iy
ML IUTRS R % 90%
. h o 80%
Pl g £
P L S 70% food
$ 58 L ]
o8 e 5 60% [t
¢ L g |
b4 ¢ o 50% .
;i < ¢
‘ % 40% [+
& Application PT ---&--- - £ H Application PT - -~
Build PT ---o--- S 30% 4§ Build PT ---<---
Application & Build PT - =z Application & Build PT -

I I I I I N h I I 209 L I I I I N h I I
1 125 15 175 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size

(c) PseudoJBB GC 2 (d) PseudoJBB Exec 2
Geometric mean for all benchmarks Geometric mean for all benchmarks

T T T T T T 110% T T T T T

. =

% c B

' 2 105% [*

: 2 ;

§ 100%
8 22
o 95%
g )
T 9%
S
§ 85% I
I3 i
T 80% fi-

o B i§

i % 75% i
' Application PT ----+--- £ 3 Application PT ----&---
L Build PT ---<-- s 70% Build PT ---o--- 3
é Application & Build PT - z Application & Build PT -
L ¢ L L L L L i L L 65% CL L L L L L i L L
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3

Heap size relative to minimum heap size

(f) Geometric Mean Exec 2

Fig. 25. Olden Health (6,128) apdeudojbb results, and Geometric Means: Second Iteration GC and Ereclitne
Relative to Non-Pretenuring

Generally, we see improvements in locality rather than aldggions. The L1 miss rate
ratio curves are similar to our performance curves, the L@mate ratios indicate general
improvement, and the TLB miss rate ratios show that buittetend combined pretenuring
usually reduce TLB miss rates but application-specificgareting sometimes gives reductions
and sometimes improvements. Therefore, pretenuring isvesty disturbing the good locality
of nursery allocation in a contiguous region [Blackburnle@04a], nor is it degrading GC

40



Olden health (6, 128) SPEC pseudojbb

100 T T T T T T 1000 T T T T T T
Non-PT —— Non-PT ——
Application PT ----a--- Application PT ----a---
- Build PT ---<--- _ Build PT ---<---
g Application & Build PT - g 'Y Application & Build PT -+
2 2
< PR § 100
=1 . 3
1 Y 1
2 2
g 10 ¢ ¢}
0] 0] okt
5 5 Ga
g 5 10 e Mg
£ £ M
£ £
5 5
z z
1 L L L L L L \" 1L L L L L L L L L
1 125 15 1.75 2 225 25 2.75 3 1 125 15 175 2 225 25 275 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Health GCs 2 (b) PseudoJBB GCs 2
Fig. 26. Olden Health (6,128) amdeudojbb: Second Iteration Number of GCs
Geometric mean for all benchmarks Geometric mean for all benchmarks
105% T T T T T 105% T T T T T
100% 100% T CRETEIE
N N Pry 00 0 g 558 &
£ 50 £ osw Zan D T e wy
8 = o
3 eo% 3 ooo [ 008
2 £ o4
o o -t
B 8% B 8% ; *
‘s '3 2
E 80% [ E 80%
z 2 z s
5% [ Application PT -4~ 4 75% (4 Application PT ----#--- ]
° Build PT ---<--- Build PT ---<---
s Application & Build PT - . Application & Build PT -
70% La . . . . N h . . 70% L$ . . . . N h .
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Appel Opt (b) Appel Adaptive
Geometric mean for all benchmarks Geometric mean for all benchmarks
105% p T T T T T 105% p T T T T T
100% 555 BN e 100% ST S
@ g5% TN S s AL I o o5 20 e IO,
E ° m“;gg" A S S et et Sl s E o e ¥
5 90% fubigya 5 90% f
3 P =
3 85% [ 2 85% .
% P 3 4
o 80% [t o 80% [t
g W 8 4
® 0 © 0
g 75% i g 75% i
2 70 (42 2 To% [
Application PT ----a--- Application PT -
65% F o Build BT --<-- 65% - Build PT - g
Application & Build PT - . Application & Build PT
60% L I I I I N h I I 60% L I I I I N h I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(c) Appel Replay: Advice from Opt traces (d) Appel Replay: Advice from Replay traces
Fig. 27. Comparing Pretenuring Under Different Compilat{@ptions
locality.

Finally, we ask the question: How does pretenuring affeatatorexecution time (as op-
posed to the collector)? This indirectly indicates logabienefits, since mutator instruction
execution should be quite comparable with and without pregiag. Figure 29 shows just
mutator time under build-time, application-specific, amthbined pretenuring, each relative

41



Geometric mean for all benchmarks Geometric mean for all benchmarks

110% 7 T T T T T 102% [ T T T T T T
<,
108% F 100%
106% [
i 98%
104% [#---34

96%

102%
100%
98%
96%

94%

92%

L1 misses per cycle
L2 misses per cycle

90%

94% . . g
i Applation PT" & 88% [ Application PT -« ]
92% Build PT 7o *4 P le Build PT -0
Application & Build PT LA Application & Build PT -
90% EL I I I I N h I 869 LL I I I I N h I
1 125 15 1.75 2 225 25 2.75 3 1 125 15 1.75 2 225 25 2.75 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Appel Relative L1 Misses (b) Appel Relative L2 Misses
Geometric mean for all benchmarks 12 L S —
L1 misses BRI
180% T T T T T L2 misses #7772
¢ TLB misses o
H ) 1
160% 2
2
£
2 140% =4 08
> -
[ g
g 120% A g
y ; 2 o6
2 8
g 100% 2
£ L
@ a 0.4
2 80% S 2
. =
60 ¥ Appigagon P & 0
% e 1 0.2 -
T b L Yl b Yo
¥ Application & Build PT -
40% Lt . . . . N h . .
1 125 15 1.75 2 225 25 2.75 3 A . . - : . = -
Heap size relative to minimum heap size comp jess rtrace db javacmpeg mtrt jack health pjbb Geo
(c) Appel Relative TLB Misses (d) Relative Number of Different Kinds of Misses

Fig. 28. Comparing Cache and TLB Locality

to no pretenuring. There is a set of bars for each benchmagkam and for the geometric
mean. We see there is one case of more than minimal slow dd#riorbuild-time pretenur-
ing onraytrace. In most cases there is little effect, but in several caseretts considerable
reduction in mutator time under pretenuring, most notabland to a lesser extehgalth. We
observe thatib is known to be highly sensitive to exact layout of heap dateesit repeatedly
traverses long singly-linked lists, which cautions regdimo much from thelb results. Still,
we find on average a slight reduction in mutator time whengonating.

6.10 Application-Specific Advice with Other Inputs

Space precludes thorough consideration of how well apmicaspecific advice collected from
one program run (trace) affects execution of the same pnogigh different inputs. However,
since the SPEC benchmarks come with different inputs “Sizes performed some simple
comparisons. The “sizes” available are 1 (intended onlytdsting that a program runs), 10,
and 100. We use size 100 runs to develop our traces and ireadtiier evaluations presented
here. Figure 30 shows the geometric mean of size 10 perfaenatative to non-pretenuring.
This averages the eight SPEC benchmarks, péadth run at with parameters (5,128).As
the figure shows, we still see improvement, though not as gréaction, probably because

151t seemed pointless to ryrseudojbb just for a shorter time, since the behavior would be so sedflar. The same
may be true of some SPEC benchmarks.

42



ll T T T T T T T T L T
Application Only &=z
Build-Time Only tieas

1.05 Application & Build-Time i~

o

0.95

i

0.9

0.85

Normalized Mutator Time

0.8

0.75

0.7

comp jessrtrace db javacmpeg mtrt jack healthpjbb Geo

Fig. 29. Comparing Mutator Time to Estimate Mutator Localityeefs

these runs are so short and thus do relatively less allocatid collection. Still, we see that
the advice is never harmful, that build-time pretenuringaés useful, and that application-
specific and build-time pretenuring provide cumulativedfin

We also explored developing advice from size 10 traces,duntd that they did not run long
enough to produce very useful application-specific adwioe:runs were dominated relatively
more by compilation. Also, in short runs there is an incrdassk of labeling as immortal
objects (and sites) that should not be, just because theasm®t long enough for our criterion
to weed them out.

6.11 Pretenuring with Other Collectors

We now consider the question of how well our pretenuring @alworks with other age-based
collectors. Specifically, we consider the Beltway and thdeDIFirst (OF) collectors. It is
important to emphasize that we useactlythe same collector-neutral pretenuring advice for
all three collectors.

6.11.1 Pretenuring with the Beltway Collectof-or the Beltway collector, we use the con-
figuration 25.25.100, which is reported to perform well [@{burn et al. 2002]. This config-
uration has three belts. The first belt is the nursery anditsis 25% of the usable space
(12.5% of the total heap size, which includes the copy regeivhen the nursery belt is full,
Beltway promotes survivors of nursery collections to theosel belt, which consists of four
increments, each sized up to 25% of the usable space. Thisamerow, provided the heap is
not full. When the second belt is full, Beltway collects tHdest window of the belt, and pro-
motes survivors to the third belt. The third belt has only eredow, which can be as large as
100% of the usable space (50% of the total heap size). Cioltescon the third belt guarantee

43



Geometric mean for all benchmarks

100%
95% [
© 4
E 90% [
s i
2 85% |
3 .
o) :
5 80% -
- .
5] :
N 750 |
< .
S o
S 70% [ ]
e o ]
A Application PT ----&--- ]
0%k Build PT o 7

i Application & Build PT e
60% M 1 1 1 1 | | .
1 1.25 15 1.75 2 2.25 2.5 2.75 3

Heap size relative to minimum heap size

Fig. 30. Relative Execution Time of Size=10 Runs with Size=100ige

completeness of the collector (i.e., that it eventuallyem$ any garbage object). When the
heap is full and the other belts are empty, Beltway colldwshird belt. These collections are
rare.

We added to Beltway ammortal belt that is never collected. With pretenuring advice,
Beltway directly allocates immortal objects on the immbhalt. It puts long-lived objects
into the youngest window of the second belt, so that they tanaen the second belt for the
longest possible time before Beltway collects them.

Figure 31 shows the geometric mean of the relative perfoocamdor all our benchmarks
with the modified Beltway collector, normalized with respexthe Beltway collector with-
out pretenuring. We show build-time, application-speciicd combined pretenuring results.
Application-specific Beltway pretenuring always improyesformance by about 4-6%, ex-
cept only for the tightest heap sizes, wh@eac and pseudojbb suffer from nepotism and
experience degradation of 30% and 8%, respectively. Aleiotlenchmarks have substan-
tial improvement with application-specific pretenuringight heap sizes, so we observe only
a 3% degradation in the geometric mean. Build-time Beltwatgnuring improves perfor-
mance by up to 12% in tight heaps, and by about 2% for larggrsheEhe improvements for
combined Beltway pretenuring are about 15% in tight heapd, 76 in larger heaps. Note
that we achieve less benefit from pretenuring in tight hebpa tve do for the Appel-style
generational collector. Beltway'’s performance advargamer generational collection with-
out pretenuring come partly because Beltway uses a dynapicreserve and thus uses heap
space more efficiently. Hence, pretenuring gives relatiless benefit to Beltway.

6.11.2 Pretenuring with the OF CollectorWe found that the same advice can improve
an Older First (OF) collector [Stefanovi€ et al. 1999]. TBE collector organizes the heap

44



Normalized execution time

Normalized execution time

104%

102%

100%

98%

96%

94%

92%

90%

88%

86%

84%

100%

98%

96%

94%

92%

90%

88%

Geometric mean for all benchmarks

i o - P
& e T s
o
i AT .
i g o " . » e “
i . * *
B e - *
{ . * *
$
Application PT -4~
¢ Build PT -

‘ ‘ ‘ ‘ ‘ _ Application & Build PT e
1 1.25 1.5 1.75 2 2.25 25 2.75 3
Heap size relative to minimum heap size

Fig. 31. Relative Execution Time for Pretenuring with thetely Collector
Geometric mean for all benchmarks
N "o
SR o 2 el
: < Lo
S0 ” e Oy Do &
o .
; S
&
i
$
4 {
Aoa a
L oe A A AT A
* * > W AL
* * A
* *
A4 *
. > - * .
* L 4
* * .
* *
*
*
*
Application PT ---a---
Build PT o
‘ [ ‘ ‘ ‘ _ Application & Build PT e
1 1.25 15 1.75 2 2.25 25 2.75 3

Heap size relative to minimum heap size

Fig. 32. Relative Execution Time for Pretenuring with the O#il€ctor

45




in allocation order. View the heap as a queue; the oldestctshpre at the tail and the OF
allocator inserts newly allocated objects at the head ofjtreue. OF begins by positioning
the window of collection at the end of the queue, which corgdihe oldest objects. During a
collection, it copies and compacts the survivors in plaegjrns free blocks to the head of the
gueue, and then positions the window closer to the fronteftleue, just past the survivors
of the current collection. When it bumps into the allocatpmint for the youngest objects, it

resets the window to the oldest objects. See Stefanovitfer anore details [Stefanovit et al.

1999].

With pretenuring advice, OF puts immortal objects in a resgrspace that is never col-
lected. OF allocates long-lived objects at the copy pointtie previous collection, which
gives them the longest possible time before OF will consilem for collection. OF con-
tinues to put short-lived objects at the head of the queuewifksthe generational collector,
we use a fixed sized heap, reduced by the space allocated toriatrabjects. We set the
collection window size t®).3x heap size.

Figure 32 shows the geometric mean of the relative perfocamdor all our benchmarks,
normalized with respect to the OF collector without pretarg for build-time, application-
specific, and combined pretenuring. Application-specifie @etenuring improves perfor-
mance in all cases, ranging from 3% to 8% Again, build-timetgmuring improves perfor-
mance, and additional improvements from combined preteguare consistent and signifi-
cant, ranging from 4% to 12%.

Since the OF collector visits older objects more regulanntthe generational collector,
there is potential for better improvements, and it is reaiin these results. However, our
implementation of the OF collector is currently not wellégi) and does not include key details
such as an address order write barrier [Stefanovic et 8P[LThese drawbacks prevent direct
comparisons between the performance of the OF and gerahtollectors with or without
pretenuring. Indeed, these comparisons are not pertinghetsubject of this work. The key
point of this section is that we can use the same advice i thastly different collectors and
it improves performance as well.

7. USING PRETENURING IN PRACTICE

Here we used GC configurations suited to clarity of expertademethodology. In practice
one would probably adjust some of the policies to producestesy more convenient for
production use:

—We used a fixed total size for the heap to ease comparisohs) ptactice adaptive heap
growth and shrinkage is more appropriate. If a program runsoderate length of time
and accumulates some amount of garbage in the immortal $épadenepotism in the long
space), growing may be an easy way to handle the problem Hphee “leak” is not very
great. (One may also adjust heap size in response to aeaiadl memory, as explored by
Yang et al. [Yang et al. 2004].)

—While our technique appears reliable, it doesgumranteeo bound growth of the immortal
space [Boehm 2002] or of objects in other spaces retaineglisecf nepotism. Thus one
might apply a “back up” collector from time to time, e.g., b marking, either separately
or as part of an older generation collection. This can ddtesrthe volume of dead objects
in the immortal space, and of those objects retained in ajpaces because of them. If the
dead immortal volume is relatively large, one could appiglis compaction (say) to the
immortal space. (Current versions of GCTk’s successorggekMMTk [Blackburn et al.

46



2004b; 2004a], make this relatively easy to build and conéiguf the volume is relatively
small, one could zero out the bodies of the dead immortalotdjgreventing long-term
nepotism.

—An additional concern is programs that have popular atlonasites with poor lifetime
homogeneity, or that profiling mispredicts so that we geteeirgappropriate immortal or
long advice for them. One possible direction is to apply gmatingadaptively[Harris
2000; Jump et al. 2004]. These designs would need extengiahsal with an immortal
space. It may be reasonable to use a simpler mechanism, wieeneark all immortals
objects with their allocation site (or perhaps just a sachfilaction of them). If our backup
immortal space collection mechanism detects particulianding allocation sites, we can
patch the site to allocate to a shorter lived space.

—A particular concern about quality of advice is that certedding practices may increase
the lifetime heterogeneity of allocation sites. In partécufactory methodsi.e., methods
whose purpose is to allocate an object on behalf of theiegaiiay tend to contain allocation
sites with more heterogeneous lifetimes. This effect isgaied if the factory methods are
inlined. Increased lifetime heterogeneity will usuallstiueduce the potential benefit of
pretenuring by disqualifying more allocation sites.

—The concept of pretenuring applies to generational systamd is not particular to copying
GCs. Would our pretenuring scheme be effective for, sayseeayuses linear allocation into
a nursery, but manages older objects with mark-sweep oisme sliding compaction?
One expects some shifting of design points, but we arguettieasame general approach
is likely to produce useful benefits, though perhaps not eatgas seen with copying. In
our scheme the immortal space is particularly helpful bseat needs no copy reserve
and this effectively frees space for allocation in youngameyations. That is, it effectively
increases the heap size. In non-copying systems or onesapyaut of a nursery to non-
copying spaces, there would be no (additional) space berdfitvever, one still obtains
a processing time benefit, assuming that the strategy fot cotlections does not need to
examine most of immortal space. (Thus one would prefer relmeead sets that usually
remember particular referrirgjotsrather than remembering referringjects)

7.1 Online Pretenuring?

Our approach is based on feeding back profile informatiomfpoevious, instrumented runs
of programs. Could it be applied online? While we compil@igénerated machine code the
region into which each allocation site is to allocate, it@sgible to change the allocation site
on the fly by patching, or regenerating the code, or inseditest. However, it is conceptually
problematic to apply online anything like our definition afrnortal objects, since it depends
on knowing when the program will end. As we discuss in moraitlbelow, neither of the
online pretenuring schemes [Harris 2000; Jump et al. 206&io much improvement.

7.2 Whither Profile Feedback?

Doing profile feedback is tedious for users, so the most als/igay to exploit our approach
is to use build-time pretenuring, which has significant lfielead may be more reliable than
application-specific pretenuring decisions. Also, eveutih Merlin is much faster than previ-
ous techniques, the slowdown for even a granulated trad@i80, further suggesting build-
time pretenuring as being more reasonable in most instances

47



However, one can imagine collecting, at modest overheadeahat coarse-grained object
lifetime statistics from many runs and integrating thenoiatdatabase. One could run an
analyzer and advice generator on this database periodieaitl future runs could use the
advice. This is a way to make the feedback automatic and miuasive, an interesting idea
for future work.

8. RELATED WORK

We first compare our work to previous research on generdtiambage collectors, object life-
time prediction, and pretenuring. We then relate it to warlpoediction and object segregation
for C programs with explicit allocation and freeing.

Ungar pioneered the use of generational copying garbatgetioh to effect quick reclama-
tion of the many short-lived objects in Smalltalk progratdafar 1984]. Performance studies
with a variety of languages demonstrate that well-tunedegaional collector performance
generally ranges from 10% to 40% of the total execution tithegar and Jackson 1988; Zorn
1989; Ungar and Jackson 1992; Barrett and Zorn 1995; TauttitiDiwan 1996; Cheng et al.
1998; Blackburn et al. 2004a].

Ungar and Jackson use online profiling to identify longeedi objects in a two generation
collector for Smalltalk [Ungar and Jackson 1988; 1992]. ifkenured object space corre-
sponds roughly to our immortal space, in that they nevercolt. However, they do not
pretenure (allocate any objects directly into tenured spa&ather, they copy into tenured
space objects that survive a given number of nursery callest They adjust this number, the
tenuring thresholdby keeping track of the volume of nursery objects that hagiwed one
collection, two collections, etc. Thus, their system kekypgy-lived objects in the nursery,
repeatedly copying them to keep from tenuring them, in otdl@woid tenured garbage. They
use the object demographics that they obtain from a givesemycollection to set the tenuring
threshold for the next collection. The goal is to tenure asligtes as possible while keeping
the nursery space from growing too large and thus exhibitimacceptable pause times when
it is collected. They further outline a multi-generatioaglproach that would copy the long-
lived objects fewer times. They notice immortal objectd, dince those were insignificant in
their system, they take no special action. We allocate intethobjects directly into a perma-
nent space. We thus never copy immortal objects. We also thavpotential never to copy
long-lived objects, but we may.

Cheng et al. (CHL) evaluate pretenuring and lifetime préalicfor ML programs in the
context of a generational collector [Cheng et al. 1998]. iimo Ungar and Jackson, they
divide the heap into two regions: a fixed size nursery and darajeneration. They collect
the nursery on every collection, and both spaces when tliee drgap fills up. They gener-
ate pretenuring advice based on profiles of this collectut, dassify call sites as short-lived
or long-lived. Most objects are short-lived, and allocatgites are bimodal: either almost
all objects are short-lived, or all are long lived. Their mgvis dependent on their collec-
tion algorithm and the specific configuration, whereas oatgmnuring advice is based on two
collector-neutral statistics: age and time of death. Weefioee can and do use it with different
configurations of a generational collector, and with altbgedifferent collectors, Older First
and Beltway.

CHL statically modify those allocation sites where 80% orenaf objects are long-lived to
allocate directly into the older generation, which is cotiésl less frequently than the nursery.
We allocate instead into three areas: the nursery, the giteration, or the permanent space.
We never collect our permanent space. At collection timeijrtiystemmust scarall pre-

48



tenured objects because they believed that the write baog for storing pointers from the
pretenured objects into the nursery would be prohibitive.ilgtead perform the write barrier
as needed; this cost is very small in our case. The cost ohsgais significant [Cheng et al.
1998; Stefanovit et al. 1999], and as they point out, it ceduthe effectiveness of pretenur-
ing in their system. We never collect immortal objects, anty @ollect long-lived objects
later when they have had time to die. In summary, our pretegutassification is more gen-
eral, and our collectors more fully realize the potentiapadtenuring. Most importantly, the
more general mechanism we use to gather statistics andagersgtvice enables our system
to combine advice from different executions and perforntdstime pretenuring, which is not
possible in their framework.

Harris, and Jump et al., present dynamic pretenuring schemarris [Harris 2000] sam-
ples using Agesen and Garthwaite’s [Agesen and Garthwaid@]2approach, which inserts
weak pointers and after a collection computes object ffifetstatistics. Harris then pretenures
into the older generation of a two generation collector, senthples older objects to stop pre-
tenuring, and thus can react to phase changes. He does odt aepuracy or overhead, but
does not improve performance. The dynamic pretenuringaggbrof Jump et al. [Jump et al.
2004] improves only one prograrjayac. However, they develop an inexpensive and accurate
mechanism for tracking object lifetimes based on frequanides (one object out of every
256 bytes allocated).

For many benchmarks, dynamic pretenuring will always sufécause programs often al-
locate a high proportion of immortal and long-lived objeatshe very beginning of the pro-
gram [Jump et al. 2004], before any dynamic scheme has tinteito itself. Since static
pretenuring relies on prior runs, it is not subject to thiawdback. Furthermore, it is accurate
and improves performance. However, it does require a pigfilun and does not respond to
phase changes.

For explicit allocation and deallocation in C programs, blamperforms object segregation
of short-lived and all other objects on a per allocation bigsis with user specified object
lifetimes [Hanson 1990]. Barrett and Zorn extend Hansolgerédthm by using profile data to
predict short-lived objects automatically [Barrett andiZ&993]. To achieve accurate results,
their predictor uses the dynamic call chain and object sitereas we show that in Java pre-
diction does well with only the allocation site. Subseque&ntk by Seidl and Zorn predicts
short-lived objects with only the call chain [Seidl and Z4a8©8]. In these three studies, a ma-
jority of objects are short-lived, and the goal is to grougntitogether to improve locality (and
thus performance) by reusing the same memory quickly. Baanel Zorn’s allocator dynami-
cally chooses between a special area for the short-livesttshjand the default heap. Because
we attain accurate prediction for an allocation site, wédai# statically where to place each
object in the heap, which is cheaper than dynamically exengiand hashing on the call chain
at each allocation. Since in their context “long-lived” ietconservative assumption, Barrett
and Zorn predict “short-lived” only for call chains where(B® of the allocations profile to
short lived. In a garbage collected system, our consee/gtigdiction is instead “short-lived”.
We also differentiate between long-lived and immortal otgewhich they do not.

Demers et al. [Demers et al. 1990] looked at other ways oftifyémg allocation sites with
context, in particular using stack pointer values as a claggpoximation to detailed calling
context. On contrast to this run-time technique, We nesigtic prediction, since we compile
in the choice of allocation area. Of course it might be pdedib apply our static prediction
to highly homogeneous sites and a more contextual one to heteeogeneous sites, but we
obtained good results with the static predictor.

49



The work we present here adds several dimensions over aurpork [Blackburn et al.
2001]. We now use exact life time information to generatei@wvhile our previous advice
used frequent collections (e.g., every 64K bytes of aliocdt a technique that over-estimates
object lifetimes. This change prompted a revised advicgsdiaation scheme whose sensitivi-
ties we explore experimentally. Our new technique imprakiesjuality of our advice. Conse-
guently, this advice significantly improves applicatioef@nuring. Now application pretenur-
ing improves performance consistently, whereas in ouripusvwwork it did not. We further
use a more modern Java compilation strategy (Adaptive) firaddo produce deterministic,
yet realistic results (Replay), and see that it affects éhative impact of application-specific
versus build-time pretenuring—because there is lessailtmt by the optimizing compiler,
build-time pretenuring has relatively less impact, thoitgb usually still useful. We also add
a richer set of benchmarks, more in-depth analysis, and #iigv8y collector to our results.
We also include here second-iteration results, cache amdniss performance, results from
using long-run advice for short runs, and more statisticshfe non-pretenuring collector that
is the standard against which we compare. These additiotiefudemonstrate the applicabil-
ity and generality of our approach.

A technigue somewhat complementary to pretenurindasge object spac@_OS) [Caudill
and Wirfs-Brock 1986; Ungar and Jackson 1992; Hicks et a88].9 One allocates large
objects (ones exceeding a chosen size threshold) direttlainon-copying space, effectively
applying mark-sweep techniques to them. This techniqu&swver copying these objects,
and can noticeably improve performance. GCTk does not sth@$, so we do not compare
here the relative benefits of LOS and pretenuring. Some J\Mdsate large objects directly
into older spaces; i.e., they use size as a criterion foepteing. (These older spaces may also
be mark-sweep, so they are effectively implementing prgiagandLOS.) While pretenuring
large objects may be generally helpful in a two-way classifin system (a point that requires
further analysis), it could be disastrous to pretenure @uioimmortal space using size as the
sole criterion. Theompress benchmark is an example of this: it allocates and discardg la
arrays.

9. CONCLUSIONS

This paper makes several unique contributions. It offersva mechanism for collecting and
combining pretenuring advice, and a novel and generabzelbksification scheme. We show
application-specific pretenuring using profiling works Met Java. Our per-site classification
scheme for Java finds many opportunities to pretenure ahjiecteduce copying, garbage col-
lection time; and to reduce total time, sometimes signifigaiVe show that the combination
of build-time and application-specific pretenuring offéne best improvements. We are the
first to demonstrate the effectiveness of build-time pretieiy, and we do so usingue ad-
vice. Because Jikes RVM is written in Java for Java, we prdféed any libraries we choose
to include, combine the advice, then build the JVM and lilmswith that advice, and ship.
User applications thus can benefit from pretenuring wittamyt profiling. These results thus
demonstrate an advantage of the Java-in-Java approach.

Acknowledgments

We thank Sara Smolensky who did the first studies that indgiris work. We thank Sharad
Singhai for his substantial contributions to an earliesiar of this work. We also thank John
Cavazos, Asjad Khan, and Narendran Sachindran for thefribations to various incarnations
of this work. We thank our associate editor, Ben Zorn, andati@nymous reviewers for their

50



numerous helpful comments. Finally, we thank the memberh®flikes RVM (formerly
Jalapefio) team at IBM T.J. Watson Research Center whodhé&péitate this research, IBM
Research for making Jikes RVM widely available, and the eodikes RVM community for
their contributions to the research platform.

REFERENCES

AGESEN O.AND GARTHWAITE, A. 2000. Efficient object sampling via weak referencesPiaceedings of the
International Symposium on Memory Managem@&@M, Minneapolis, MN, 121-127.

ALPERN, B., ATTANASIO, D., BARTON, J. J., BJRKE, M. G., P.GHENG, CHOI, J.-D., @cCcCHI, A., FINK, S. J.,
GROVE, D., HIND, M., HUMMEL, S. F., LEBER, D., LITVINOV, V., MERGEN, M., NGO, T., RUSSELL, J. R.,
SARKAR, V., SERRANO, M. J., SHEPHERD, J., MITH, S., REEDHAR, V. C., RINIVASAN, H., AND
WHALEY, J. 2000. The Jalapefo virtual machii®M System Journal 39, (Feb.), 211-238.

ALPERN, B., ATTANASIO, D., BARTON, J. J., @CCHI, A., HUMMEL, S. F., LEBER, D., MERGEN, M., NGO, T.,
SHEPHERD, J.,AND SMITH, S. 1999. Implementing Jalapefio in JavaPmceedings of the ACM Conference on
Object—Oriented Programming Systems, Languages, and Agpiplis ACM Press, Denver, CO, 314-324.

APPEL A. W. 1989. Simple generational garbage collection antieéscation. Software—Practice and
Experience 192, 171-183.

ARNOLD, M., FINK, S. J., QROVE, D., HIND, M., AND SWEENEY, P. 2000. Adaptive optimization in the Jalapefio
JVM. In Proceedings of the ACM Conference on Object—Oriented Progniaig Systems, Languages, and
Applications ACM Press, Minneapolis, MN, 47-65.

BARRETT, D. A. AND ZORN, B. 1993. Using lifetime predictors to improve memory a#ition performance. In
Proceedings of the ACM SIGPLAN’'93 Conference on Programminguage Design and Implementation
(PLDI). ACM Press, Albuquerque, NM, 187-196.

BARRETT, D. A. AND ZORN, B. 1995. Garbage collection using a dynamic threateninmtary. InProceedings
of the ACM SIGPLAN’'95 Conference on Programming Language Desig Implementation (PLDIACM
Press, La Jolla, CA, 301-314.

BLACKBURN, S. M., CHENG, P.,AND MCKINLEY, K. S. 2004a. Myths and realities: The performance impact of
garbage collection. IACM SIGMETRICS Conference on Measurement & Modeling CompByttemsACM,

NY, NY, 25-36.

BLACKBURN, S. M., CHENG, P.,AND MCKINLEY, K. S. 2004b. Oil and water? High performance garbage
collection in Java with IMTk. IfProceedings of the International Conference on Software igeging ACM,
Scotland, UK, 137-146.

BLACKBURN, S. M., DNES, R., MCKINLEY, K. S.,AND B.M0ss J. E. 2002. Beltway: Getting around garbage
collection gridlock. InProceedings of the ACM SIGPLAN 2002 Conference on Programminguzge Design
and Implementation (PLDI)SIGPLAN, ACM Press, Berlin, Germany, 153-164.

BLACKBURN, S. M., SNGHAI, S., HERTZ, M., MCKINLEY, K. S.,AND M0Oss J. E. B. 2001. Pretenuring for
Java. InProceedings of the 2001 ACM SIGPLAN Conference on Object-@ddProgramming Systems,
Languages, and Applications (OOPSLS)GPLAN, ACM Press, Tampa, FL, 342-352.

BoeHM, H.-J. 2002. Bounding space usage of conservative garlmdigetors. InProceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Laresig@OPL '02) ACM Press, New York,
NY, USA, 93-100.

CAHOON, B. AND MCKINLEY, K. S. 2001. Data flow analysis for software prefetchingdidklata structures in
Java. InThe 2001 International Conference on Parallel Architectua@d Compilation TechniqueEEE
Computer Society Press, Barcelona, Spain, 280—291.

CAUDILL, P. J.AND WIRFS-BROCK, A. 1986. A third-generation Smalltalk-80 implementatiom OOPSLA'86
ACM Conference on Object-Oriented Programming Systemguages, and Application&ACM Press, Portland,
OR, 119-130.

CHENG, P., HARPER, R.,AND LEE, P. 1998. Generational stack collection and profile-drigeztenuring. In
Proceedings of the ACM SIGPLAN '98 Conference on Programminguizge Design and Implementation
(PLDI). ACM Press, Montreal, Canada, 162-173.

DEMERS, A., WEISER, M., HAYES, B., BOEHM, H., BOBROW, D., AND SHENKER, S. 1990. Combining
generational and conservative garbage collection: Framieand implementations. IRroceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming wages (POPL '90)ACM Press, New
York, NY, USA, 261-269.

51



EECKHOUT, L., GEORGES A., AND BossCHEREK. D. 2003. How Java programs interact with virtual mackine
at the microarchitectural level. Rroceedings of the ACM Conference on Object—Oriented Progriag
Systems, Languages, and Applicatioh6M, Anaheim, CA, 169-186.

HANSON, D. R. 1990. Fast allocation and deallocation of memory thaseobject liftimes Software—Practice and
Experience 201 (Jan.), 5-12.

HARRIS, T. L. 2000. Dynamic adaptive pre-tenuring. Rnoceedings of the International Symposium On Memory
Management (ISMM)ACM Press, Minneapolois, MN, 127-136.

HERTZ, M., BLACKBURN, S. M., Moss J. E. B., McKINLEY, K. S.,AND STEFANOVIC, D. 2002. Error-free
garbage collection traces: How to cheat and not get caugifroceedings of the International Conference on
Measurement and Modeling of Computer Systems (ACM SIGMEJRBEEMETRICS, ACM Press, Marina Del
Rey, CA, 140-151.

HERTZ, M., BLACKBURN, S. M., Moss J. E. B., McKINLEY, K. S.,AND STEFANOVIC, D. 2005. Generating
object lifetime traces with MerlinACM Transactions on Programming Languages and Systems (TQRIZATo
appear.

Hicks, M., HORNOF L., MOORE, J. T.,AND NETTLES, S. 1998. A study of Large Object SpacesI$MM’'98
Proceedings of the First International Symposium on MemaapdgementACM Press, Vancouver, BC,
138-145.

HUANG, X., WANG, Z., BLACKBURN, S. M., MCKINLEY, K. S., Moss J. E. B. AND CHENG, P. 2004. The
garbage collection advantage: Improving mutator localityProceedings of the ACM Conference on
Object—Oriented Programming Systems, Languages, and Agiplis ACM, Vancouver, BC, 69-80.

JuMP, M., BLACKBURN, S. M.,AND MCKINLEY, K. S. 2004. Dynamic object sampling for pretenuring. In
Proceedings of the 4th International Symposium on Memoryadement (ISMM '04)ACM Press, New York,
NY, USA, 152-162.

LEE, H. B.AND ZORN, B. G. 1997. BIT: A tool for instrumenting Java bytecodesUBENIX Symposium on
Internet Technologies and SystetdSENIX Association, Monterey, CA, 73-82.

LIEBERMAN, H. AND HEWITT, C. E. 1983. A real time garbage collector based on therifesi of objects.
Communications of the ACM 26, 419-429.

ROGERS A., CARLISLE, M. C., REPPY, J. H.,AND HENDREN, L. J. 1995. Supporting dynamic data structures on
distributed-memory machine&CM Transactions on Programming Languages and Systems (TQRIZAS
(Mar.), 233-263.

SEIDL, M. L. AND ZORN, B. G. 1998. Segregating heap objects by reference behaviblifetime. In
ASPLOS-VIII Proceedings of the 8th International ConferencAmhitectural Support for Programming
Languages and Operating SysterA€M Press, San Jose, CA, 12-23.

STEFANOVIC, D., HERTZ, M., BLACKBURN, S. M., MCKINLEY, K., AND MoOss J. 2002. Older-first garbage
collection in practice: Evaluation in a Java virtual machimeMemory System Performand®CM Press, Berlin,
Germany.

STEFANOVIC, D., MCKINLEY, K. S.,AND Moss J. E. B. 1999. Age-based garbage collectionPioceedings of
the 1999 ACM SIGPLAN Conference on Object-Oriented Prograg®ystems, Languages & Applications
(OOPSLA '99) ACM Press, Denver, CO, 379-381.

TARDITI, D. AND DIWAN, A. 1996. Measuring the cost of storage managemssp and Symbolic
Computation 94 (Dec.), 323-342.

UNGAR, D. 1984. Generation scavenging: A non-disruptive higliquerance storage reclamation algorithm. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering&yam on Practical Software
Development Environment&CM Press, Pittsburgh, PA, 157-167.

UNGAR, D. AND JACKSON, F. 1988. Tenuring policies for generation-based storaglamation. IrProceedings of
the ACM SIGPLAN Conference on Object-Oriented Programminte8ys Languages, and Applications
(OOPSLA'88) N. K. Meyrowitz, Ed. ACM Press, San Diego, CA, 1-17.

UNGAR, D. AND JACKSON, F. 1992. An adaptive tenuring policy for generation scgees. ACM Transactions on
Programming Languages and Systems (TOPLAS]) 14;-27.

YANG, T., HERTZ, M., BERGER E. D., KAPLAN, S. F.,AND M0Oss J. E. B. 2004. Automatic heap sizing: Taking
real memory into account. IRroceedings of the 2004 International Symposium on MemonyagementACM
SIGPLAN, ACM Press, Vancouver, BC, 61-72.

ZORN, B. 1989. Comparative performance evaluation of garbatieatimon algorithms. Ph.D. thesis, Computer
Science Dept., University of California, Berkeley. Avdile as Technical Report UCB/CSD 89/544.

52



Received July 2004; revised December 2005; accepted JaP0@6

53



