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Abstract 
This paper evaluates three alias analyses based on program- 
ming language types. The first analysis uses type compati- 
bility to determine aliases. The second extends the lirst by 
using additional high-level information such as field names. 
The third extends the second with a flow-insensitive analy- 
sis. Although other researchers suggests using types to dis- 
ambiguate memory references, none evaluates its effective- 
ness. We perform both static and dynamic evaluations of 
type-based alias analyses for Modula-3, a statically-typed 
type-safe language. The static analysis reveals that type com- 
patibility alone yields a very imprecise alias analysis, but the 
other two analyses significantly improve alias precision. We 
use redundant load elimination (RLE) to demonstrate the ef- 
fectiveness of the three alias algorithms in terms of the oppor- 
tunities for optimization, the impact on simulated execution 
times, and to compute an upper bound on what a perfect alias 
analysis would yield. We show modest dynamic improve- 
ments for (RLE), and more surprisingly, that on average our 
alias analysis is within 2.5% of a perfect alias analysis with 
respect to RLE on 8 Modula-3 programs. These results il- 
lustrate that to explore thoroughly the effectiveness of alias 
analyses, researchers need static, dynamic, and upper-bound 
analysis. In addition, we show that for type-safe languages 
like Modula-3 and Java, a fast and simple alias analysis may 
be sufficient for many applications. 

1 Introduction 
To exploit memory systems, multiple functional units, and 
the multi-issue capabilities of modem uniprocessors, compil- 
ers must reorder instructions. For programs that use pointers, 
the compiler’s alias analysis dramatically affects its ability to 
reorder instructions, and ultimately performance. Alias anal- 
ysis disambiguates memory references, enabling the com- 

The authors can be reached electronically via Internet addresses di- 
wandcs.stanford.edu, {mckinley,moss} @cs.umass.edu. This work 
was supported by the National Science Foundation under grants CCR- 
9211272 and CCR-9525767 and by gifts from Sun Microsystems Labora- 
tories, Inc., Hewlett-Packard, and Digital Equipment. Kathryn S. McKinley 
is suppotted by an NSF CAREER Award CCR-9624209. Amer Diwan was 
also supported by the Air Force Materiel Command and ARPA award num- 
ber: F30602-95-C-0098. 

8 1996 ACM 0-8979%987.4/98/0006...$5.00 

piler to reorder statements that do pointer accesses. 
Despite its importance, few commercial or research com- 

pilers implement non-trivial alias analysis. Three reasons 
alias analysis is not implemented are: (1) Many alias anal- 
yses are prohibitively slow and thus impractical for produc- 
tion use. (2) The alias analyses in the literature require the 
entire program (or some representation of it), which inhibits 
separate compilation and compiling libraries. (3) Most alias 
analyses have been evaluated only statically, and thus we do 
not know the effectiveness of these algorithms with respect to 
the optimizations that use them. To address these concerns, 
this paper explores using fast alias analyses that rely on pro- 
gramming language types. While prior work [l, 61 mentions 
using type compatibility for alias analysis, none evaluates the 
idea or presents the details of an algorithm. 

This paper describes and evaluates three fast alias analy- 
ses based on programming language types. The tirst analy- 
sis (‘IjyeDecl) uses type compatibility to determine aliases. 
The second (Field?lpeDecl) uses other high-level properties, 
such as field names to improve on the tirst. The third (SM- 
FieldQpeRefs) improves the second by incorporating a flow- 
insensitive pass to include the effects of variable assignments 
and references. This pass is similar to Steensgaard’s algo- 
rithm [32]. 

We statically evaluate our alias algorithms using the num- 
ber of alias pairs (the traditional method). We also evaluate 
TBAA based on its static and dynamic effects on an optimiza- 
tion, In addition, we evaluate TBAA with respect to an upper 
bound on the same optimization. Each of the evaluation met- 
rics reveals different strengths and weaknesses in our alias 
algorithms, and we believe this range of metrics, and espe- 
cially upper-bound analysis, is necessary to understand the 
effectiveness of any alias analysis. 

Our static evaluation reveals that the simplest type-based 
alias analysis is very imprecise, but that for our Modula-3 
benchmarks, the other two alias analyses significantly reduce 
the number of intraprocedural aliases of a reference to on av- 
erage 3.4 references (ranging from .3 to 20.8). We find that 
TBAA is much less effective for interprocedural aliases. 

We also evaluate TBAA by measuring the static and sim- 
ulated run-time impact on an intraprocedural optimization 
that depends on alias analysis: redundant load elimination 
(RLE). RLE combines loop invariant code motion and com- 
mon subexpression elimination of memory references. TBAA 
and RLE combine to improve simulated program performance 
modestly, by an average of 4%, and up to 8% on a DEC Alpha 
3000-500 [12] for 8 Modula-3 benchmarks. 
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We also compare TBAA to an upper bound that represents 
the best any alias analysis algorithm could hope to do for RLE. 
This comparison shows that a perfect alias analysis could at 
most eliminate an average of 2.5% more heap loads. In addi- 
tion, we modify TBAA for incomplete programs and demon- 
strate, using RLE, that it performs as well as it does on com- 
plete programs. These results and TBAA’S fast time complex- 
ity suggest that TBAA is a practical and promising analysis 
for scalar optimization of type-safe programs. 

The remainder of this paper is organized as follows. Sec- 
tion 2 describes our type-based alias analysis algorithms. 
Section 3 presents our evaluation methodology, and uses it 
to evaluate TBAA. Section 4 extends and evaluates TBAA for 
incomplete programs. Section 5 discusses related work in 
alias analysis. Section 6 concludes. 

2 Type-Based Alias Analysis 
This section describes type-based alias analyses (TBAA) in 
which the compiler has access to the entire program except 
for the standard libraries. TBAA assumes a type-safe pro- 
gramming language such as Modula-3 [25] or Java [33] that 
does not support arbitrary pointer type casting (thisfeature is 
supported in C and C++). We begin with our terminology, 
and then discuss using type declarations, object field and ar- 
ray access semantics, and modifications to the set of possible 
types via variable assigmnents to disambiguate memory ac- 
cesses. 

2.1 Memory Reference Basics 

Table 1 lists the three kinds of memory references in Modula- 
3 programs, their names, and a short description.’ 

Table 1: Kinds of Memory References 

1 Notation 1 Name 1 Description I 
I D.f I oualifv 1 Access field f of obiect 13 1 

P1 1 Derefeience 1 Dereference pointer-p - 
p[ i] ) Subscript ( Arrayp withsubscript i 

We call a non-empty string of memory references, for exam- 
ple aA . b [ i I . c, an accesspath (dP) [22]. Without loss of 
generality, we assume that distinct object fields have different 
names. We also define: 

J3v (PI: The static type of dP p, 
Subtypes (T): The set of subtypes of type T, 

which includes T. 

In Modula-3 and other type-safe languages, an object of type 
T can legally access objects of type Subtypes (T). Each of 
our alias analyses refines the type of objects to which an dP 
(memory reference) may refer. If two dPs may have the 
same type, then the analyses determines they may access the 
same location. 

l’hese types of memory references are, of course, not unique to Modula- 
3. 

TYPE 
T = OBJECT f, g: T; END; 
Sl = T OBJECT . . . END; 
S2 = T OBJECT . . . END; 
S3 = T OBJECT . . . END; 

VAR 
t: T, 
s: Sl; 
u: s2; 

Figure 1: Type Hierarchy Example 

2.2 TBAA Using Type Declarations 

To use type declarations to disambiguate memory references, 
we simply examine the declared type of an access path dP, 
and then assume the dP may reference any object with the 
same declared type or subtype. We call this version of TBAA, 
‘l)peDecl. More formally, given two dPs p and q, Z)pe- 
Decl (p, q) determines they may be aliases if and only if: 

Subtypes (me (p)) rl Subtypes (Type (9)) # 8. 

Consider the example in Figure 1. Since Sl is a subtype of 
T, objects of type T can reference objects of type S 1. Thus, 

Subtypes (me (t)) rl Subtypes (Qpe (s)) # Q) 
Subtypes (Qpe (t)) rl Subtypes (I&e (u)) # 0 
Subtypes (Qpe (s)) rl Subtypes (?)‘pe (u)) = 0 

In other words, t and s may reference the same location, 
and t and u may reference the same location, but s and u 
may not reference the same location since they have different 
types. Note that ?LpeDecl is not transitive. 

Table 2: Fieldl)peDecl (dP 1, dP 2) Algorithm 

Case AP 1 AP 2 PieldTypeDecl (AP 1, AP 2) 
1 P P hue 
2 P.f q.g (f = g) A FieJdTypeDecZ (p, 4) 
3 P.f 6 AddressTaken Cp . f ) A 

2.3 Using Field Access ‘Qpes 

We next improve the precision of 74rpeDecI using the type 
declarations of fields and other high level information in the 
program. We call this version of type-based alias analysis 
FieldQpeDecl. It distinguishes accesses such as t . f and 
t . g, f # g, that WeDecl misses. The FieldQyeDecl al- 
gorithm appears in Table 2. Given dP 1 and dP2, it returns 
true if dP 1 and dP2 may be aliases. It uses AddressTaken, 
which returns true if the program ever takes the address of 
its argument. For example, Addressmen (p . f) is true if 
the program takes the address of field f of an object in the 
set %eDecl (p). AddressTaken (q [ i I ) returns true if the 
program takes the address of some element of an array of q’s 

107 



type. In Modula-3, programs may take the addresses of mem- 
ory locations in only two ways: via the pass-by-reference 
parameter passing mechanism, and via the WITH statement, 
which creates a temporary name for an expression. For sim- 
plicity we assume that aggregate accesses, such as assign- 
ments between two records, have been broken down into ac- 
cesses of each component. 

The seven cases in Table 2 determine the following. 

1: 

2: 

3-4: 

5: 

6: 

7: 

Identical dPs always alias each other. 
Two qualified expressions may be aliases if they access 
the same field in potentially the same object. 
A pointer dereference may reference the same location 
as a qualified or subscripted expression only if their 
types are compatible and the program may take the ad- 
dress of the qualified or subscripted expression. 
In Modula-3, a subscripted expression cannot alias a 
qualified expression. 
Two subscripted expressions are aliases if they may sub- 
script the same array. Field?LpeDecl ignores the actual 
subscripts. 
For all other cases of dPs, including two pointer deref- 
erences, FieldQpeDecl uses OpeDecl to determine 
aliases. 

Java programs would have similar rules. For C++ pro- 
grams, the rules must be more conservative to handle arbi- 
trary pointer casts and pointer arithmetic. 

2.4 Using Assignment 

QpeDecl is conservative in the sense that it assumes that the 
program uses types in their full generality. For instance, pro- 
grams often use list packages that support linking objects of 
different types to link objects of only one type. We thus im- 
prove on l)peDecl by examining the effects of explicit and 
implicit assignments to determine more accurately the types 
of objects an dP may reference in a flow-insensitive manner. 
We call this algorithm SMmeRefs (Selectively Merge Type 
References). Unlike Z)peDecl, which always merges the de- 
clared type of an dP with all of its subtypes, SMITLpeRefs 
only merges a type with a subtype when a statement assigns 
some reference of subtype S to a reference of type T. As an 
example, consider applying TjpeDecl to the following pro- 
gram given the type hierarchy in Figure 1: 

VAR 
t: T := NEW (I’); 
s: St := NEW (Sl); 

Since TypeDecl only considers declared types, it assumes 
that t and s may reference the same location because it is 
semantically correct for objects of type T to reference objects 
of type Sl. By inspecting the code however, it is obvious 
that t and s never reference the same location since there is 
no explicit or implicit assignment between the two. SMlllpe- 
Refs proves independence in this situation as follows: if the 
program never assigns an object of type S 1 to a reference of 

(* Step 1: put each type in its own set *) 
for all pointer types T do 
Group := Group + {{T}} 

(* Step 2: merge sets because of assignments *> 
for all implicit and explicit pointer assignments, a : =b, do 
Ta:= me(a); Tb:= Type(b); 
ifTa#Tb then 
let Ga,Gb E Group,suchthat Ta E Ga,Tb E Gb 
Group:=Group- {Ga}-{Gb}+{GaUGb} 

(* Step 3: Construct TypeRefsTable *) 
for all types t do 
let g E Group, t E g 

TypeRefsTable (t) = g rl Subtypes (t) 

Figure 2: Selective Type Merging 

type T (directly or indirectly), then t and s cannot possibly 
be aliases. Notice that if there is any such assignment, SM- 
QpeRefs assumes that dPs of type T may be aliased to dPs 
of type S 1. We call these assignments merges. 

Figure 2 presents the algorithm to selectively merge 
types.2 This algorithm produces a Il)lpeRefsTable which 
takes a declared type T as an argument and returns all the 
types potentially referenced by an dP declared to be of type 
T. Given two dP p and q, SM?LpeRefs (p,q) determines 
they may be aliases if and only if: 

WeRefsTable (Z&e (p)) 
n VpeRefsTable (?Lpe (q)) # 0 

In Figure 2, each set S = {Tl, . . . , Tk} in Group represents 
an equivalence class of types such that an dP with a declared 
type T E S may reference any objects of type Ti E S. For 
example, given the set S = {Tl,T2} E Group, dPs with 
declared type Tl may reference any object of type Tl or T2. 

Step 1 initializes Group, such that each declaredtypeis 
in an independent set and an dP declared with type T is thus 
assumed to reference only objects of type T. Step 2 exam- 
ines all the assignment statements and merges the type sets 
if the types of the left and right hand sides are different.3 
Step 2 does not consider the order of the instructions and is 
therefore Aow insensitive. Step 3 then filters out infeasible 
aliases from Group, creating asymmetry in the SMTypeRefs 
relationship.4 For instance, an dP with declared type T in 
Figure 1 may reference objects of type T or type sl, but an 
dP declared as Sl may not reference objects of type T. The 
final result of Step 3 is the WeRefsTable. 

Figure 3 uses the the type declarations in Figure 1 to il- 
lustrate how the selective merging algorithm works, The 

‘A more precise but slower formulation maintains a separate group for 
each type. In our experiments, the difference between the two variations was 
insignificant. 

3Step 2 is similar to Steensgaard’s algorithm [32]. 
41f we took Steensgaard’s algorithm [32] and applied it to user defined 

types, it would not discover this asymmetry. 
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VAR 
sl: Sl := NEW (Sl); 
~2: S2 := NEW (S2); 
~3: S3 := NEW (S3); 
t: T; 

BEGIN 
t := sl; (* Statement 1 *) 
t := ~2, (* Statement 2 *) 

END; 

Figure 3: Example to Illustrate SMvpeRefs 

Figure 4: Selective Merging for Figure 3 

VAR declarations declare and initialize variables to newly al- 
located objects of their declared types. Step 1 thus initial- 
izes each declared type in a set of its own, as shown in Fig- 
ure 4(a) where each oval represents a set in Group. Fig- 
ure 4(b) shows Group after Step 2 merges types T and Sl, 
the types for the first assignment; and Figure 4(c) shows that 
the second assignment causes Step 2 to merge S2 with T and 
S 1. S3 remains in a set by itself. Step 3 of the merge algo- 
rithm then creates asymmetry for the subtype declarations in 
the QpeRefsTable, as shown in Table 3. Notice SMQpeRefs 
determines dPs declared to be of type T may not reference 
objects of type ~3, but ?h>eoecl must assume they may. 

Table 3: QpeRefsTable for Figure 3 

Type TypeRefsTable (Type) 
T 1 T,Sl,S2 

We obtain the final version of our TBAA algorithm SMField- 
Y&peRefs (Fields+Selectively Merge Type References) by us- 
ing SM?lpeRefs for QpeDecl in the FieldnpeDecl algo- 
rithm in Table 2. 

2.5 Complexity 

The complexity of this type-based alias analysis (TBAA) is 
dominated by step 2 of SM’@peRefs. This step makes a sin- 
gle linear pass through the program and at each pointer as- 
signment unions two sets of types. The complexity of TBAA 
is thus O(n) bit-vector steps, where n is the number of in- 
structions in the program. Each bit-vector step takes time pro- 

portional to the number of types in the program. The time to 
use the results of the TBAA may, of course, be more than lin- 
ear time, For instance, computing all the may-alias pairs us- 
ing TBAA (or any otherpoints-to analysis) takes O(e2) time, 
where e is the number of memory expressions in the program. 

3 Evaluation 
This section evaluates type-based alias analysis using static 
and dynamic metrics, and a limit analysis. We first review the 
strengths and weaknesses of static and dynamic metrics, and 
thus motivate our limit analysis. 

Static Evaluation. The majority of previous work on 
alias analysis [2, 4, 6, 7, 9, 15, 20, 21, 22, 30, 32, 351 mea- 
sures static properties, such as the sizes of the may alias and 
points-to sets. Static properties enable comparisons between 
the precision of two alias analyses using the size of their static 
points-to sets; the smaller the set the more precise the analy- 
sis. Static properties have, however, two main disadvantages. 
(1) Static properties cannot tell us if the analysis is effective 
with respect to its clients. For example, even if the alias sets 
are small, the analysis may not differentiate the pointers that 
will enable optimizations to improve performance or increase 
the effectiveness of other analyses. (2) Static properties do 
not enable comparisons between the eflectiveness of two alias 
analyses with different strengths and weaknesses. For exam- 
ple, the size of the points-to sets of two analyses may be the 
same, but the analyses may disambiguate different pointers. 
A static analysis that compares the resulting number of opti- 
mization opportunities remedies some of this problem. 

Dynamic Evaluation. A few researchers recently eval- 
uated alias analyses by measuring the execution-time im- 
provement due to an optimization that uses alias analysis 
[19, 36, 8, 171. Using run-time improvements complements 
static metrics, since run-time improvements directly measure 
the impact of the alias analysis on its clients (usually com- 
piler optimizations). However, one of their disadvantages is 
that the results are specific to the given program inputs. 

Limit Evaluation. Both static and dynamic evaluation 
have an additional significant shortcoming: these properties 
do not tell us how much room for improvement there is in 
the alias analysis (except in the unusual case of an alias anal- 
ysis that disambiguates all memory references). We would 
like to know if the aliases really exist at run-time, and if any 
imprecision in the alias analysis causes missed opportunities 
for optimizations or other clients of the analysis. To detect 
imprecision and its impact, we also use a run-time limit anal- 
ysis to determine missed optimization opportunities and their 
causes for a given program input. No previous work on alias 
analysis uses this metric. 

The remainder of this section is organized as follows. Sec- 
tions 3.1 and 3.2 describe our experimental framework and 
benchmark programs. Section 3.3 presents the static alias 
pairs for our analyses. Section 3.4 presents the simulated 
run-time improvements due to our alias analysis for redun- 
dant load elimination. Section 3.5 evaluates the room for im- 
provement in our analysis. 
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Table 4: Description of Benchmark Programs 

Figure 5: Compilation Framework 

3.1 Environment 

Figure 5 ihustrates our compilation framework. The front 
end reads a Modula-3 module and generates a file contain- 
ing a typed abstract syntax tree (AST) for the compiled mod- 
ule, The whole program optimizer (WPO) reads in the ASTS 
for a collection of modules, analyzes and transforms them, 
and then it writes out the modified AST for each module and 
a file with the corresponding low-level stack machine code. 
The stack representation is the input language for a back end 
based on GCC. WPO implements all optimizations and analy- 
ses presented in this paper. 

3.2 Benchmarks 

For each benchmark in our suite, Table 4 gives the num- 
ber of non-comment, non-blank lines of code. For the non- 
interactive programs, Table 4 also gives the number of in- 
structions executed, the percent of instructions that are mem- 
ory loads from the heap, and the percent of instructions that 
are memory loads from the stack and global area (other). 
None of these programs were written to be benchmarks, 
but other researchers have used several of them in previous 
studies [16, 101. Table 4 contains the data for the origi- 
nal programs (i.e., without the optimizations proposed here) 
but with GCC’S standard optimizations turned on, which in- 
clude register allocation and instruction scheduling (except 
for m2 tom3). Due to a compiler bug in GCC, we were unable 
to perform the standard optimizations on m2 t om3, which ex- 
plains its unusually large number of other loads. The num- 
bers in Table 4 do not include instructions or memory refer- 
ences from the standard libraries. 

3.3 Static Evaluation 

Table 5 evaluates the relative importance of the three TBAA: 
TypeDeel: TBAA using only type declarations; FieldType- 
Decl: TBAA using ?jvpeDecl and field declarations; and SM- 
FieldQpeRefs: TBAA using FieldmeDecl and assignment 
statements. The References column gives the total number of 
heap memory references in the source of the benchmark pro- 
grams. For each of the analyses, the table contains the num- 
ber of local (L Alias) and global (G Alias) alias pairs. Local 
alias pairs are heap memory references within the same pro- 
cedure that may alias each other, and global alias pairs are 
heap memory references not necessarily within the same pro- 
cedure that may alias each other. Since each memory refer- 
ence trivially aliases itself, we exclude this pair. Note that 
since SMFieldTypeRefs is strictly more powerful than Field- 
I&eDecl, and FieldTypeDecl is strictly more powerful than 
?SrpeDecl, we can use static metrics to compare the three. 

From the table, we see that TypeDecl performs a lot worse 
than FieldQpeDecl, and that flow-insensitive merging us- 
ing SMl?ieldI@peRefs offers little improvement over Field- 
‘I)lpeDecl. SMField?)lpeRefs improves local and global alias 
pairs on postcard, and the number of global aliases for 
m3 cg. On average, each heap reference may alias 4.7 other 
intraproceduralreferences using TypeDecl, 3.4 references us- 
ing FieldQpeDecl, and 3.4 references using SMFieldQpe- 
Refs. The range is from 0.3 to 20.8 references for SMField- 
‘QpeRefs. On average, each heap reference may alias 54.1 
other interprocedural references using TypeDecl, 12.7 refer- 
ences using FieldTypeDecl, and 12.7 references using SM- 
FieldQpeRefs. The range is from 2 to 27.7 references for 
SMF’ieldTypeRefs. The number of interprocedural aliases is 
much higher than the number of intraprocedural aliases, sug- 
gesting that TBAA is probably too imprecise for interproce- 
dural optimizations. In the next two sections, we show that 
even though our analysis does not disambiguate all intrapro- 
cedural memory references (i.e., the local aliases are greater 
than zero), it may be precise enough for some applications. 

3.4 Optimization Results 

This section measures the static and simulated execution-time 
impact of TBAA on redundant load elimination (RLE). We 
first describe our implementation of RLE, and then show its 
impact on execution time. Section 3.5 then describes a limit 
analysis that demonstrates that with respect to RLE, there is 
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Table 5: Alias Pairs 

I I TypeDecl FieldTpeDecl SMFieldTjpeRefs 
T.Aliaf 1 GAlim LAlias 1 GAh LAlia~ 1 GAli= 

1 177 I 206 133 I 2w 
Program References - _ -_ - --- 
format 15 221 4.5L , _“I , --- , --- , ” 
dfomat 1.56 554 2665 1 293 1 1286 1 293 1 1286 
WrjtP.-I+klP. 171 3x3 2089 1 235 1 507 1 235 1 507 - L------ _._ I 

n I 
I 

31n _“” I 17.2 
444 1 -- 

2322 14 464 74 464 
162 :6 10830 719 3811 719 3811 

I1 74144 177.X wiss 1328 965: k-tree 612 213, _.“. . ““__ .--- -_-. . --.J 
dom 800 932 29550 589 21802 589 21802 
m2tom3 904 19036 41856 18824 25048 18826 25048 
postcard 1038 4208 30890 1623 5278 1615 5262 
m3cg 4515 16521 1409449 6154 121476 6153 120525 L 

nl 

t 3 

C& 

:= t[il := lIj] 

4 

\?7- 

Figure 6: Eliminating Loop Invariant Memory Loads 

~~~~-~~~~ 

Figure 7: Eliminating Redundant Memory Loads 

little or no room for improvement in TBAA. 
3.4.1 Redundant Load Elimination 

Redundant load elimination (RLE) combines variants of loop 
invariant code motion (similar to register promotion [S]) and 
common subexpression elimination [ 11, which most optimiz- 
ing compilers perform. RLE differs from classic loop invari- 
ant code motion and common subexpression elimination in 
that it eliminates redundant loads instead of redundant com- 
putation. We expect RLE to be a profitable optimization since 
loads are expensive on modem machines and architects ex- 
pect they will only get more expensive [18]. 

RLE hoists memory references out of loops if the reference 
is loop invariant and is executed on every iteration of the loop, 
leaving it up to the back end to place the hoisted memory ref- 
erence in a register. For example in Figure 6, the access path 
a. b^ is redundant on all paths, and loop invariant code mo- 
tion moves it into the loop header. As shown in Figure 7, 
RLE also replaces redundant memory expressions by simple 
variable references, which the back end may place in a reg- 
ister. A memory expression at statement s is redundant if it 

is available on every path to s. RLE therefore improves per- 
formance by enabling the replacement of costly memory ref- 
erences with fast register references. Since RLE Operates on 
memory references its effectiveness depends directly on the 
quality of the alias information (and also on the back end). To 
enable RLE across calls, RLE is preceded by a mod-ref analy- 
sis which summarizes the access paths that are referenced and 
modiied by each call. For example, in order to hoist a mem- 
ory reference Out Of a 100~ COutaining a Call, TBAA needs 
to know whether the call changes the value of the memory 
reference. Note that even though RLE uses interprocedural 
mod-ref information, it does not eliminate redundant loads 
across procedure boundaries. 

3.4.2 hpact of TBAA on RLE 

Table 6 gives the number of access paths that RLE removes 
statically in each of our benchmark programs for each variant 
of TBAA: IlypeDecl, FieldQpeDecl, and SMFieIdQpeRefs, 
By comparing Table 6 and Table 5, we see that the differ- 
ences between the number of local alias pairs is the strongest 
indicator of optimization opportunities for RLE. In partic- 
ular, the big differences between the number of alias pairs 
for IIfrpeDecl and Field’llpeDecl result in an increase in the 
number of redundant loads found by RLE. In contrast, the 
reductions in the number of alias pairs between Fieldme- 
Decl and SMField?LpeRefs does not change the number of 
redundant loads found by RLE. (These reductions are how- 
ever smaller than the others.) 

Table 6: Number of Redundant Loads Removed Statically 

We also measured execution times using a detailed (and 
validated [.5]) simulator for an Alpha 21064 workstation with 
one difference: rather than simulating an SK primary cache 
we simulated a 32K primary cache to eliminate variations due 
to conflict misses that we observed in an 8K direct mapped 
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Figure 8: Impact of RLE 

cache. Also, we only measured the execution time spent in 
user code since that is the only code that we were able to 
analyze. Execution times are normalized with respect to the 
execution time of the original program without RLE, but with 
all of Gee’s optimizations. (GCC eliminates IEdUUdaUt loads 
without any assignments to memory between them.) 

Figure 8 illustrates the simulated execution time impact of 
TBAA on RLE relative to the original execution time. The 
graph has three bars for each non-interactive benchmark. 
Each bar represents the execution time due to RLE and a dif- 
ferent alias analysis: TypeDecl (types only), FieldQpeDecl 
(types and fields), and SMFieldQpeRefs (types, fields, and 
merges). 

TBAA enables RLE to improve program performance from 
1% to 8%, and on average 4%. Since RLE is just one of many 
optimizations that benefits from alias analysis, the full impact 
of alias analysis on execution time should be higher. Also, 
contrary to what the data in Table 5 and Table 6 suggest, the 
three variants of TBAA have roughly the same performance as 
far as RLE is concerned. These results make two important 
points. First, a more precise alias analyses is not necessar- 
ily better; it all depends on how the alias analysis is used. 
Second, static metrics, such as alias pairs are insufficient by 
themselves for evaluating alias analyses. 

3.5 Comparing TBAA to an Upper Bound 

How much precision does TBAA lose in order to achieve its 
fast time bound? It is easy to contrive examples where TBAA 
fails to disambiguate memory references while many other 
alias analyses succeed. This section demonstrates, using a 
limit study, that for RLE and our benchmark programs, there 
is little to be gained from an alias analysis that is more precise 
t.hTBAA. 

Figure 9 compares heap loads that are redundant at run 
time before and after applying RLE. A redundant load is 
when two consecutive loads of the same address load the 
same value in the same procedure activation. We measure 

Figure 9: Comparing TBAA to an Upper Bound 

. 

Figure 10: Source of Redundant Loads after Optimizations 

these loads using ATOM[31], a binary rewriting tool for the 
Alpha. We instrument every load in an executable, record- 
ing its address and value. If the most recent previous load 
of an address is redundant with the current load, we mark it 
as redundant. (Elsewhere we describe this process in more 
detail [13].) In Figure 9, the black bars give the fraction of 
heap references that are redundant in the original program. 
The white bars give the fraction of heap references that are 
redundant after TBAA and RLE (this fraction is with respect 
to the original number of heap references). These results are 
specific to program inputs. 

Figure 9 shows that our optimizations eliminate between 
37% and 87% of the redundant loads in these programs. 
Moreover, for 6 of the 8 benchmark programs, only 5% 
or fewer of the remaining loads are redundant. However, 
slisp and ktree still have many redundant loads. To un- 
derstand the source of all the remaining redundant loads, we 
manually classilied them as follows: 

1. Encapsulation: RLE could not eliminate a redundant 
expression because it was implicit in our high-level 

112 



(AST) intermediate representation. For example, the 
subscript expression for an open array involves an im- 
plicit memory reference to the dope vector. 
Conditional: RLE did not eliminate a redundant expres- 
sion because it was only partially redundant, i.e., redun- 
dant along some paths but not along others. Partial re- 
dundancy elimination would catch these. 
Breakup: RLE did not eliminate a redundant expression 
because it consisted of multiple smaller expressions and 
our optimizer does not do copy propagation. 
Alias failure: TBAA did not disambiguate two memory 
references. 
Rest: we don’t know the reason why RLE did not elimi- 
nate the redundant loads since we did not determine the 
reason for the entire list of redundant expressions (which 
is labor intensive). 

The first category is due to a limitation of representation, 
not TBAA or RLE. Categories 2 and 3 are limitations in our 
implementation of RLE, rather than TBAA. The fourth Cate- 
gory, alias failure, corresponds to limitations of TBAA. The 
fithcategorymay bea limitation of RLEOrTBAAOrtherep- 
resent&ion. Each bar in Figure 10 breaks down the Redun- 
dant after Optimizations bar from Figure 9 into the above five 
categories. 

Figure 10 illustrates that Encapsulation (dope vector ac- 
cesses to index open arrays) is the most significant source of 
the remaining redundant loads. Figure 10 also shows that we 
did not encounter a single situation when optimization failed 
due to inadequacies in our alias analysis. Those redundant 
loads that could be due to failed analysis are categorized as 
Rest, and on average, are less than 2.5% of the remaining 
loads. Thus, for RLE on these programs and their inputs, 
there is not much room for improvement in our simple and 
fast alias analysis. 

3.6 Summary of Results 

This section evaluated TBAA using four different metrics: 

l Number of static alii pairs. 
l Run-lime improvement due to an optimization that uses 

TBAA(RLE). 
l Number of opportunities exposed by TBAA for RLE. 
l An upper-bound for TBAA with respect to RLE. 

Each of these four metrics exposes different information 
about TBAA. The first metric, number of static alias pairs, 
tells us two things. (1) For our benchmark programs, SM- 
FieldQpeRefs offers little or no precision over Fieldwe- 
Decl. (2) FieldmeDecl is potentially a much better alias 
analysis than TQpeDecl. Even though FieldQpeDecl of- 
fers little performance improvement over QpeDecl for RLE, 
FieldlIlpeDecl should probably be the algorithm of choice 
since it does gives more precise results (without much added 
complexity) which may be important for other optimizations 
that use alias analysis. 

The second metric, run-time improvement, indicates the 
how much an optimization or analysis really matters to the 
bottom line: performance. Our experiments find that the ma- 
jority of the run-time improvement comes from TypeDecl. 
Field’llpeDecl improves performance only slightly. The re- 
sults also illustrate that the run-time improvement due to our 
analysis and optimization is relatively smalk on average 4% 
improvement. If run-time improvement is the only metric 
we use, then we might conclude that TBAA is a very impre- 
cise alias analysis. However, upper-bound analysis reveals 
that TBAA in fact performs about as well as any alias anal- 
ysis could perform with respect to RLE and our benchmarks 
programs. 

The third metric, number of opportunities exposed by 
TBAA for RLE, reveals that FieldQpeDecl enables many 
more opportunities for RLE than QpeDecl. However, our 
run-time measurements find that FieldllpeDecl is only 
slightly better than meDec1. If we had used only run-time 
improvements to evaluate our analysis we might conclude 
that QpeDecl is the algorithm of choice. However, the num- 
ber of opportunities metric tells us that FieldQpeDecl is in- 
deed significantly better than YQpeDecl. Perhaps with differ- 
ent benchmark inputs Field’IlpeDecl may improve perfor- 
mance significantly more than meDec1. 

Finally, the upper-bound analysis for RLE using TBAA re- 
veals that a more precise alias analysis for RLE would yield 
few benefits: there is little or no room for improvement in 
TBAA with reSpeCttoRLE. 

To summarize, the four metrics tell us different informa- 
tion about the different levels of TBAA. For this reason, we 
feel that all of these metrics should be used together in a thor- 
ough evaluation of an alias analysis (or for that matter any 
compiler analysis). 

3.7 Cumulative Results 

Figure 11 shows the cumulative impact of two sets of op- 
timizations: method invocation resolution [14] plus inlin- 
ing (Mnv + Inlining) and RLE. Method resolution uses 
TBAA (and other analyses) to help resolve method invoca- 
tions on object fields and array elements. While we expected 
method resolution and inlining to expose more opportunities 
for RLE, they did not. On studying the interactions of RLE 
with method invocations and inlining using limit analysis, we 
found that inlining exposes more redundant expressions but 
they are usually conditional (Section 3.5). Thus, while partial 
redundancy elimination can eliminate these redundant loads, 
RLE cannot. We plan to implement and evaluate partial re- 
dundancy elimination of memory expressions in future work. 

4 Analyzing Incomplete Programs 
Most prior pointer alias analyses for the heap are whole- 
program analyses, i.e., the compiler assumes it is analyzing 
the entire program, including libraries, making a closed world 
assumption. Many situations arise when the entire program 
is not available: for instance, during separate compilation, or 
compiling libraries without. all their potential clients, or com- 
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Figure 11: Cumulative Impact of Optimizations 

piling incomplete programs. 
In unsafe languages such as C++, alias analyses must as- 

sume that unavailable code may affect all pointers in arbitrary 
ways. For type-safe languages like Modula-3 and Java, the 
compiler can use type-safety and a type-based alias analysis 
to make stronger type-safety assumptions about unavailable 
code. It can assume that unavailable code will not violate 
the type system of the language. For example, consider the 
following procedure declaration using the types declared in 
Figure 1. 

PROCEDUREfQxS.1; q: S2)=... 

In an unsafe language, if some of the callers of f are not 
available for analysis, the compiler must assume that p and 
q are aliases. For a type-safe language, a type-based analysis 
can safely assume that p and q are not aliases since they have 
incompatible types. 

‘Itvo components of TBAA rely on properties other than the 
type system of the language: AddressZhken and type merg- 
ing. Since unavailable code may pass the address of a qual- 
ified expression or subscript expression to avaiktble code we 
revise Addresslbken as follows. 

AddressTaken (p) is true: 
1. if the program ever takes p’s address (for instance to 

pass it by reference or as part of a WITH), or 
2. if f is a pass-by-reference formal and p and f have the 

same type. 

Since Modula-3 requires the types of pass-by-reference 
formals and actuals to be identical, the second clause needs 
to check only for type equality, not type compatibility. Note 
that this new definition of AddressTaken considers instruc- 
tions in the program for available code (1) and considers only 
the type system for unavailable code (2). 

Since unavailable code may cause merges of types, we 
make SMFieldQpeRefs more conservative at merges. We 
merge any two types (related by the subtype relation) to 

Figure 12: Open and Closed World Assumptions 

which it has access since unavailable code may assign them. 
Since Modula-3 uses structural type equivalence, unavailable 
code can access most types because it can construct its own 
copy of the types. Exceptions to this ability are Branded 
types in Modula-3. These types essentially observe name 
equivalence and may not be “reconstructed” by unavailable 
code. 

Figure 12 compares the simulated run-time improvement 
due to redundant load elimination using TBAA when assum- 
ing that the entire program is available (closed world) and 
assuming it is not available (open world). Notice that in our 
experiments, the open-world assumption has an insignificant 
impact on the effectiveness Of TBAA With reSpeCt to RLE. 
This result however reflects the results in Table 6, since SM- 
FieldTypeRefs, which is most affected by the open world as- 
sumption, does not enable any additional opportunities for 
RLE over FieldTQpeDecl. With respect to the static metrics, 
we found that they were the same for the open-world and 
closed-world assumptions with one difference: M3CG had 
about 80 more alias pairs (interprocedurally) with the open- 
world assumption than with the closed world assumption. 
However, the additional alias pairs did not reduce the effec- 
tiVeneSSOf RLE. 

5 Related Work 
Alias analysis must consider an unbounded number of paths 
through an unbounded collection of data, and is therefore 
harder than traditional data-flow analyses. The literature con- 
tains many algorithms for alias analysis [2,4,6,7,9,15, 19, 
8, 20, 21,22, 30, 32, 35, 361. The key differences between 
the algorithms stem from where and how they approximate 
the unbounded control paths and data. The approximation 
determines the precision and efficiency of the algorithm, and 
these alias analyses range from precise exponential time al- 
gorithms to less precise nearly linear time algorithms. 

Our work differs from previous work in two ways: (1) It 
is type-based instead of instruction-based. (2) We evaluate 
our alias algorithm with respect to an optimization, redun- 
dant load elimination, and its upper bound, rather than us- 
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ing static measurements as used by most work on alias anal- 
ysis [2, 4, 6, 7, 9, 15, 20, 21, 22, 30, 32, 351. Our upper 
bound measurement is similar to Wall’s 1341, which assumes 
a “perfect alias analysis” to find an upper bound on instruc- 
tion level parallelism. Wall [34] does not evaluate an existing 
alias analysis as we do, but just gives the potential of a perfect 
alias analysis for instruction level parallelism. 

Aho, et al. [l] and Chase, et al. [6] were among the first to 
notice that using programming language types could improve 
alias analysis, but did not present algorithms that did so. Our 
alias algorithm is most similar to those of Rinard and Diniz 
[26], Steensgaard [321, and Ruf 127,281. 

Rinard and Diniz use type equality to disambiguate mem- 
ory references. The type system they use is a subset of 
C++ that does not have inheritance and is thus weaker than 
Modula-3’s or Java’s type systems. Steensgaard uses an 
instruction-based alias algorithm which uses non-standard 
types, not programming language types, to obtain a fast alias 
analysis. His type inference algorithm is similar to our selec- 
tive type merging; however, he does not use programming 
language types, and in particular inheritance, to prune the 
merge sets as we do. Ruf shows how to use programming 
language types to partition data-flow analyses: each partition 
represents code that can be analyzed independently and thus 
a different analysis can be used on each partition [28]. Ruf 
uses his scheme to partition programs for alias analyses, but 
does not use the programming language types in the analysis. 
Ruf 1271 compares a context sensitive alias analysis to a con- 
text insensitive alias analysis and finds, for his benchmarks, 
that they are comparable in precision. Our work supports his 
in that we also find that a simple alias analysis can yield very 
precise results. 

Cooper and Lu [8] describe and evaluate register promo- 
tion, an optimization that moves memory references out of 
loops and into registers. They evaluate register promotion 
with two alias analyses: a trivial analysis and a flow-sensitive 
alias analysis. They used the number of instructions executed 
as their performance metric and found that the more powerful 
alias analysis did not significantly improve performance, Our 
results support theirs: for many applications a fast and simple 
alias analysis may be sufficient. 

Shapiro and Horwitz [29] evaluate the impact of three flow 
insensitive alias analyses on a range of optimizations. They 
evaluate their algorithms by counting optimization opportuni- 
ties rather than any of the metrics that we use. They find that 
clients of alias analysis may run faster with a more precise 
alias analysis than with a less precise alias analysis. Sim- 
ilarly, Ghiya and Hendren [17] use pointer analysis to im- 
prove scalar optimizations, and present run-time improve- 
ments. This work was concurrent with ours, They do not 
present a limit study. 

Debray et al. [ 1 l] describe an alias analysis for executable 
code. They evaluate their algorithm by measuring the per- 
centage of loads eliminated by redundant load elimination. 
They do not present execution time improvements or a limit 
study for their alias analysis. 

Since we ignore control flow, our algorithm achieves a 
O(Instructions x Qpes) time complexity that is asymptot- 
ically as fast as the fastest existing alias analysis [32]. 

6 Conclusions 
This paper describes and evaluates three algorithms that use 
programming language types to disambiguate memory refer- 
ences. The lirst analysis uses type compatibility to determine 
aliases. The second extends the first by using additional high- 
level information such as field names and types. The third, 
TBAA, extends the second with a flow-insensitive analysis. 
We show that the algorithm that uses only type compatibility 
is very imprecise whereas the other two analyses are much 
better at disambiguating memory references in the same pro- 
cedure. We also evaluate TBAA with respect to redundant 
load elimination (RLE), one of its many potential clients. Our 
results show that TBAA and RLE improve program perfor- 
mance by up to 8%, and on average 4%. We demonstrate that 
with respect to RLE and these benchmark programs, TBAA is 
very precise; a more precise analysis could only enable RLE 
to eliminate on average an additional 2.5% of redundant ref- 
erences, and at most 6%. Because TBAA relies on type-safety, 
it can be conservative in the face of incomplete, type-safe pro- 
grams without losing effectiveness. Our results show that as 
far as RLE is concerned, TB AA performs just as well with an 
open-world assumption as with a closed-world assumption. 

TBAA achieves its fast time bound and accuracy because 
of type safety, and our results confirm a common (but to our 
knowledge, untested) belief that type safety can be used to 
improve program performance. Taken together, these results 
suggest that type-based alias analysis can be effective, and 
that a thorough evaluation of alias analyses with respect to 
their clients is necessary to understand their strengths and 
weaknesses. 
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