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Abstract. Full precision in garbage collection implies retaining 
only those heap allocated objects that will actually be used in the fu- 
ture, Since full precision is not computable in general, garbage col- 
lectors use safe (i.e., conservative) approximations such as reach- 
ability from a set of root references. Ambiguous roots collectors 
(commonly called “conservative”) can be overly conservative be- 
cause they overestimate the root set, and thereby retain unexpect- 
edly large amounts of garbage. We consider two more precise col- 
lection schemes for Java virtual machines (JVMs). One uses a type 
analysis to obtain a type-precise root set (only those variables that 
contain references); the other adds a live variable analysis to reduce 
the root set to only the live reference variables. Even with the Java 
programming language’s strong typing, it turns out that the JVM 
specification has a feature that makes type-precise root sets difficult 
to compute. We explain the problem and ways in which it can be 
solved. 

if and only if they are reachable from a set of roof references. Such 
roots include local and global variables. We focus on precision of 
that part of the root set resulting from local variables, which we 
term the local variable root set, or l-roots for short. At the imple- 
mentation level, local variables are stored in slots in stack frames. 
Since our setting is the JavaTM programming language, there will 
be multiple stacks, one for each thread, but many of the same no- 
tions apply to single-threaded languages or those requiring closures 
rather than stacks. 

There are at least four degrees of precision one might apply in 
calculating l-roots: 

1. 

Our experimental results include measurements of the costs of 
the type and liveness analyses at load time, of the incremental ben- 
efits at run time of the liveness analysis over the type- analysis alone, 
and of various map sixes and counts. We find that the liveness anal- 
ysis often produces little or no improvement in heap size, some- 
times modest improvements, and occasionally the improvement is 
dramatic. While further study is in order, we conclude that the main 
benefit of the liveness analysis is preventing bad surprises. 

2. 

3. 

1 Introduction 4. 

The goal of garbage collection (gc) is to reclaim memory allocated 
to objects that will not be used again. Knowing exactly which ob- 
jects a program will not access again is equivalent to the halting 
problem, and is thus not computable. In response, researchers and 
implementers have devised gc algorithms spanning a wide range of 
precision. We are concerned with gc algorithms that retain objects 

One can also analyze liveness of heap objects, and fields of heap 
objects; this is often called compile-time gc. Note, though, that 
we are concerned with which mot references will be used again, 
not with which objects will be. We do assume that the pointer- 
containing fields of heap objects can be determined precisely. 

Sun, Sun Microsystems, the Sun Logo, Java, and HotJava are trademarh or regis- 
tered trademarks of Sun Microsystems, Inc.. in the United States and other countries. 
Volaoo, VolanoChat, and VolanoMark are trademarks of Volano LLC. 

v 

Q 1996 ACM 0-69791-967-4/96/0006...$5.00 

A requirement of precise collection is that one must somehow 
provide the collector with information about the locations of ref- 
erences. This may introduce both performance overhead and ex- 
tra implementation complexity. We can provide type-precision in- 
formation via tags that make stack frames and their contents self- 
describing. Tags may be supported by hardware, but more com- 
monly require the generation of extra instructions to check, mask, 
and insert tags. If tagging is not used, then the system must asso- 
ciate information with each stack frame to indicate the l-roots of the 
frame; we call such a data structure a stack map. 

‘Beat every local variable as an l-mot, without regard to type. 
This is ambiguous roots collection [Boehm & Weiser, 1988; 
Boehm & Shao, 1993; Bartlett, 1988; Bartlett, 1989; Appel & 
Hanson, 19881, also commonly called conservative gc.’ 

Use type information to obtain type-pnxise roots, i.e., only 
those l-roots whose variable is of reference type. This has 
also been called “accurate”, “precise”, and “aggressive” (in 
contrast with “conservative”). 

Extend type-precision by adding liveness information from an 
intra-procedurallive variable analysis; we call this live-precise 
collection. 

More refined liveness analyses, such as inter-procedural anal- 
ysis. 

‘The term “conservative” has been applied (ambiguously) to ambiguous treatment 
of heap contents a$ well as ambiguous determination of roots. 
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Here we are concerned with how to generate stack maps for code 
presented as bytecodes used in the Java Virtual Machine (JVM) 
[Lindholm & Yellin, 19961, hereafter referred to as “Java bytecode,” 
and thus to implement type-precise collection. We are also con- 
cerned with the impact of refining type-precision to live-precision. 
We describe the problems in generating stack maps for Java byte- 
code and how to solve the problems. We have implemented both 
type-precise and live-precise collection in the same system, and of- 
fer direct comparison of the resulting heap sizes during the execu- 
tion of a suite of benchmark programs. We have also measured the 
cost of generating both type-precise and live-precise stack maps, 
which is of greater relevance in Java virtual machines than many 
other systems since Java bytecode is loaded (and stack maps are 
generated) at run time. 

2 Related work 
Work most closely related to our topics falls into three categories: 
tagless garbage collection, compile-time analyses for garbage col- 
lection, and experimental results related to precision of garbage col- 
lection. 

Tagless collection goes back at least to Branquart and Lewi’s 
[Branquart & Lewi, 19711 and Wodon’s [Wodon, 19711 collectors 
for Algold and Britton’s [Britton, 19751 for Pascal. Branquart 
and Lewi’s collector is notable in that it updated tables at run time 
as stack slot contents changed. More recently Appel [Appel, 19891 
and Goldberg [Goldberg, 19911 considered tagless collection for 
Standard ML, which is complicated by the presence of polymor- 
phic functions, where the types of their arguments vary from call 
to call. In a followup paper [Goldberg & Gloger, 19921, Goldberg 
and Gloger presented a system that uses type unifications to derive 
types at gc time. If the collector is unable to determine a type for 
any given variable or field, then that variable or field will not be 
accessed in the future, and can safely be ignored by the collector. 
Baker discussed the general idea of using Hindley-Milner unifica- 
tion in this way a bit earlier [Baker, 19901. A little later, Fradet 
[Fradet, 19941 extended this sort of collector to include a certain 
kind of liveness information, based on the intuitive idea that if a 
polymorphic function does not depend on a type parameter, then it 
could not actually use any dataitems of that type. A simple example 
of this is length on lists, which does not examine the list elements, 
but only counts how many there are. We observe that Fradet’s 
scheme can in some cases determine that object fields are dead, 
and that it relies on Hindley-Milner style polymorphism, somewhat 
different from the type system of the Java programming language. 
Aditya, ef al. compared, in the context of the polymorphic func- 
tional language Id, the cost of type-reconstruction-based collection 
and conservative collection [Aditya et al., 19941, and found that 
run-time type reconstruction can have a significant impact. 

Tolmach [Tolmach, 19941 and Tarditi, er al. [Tarditi et al., 19961 
describe schemes that represent the polymorphic type parameters 
more explicitly, potentially at run time, but frequently optimized 
away. The Tarditi, et al., object and stack information is similar to 
ours, and they use liveness information at gc points (but do not re- 
port any experience with it). They also handle callee-save registers, 
which require traversing the stack to find callers’ register informa- 
tion in order to type a register saved by a callee; we also encoun- 
tered that issue in implementing the scheme laid out by Diwan, et 
al. [Diwan et al., 19921. We need not do that in a bytecode inter- 

pretation implementation of the JVM, but if we produced optimized 
native code, the issue would arise. 

Note that many of these schemes are concerned not only with 
eliminating reference/non-reference tags in the stack, but also with 
eliminating type tags in heap objects. In object-oriented languages 
similar to the Java progr amming language, objects carry full type 
information to support run-time type discrimination operations. 
The availability of full type information makes it possible to iden- 
tify reference 6elds in heap objects, and thus we are concerned only 
with reference/non-reference distinctions for roots. 

The Java programming language, as it currently stands, does not 
have parametric polymorphism, though there is considerable dis- 
cussion of possible techniques for adding parameter&d types and 
classes. If these were implemented with shared code bodies, then 
some of the same stack map generation issues would arise as do 
with Standard ML polymorphic functions [Agesen et uf., 19971. 

In the area of procedural and object-oriented languages, Diwan, 
et al., described a scheme for building stack maps for Modula- 
3 [Diwan et al., 19921, which deals with reconstructing pointers 
to heap objects from offsets and other optimized representations, 
which come about at least in part from the ability to pass object 
fields by reference in calls. They also considered how stack maps 
might be compressed to save space. A related topic is ensuring 
that compiler optimizations will not effectively hide live pointers 
from a collector, and has been considered by Boehm and Chase (at 
least), separately and together [Chase, 1988; Boehm, 1991; Boehm 
& Chase, 1992; Boehm, 19961. The relatively simple and highly 
constrained model of references presented by the JVM avoids the 
optimization-induced problems these other works address, such as 
interior and derived pointers. However, once one considers gener- 
ating native code from Java bytecode, the optimization issues may 
arise. In other work, Boehm and Shao considered how to con- 
struct a useful conservative approximation of object type informa- 
tion at run time for a conservative collector poehm, 19931. Finally, 
Thomas, with Jones, built routines for tracing stack frames, moving 
from an interpretive to a compiled model for stack maps [Thomas, 
1993; Thomas &Jones, 1994; Thomas, 19951. 

Clearly the notion of tagless collection is now fairly well devel- 
oped; we certainly do not claim that building stack maps for Java 
bytecode is a novel idea or even that the difticulties peculiar to this 
context require deep new approaches. 

Turning to compile-time analyses for garbage collection, there 
has been much work done on such analyses for functional and 
applicative languages [Barth, 1977; Bruynooghe, 1987; Chase 
et al., 1990; Deutsch, 1990; Foster & Winsborough, 1991; Hamil- 
ton & Jones, 1991; Hamilton, 1993; Hamilton, 1995; Heder- 
man, 1988; Hicks, 1993; Hudak, 1986; Hudak, 1987; Hughes, 
1992; Inoue et al., 1988; Jensen & Mogensen, 1990; Jones & 
le Metayer, 1989; Jones &White, 1991; Jones & ‘lyas, 1993; Jones, 
1995; Mohnen, 1995; Mulkers, 1993; Mulkers et al., 1994; Wadler, 
19841. There are two important ways in which that work does not 
carry over to our situation. The most obvious difference is that the 
Java programming language is not functional, so the patterns of al- 
location, mutation, and heap use in general might be quite different. 
A more subtle difference is that most of the work on compile-time 
gc is focused on showing (statically) that certain objects are not 
reachable and can be reused or collected immediately. We are con- 
cerned only with whether references in local variables will be used 
again, which is a weaker property. 
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Some schemes are more similar to our liveness analysis. For ex- 
ample, Appel described a continuation-passing style compiler for 
Standard ML [Appel, 19921, which effectively removed dead vari- 
ables from closures. This resulted in there being more closures (one 
for each set of live variables), prompting some to call for closure 
combination to save on closure allocation, but Appel has noted that 
this would risk retaining more allocated heap objects because of 
dead variables. Shao and Appel devised an arguably better scheme, 
based on control and data flow analyses, that shares closures heavily 
but still guarantees that dead variables are unreachable [Shao & Ap- 
pel, 19941. Thomas’s compiler-generated tracing routines [Thomas, 
1993; Thomas & Jones, 1994; Thomas, 19951 take liveness into ac- 
count for closures, and a given closure may be traced more than 
once, with different livenesses for the variables, to trace all live ref- 
erences. 

Again, we do not claim that the idea of using liveness information 
is new. However, we found no reports of its use for procedural or 
object-oriented languages (other than an indication that Chase has 
built a collector similar to ours for a JVM [Chase, 19971). On the 
other hand, it has likely been done before but simply not reported. 
Most significantly, we have found no previous measurement of the 
impact of live variable analysis, only anecdotal discussions in the 
context of functional languages, which leads us to the topic of ex- 
perimental results. 

Overall, the improvements obtained with compile-time gc for 
functional languages have been minor. For example, Jones [Jones, 
19951 obtained an 8% reduction in bytes allocated for Haskell, re- 
ducing overall execution time by 4.5%. Likewise, Wentworth found 
that conservative gc generally did well [Wentworth, 19901. On the 
other hand, he made a telling observation: sometimes conservatism 
makes a big difference.2 Similarly, it appears that the primary ben- 
efit of liveness analyses is in reducing the likelihood of surpris- 
ing space retention. Evaluations of conservative gc have been in 
terms of the incidence of non-reference values looking like refer- 
ences and thus causing garbage to be retained. We note that such 
evaluations overlook the storage that can be reclaimed by omitting 
dead variables from the root set; that is, type-precision and live- 
precision constitute two separate precision improvements over am- 
biguous roots gc. 

Our contributions: From this overview of related work, we con- 
clude that our primary contribution lies in reporting measurements 
of the impact of liveness analysis for a procedural object-oriented 
language. We previously reported in more detail on the difticul- 
ties in producing stack maps for Java bytecode [Agesen & Detlefs, 
19971, and summarize that work here, extending it with the liveness 
analysis. 

3 Stack maps and gc points 
The contents of a stack slot can change during the execution of a 
Java method. Slots, with the exception of those occupied by ar- 
guments to the method, start uninitialized. Thus a simple way in 
which slot types can change is from uninitialized to containing a 
value of a particular type. However, a Java compiler is permitted 
to (and indeed existing ones do) store source variables with disjoint 
live ranges in the same slot. Thus a slot can contain values of differ- 

2Ropooents of conservative gc argue that cases where it performed poorly for 
Wentworth can be largely prevented by avoiding allocation in regions of virtual mem- 
ory whose addresses look like numeric values in we by the program at hand. 

ent types at different points in the execution of a method; some of 
those types may be reference types and others may be non-reference 

types. 
At this juncture, we stress that we are concerned with processing 

Java bytecode, loaded at run time. Thus we are concerned not so 
much with the Java pmgmmming language specification [Gosling 
et al., 19961 as with the Java virtual machine specification [Lind- 
holm & Yellin, 19961. (The instruction set also has been described 
separately by Gosling [Gosling, 19951.) Java bytecode must pass 
well-formedness tests performed by a run-time bytecode verifier, 
we assume that we deal only with such well-formed Java bytecode 
methods. Some of the relevant verified properties are: 

A type can be calculated for each local variable and stack tem- 
porary at each instruction of a method, using a straightforward 
data flow analysis over the lattice of object types, augmented 
with some non-object types. This implies that types may de- 
pend on program point, but nor on the path by which the pro- 
gram point is reached. We call this the Gosling property be- 
low, since it was first stated explicitly by Gosling [Gosling, 
19951.3 

The types of the operands for each instruction will satisfy the 
instruction’s type constraints. In particular, integer, floating 
point, and reference handling instructions are distinct and type 
checked. 

The simple static data flow analysis suffices to show that no 
uninitialized variable is ever used. 

Following Diwan, et al. [Diwan et al., 19921, we do not generate 
stack maps for every instruction. Rather, we restrict the VM im- 
plementation so that collection can occur only at certain gc points. 
These must include the allocation bytecodes. In the absence of a 
whole-program style inter-procedural analysis, which would be dif- 
ficult in the face of the JVM’s dynamic loading capabilities, one 
must also include calls as possible gc points. Finally, to insure that 
one can stop each thread if another thread initiates collection, each 
loop should contain a gc point. This is easily accomplished by 
making backward branches gc points. Beyond that, the choice of 
gc points is an engineering decision. Discussion of techniques to 
advance threads to gc points falls outside the scope of this paper. 

Bytecode verification uses a full type lattice, but for stack map 
generation we need to know only whether a slot contains a reference 
or non-reference, etc., and not the specific type. We do, however, 
need to track program counter (pc) values, as will be described in 
Section 4. We may thus use this lattice: 

top/conflict 

PC val ref uninit 

bottom/untouched 

To start the data flow analysis for a method, we set all variable 
values to bottom, except for the entry point to the method, where we 

3As we will see, the Gosling property does not CJway~ hold; the complete story is 
more complex. 
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set arguments to val or refaccording to their incoming type, and re- 
maining variables to uninit. Any of the well-known data flow analy- 
sis computation algorithms will suffice; we used a simple work-list 
algorithm. 

4 The jsr problem 

Unfortunately, we have not yet told the complete story. The JVM 
specification explicitly allows one exception to the Gosling prop- 
erty. ‘Ihe Java bytecode instruction set includes a pair of operations 
called jsr and ret. The jsr instruction jumps to an address 
specified in the instruction and pushes a return address value on the 
operand stack4 of the current method. The ret instruction speci- 
6es a local variable that must contain a return address, and jumps 
to that return address. 

The intended use of these bytecodes is in the implementation of 
the 

try { body } finally { handler } 
construct of the Java programming languaie, in which harder is 
executed no matter how body is exited. ‘Ihe bandlerwould be trans- 
lated as a jsr subroutine: a “mini-method” within the method. Ev- 
ery instruction that exits body, such as return or throw state- 
ments or “falling off the end”, would be preceded in the translation 
by a j sr to the handler subroutine, which would store the pushed 
return address in a local variable, perform the work of handler, then 
perform a ret. Although a jsr subroutine resembles a real method, 
there is a crucial difference: it executes in the same stack frame as 
its containing method and has access to all the local variables of the 
method. 

The JVM specification for verification of jsr subroutines contains 
an explicit exception to the Gosling property [Lindholm & Yellin, 
1996, p. 1361: the bytecode veritier permits any local variable v that 
is neither read nor written in a jsr subroutine to retain its type across 
a j sr to that subroutine. 

This seemingly reasonable weakening of the Gosling property 
causes serious difficulty for precise garbage collection. Consider a 
case in which there are two jsrs to the same jsr subroutine. At 
one j sr, local variable v is being used to hold an integer, and at the 
other, it holds a reference. Should a garbage collection occur while 
a thread is in the jsr subroutine, a simple program-counter based 
stack map scheme cannot determine if v contains a reference, since 
the stack layout is now path dependent. Simply disallowing garbage 
collections for the duration of the jsr subroutine is not an option 
since try-f inally handlers can perform arbitrary computation, 
including calling methods that may execute indefinitely and allocate 
an unbounded number of objects. 

5 Possible solutions 
There are several possible solutions to the jsr problem. An obvious 
one is to change the JVM specification to remove the Gosling prop- 
erty exception for jsr subroutines, which would simplify bytecode 
verification as well as stack map generation. However, removing 
the exception might increase the size of some stack frames, and 

‘For the present discussion, it is unnecessary to distinguish behveen stack frame 
slots holding operand stack values and stack frame slots holding local variables: we 
think of them as two separate sets of local variables, one being addressed from the 
stack frame. base, the other being addressed from the top of stack pointer. 

in any case it would be politically difficult to make changes to the 
speciEcation that would invalidate any existing code. 

A second class of solutions rewrites the bytecodes to eliminate 
any violation of the Gosling property. One specific technique is 
to replicate jsr subroutines that are called from sites with different 
stack maps, so that each replica is called only from sites with the 
same stack map. Since jsr routine calls can be nested, this can re- 
sult in exponential code duplication. While the occurrence of the 
jsr problem is rare for many programs, even one case of exponen- 
tial expansion might be fatal. Also, we anticipate that exception 
handling features will be used more in the future than they are now, 
as programmers become more accustomed to them. Rather than du- 
plicating code, we chose to split variables; we describe this in more 
detail below. 

A third class of solutions is to allow the Gosling property viola- 
tion, and add additional information to stack maps so that one can 
determine the nesting of jsr subroutine calls in progress, and com- 
bine stack map information through the j sr call chain. One of us 
is pursuing this approach, which has the advantages of not affecting 
the VM specification, of not requiring any bytecode rewriting, and 
of not imposing any normal case overhead in method execution. It 
is more complex, and may require slightly more work at collection 
time (probably not enough to matter), and slightly larger and more 
complex stack maps (again, probably not significant in practice). 

6 Bytecode rewriting to split conflicting 
variables 

Our first step was to refine the lattice used in the data flow analysis 
that computes stack maps to record not only that a conflict occurs 
but also the kind of conflict. Essentially, we used the power set 
lattice, adding cases for ref-nonref, ref-knit, vahninit, etc. This 
is easy to implement using bit vector operations. 

We need this more detailed information because we resolve 
conflicts between references and uninitialized values (ref-uninit 
conflicts) differently from conflicts between references and non- 
reference values (ref-nonref conflicts): 

ref-uninit conflicts are eliminated by prepending code to the 
start of the method to initialize the variables to null. 

ref-nonref conflicts are eliminated by splitting the variables. 

top (ref-nonref-uninit) conflicts are resolved by a combination 
of the above two actions: we first introduce initializations to 
null, eliminating the uninit conflicts, and then split to eliminate 
the ref-nonref conflicts? Note that the initialization to null will 
be associated with the part of the split variable that has a ref 
type, and not with the part that has a non-reftype. 

We extend the stack map computation for a method m as fol- 
lows. We alternate data flow analysis and conflict elimination, iter- 
ating until all conflicts have been eliminated. During the data flow 
analysis, a variable vars’ZHnit holds a set of reference-containing 
variables requiring initialization. It is initially empty. The data flow 
analysis treats variables in the set as holding initialized reference 
values at the start of the method. Each iteration initializes a vari- 
able varstiSplit to the empty set of variables. This set will hold 

‘We ignore vnl-&nit conflicts since they are irrelevant to garbage collection. 
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variables that were found to hold a ref-nonref conflict at a point 
when they were used. (Such a conflict can happen only when the 
Gosling property is violated, i.e., through the type merging that jsr 
subroutines can induce.) 

The stack map computation then proceeds as described previ- 
ously, except in its handling of conflict values. A use of a vari- 
able whose value in the data flow analysis is the ref-knit conflict 
value causes the variable to be added to varsToInit. A use of a 
variable holding the ref-nonref conflict value adds the variable to 
varsZbSplit. If a use is of a value having both kinds of conflicts, we 
add the variable to varsToInit only.6 

At the end of an iteration, varsToSplit is checked. If it is non- 
empty, then each variable in it is split. To split local variable n, we 
increase the number of local variables allocated in stack frames for 
method m by one; let nn be the number of the newly allocated local 
variable. We then examine the bytecodes for method m, modifying 
them so that instructions that use the original variable n to hold ref- 
erences are unchanged, but non-reference uses are changed to use 
variable nn instead? It is a happy property of the Java bytecode 
instruction set that instructions have sufficient type information en- 
coded in theiropcodes to determine locally whether a given instruc- 
tion uses a local variable as a reference, making the rewriting fairly 
simp1e.s 

There is one more complication. Rewriting instructions can 
cause instruction positions and lengths to change, so code must be 
relocated, branch offsets updated, etc., a process we will not de- 
scribe in detail. 

If any uses of conflict variables are detected, at least some are 
repaired by this variable-splitting process or by addition to the 
vardblnit set. ‘Ihe next iteration of the loop may still find some 
conflicts in the rewritten code (perhaps a variable has both ref-uninit 
and ref-nonref conflicts), causing another iteration, or it will detect 
no conflicts and successfully generate the stack mapse9 

The rewriting may fail, in the following ways. Allocating new 
local variables could exceed the limit on the number of locals in a 
method imposed by the bytecode instruction set. Widening instruc- 
tions could conceivably cause a method to exceed the maximum 
method size. In such cases, the VM would have to somehow indi- 
cate an error akin to a verification error. Such programs would be 
exceedingly unlikely to occur in practice. 

The performance of the by&ode rewriting part of the process is 
not a crucial issue since with the most commonly used compiler, 
javac, very few methods need rewriting. In the benchmark suite we 
used for the comprehensive measurements we describe in more de- 
tail later, we split only six variables (five in one program, one in 

%te in the game we realized that it is also correct, and probably slightly better, to 
add the viable only to varsToSpZif. A later iteration will add it to varsTolnir, but only 
if a ref-uninit conflict remains after splitting the variable. 

‘The other choice, where reference uses of n are changed to use nn and non- 
reference uses are unchanged, is equivalent. 

‘There is one exception to this property: the astore instruction is usually used 
to pop a reference (an address, hence the prefix letter a) from the operand stack and 
store it in a local variable, but it may also be used to do the same with return addresses 
pushed on the stack by j ST instructions. Fortunately, the data flow analysis already 
maintains sufficient state to determine whether the opemnd stack top at the point of the 
astore is such a return addre~, so this complication is easily circumvented. 

‘Again. late in the game, we realized that varsZbSplit can only be non-empty after 
the first iteration of the overall process. So we need perform the data flow analysis 
no more than two times. Furthermore, if we are willing possibly to over-estimate ref- 
uninit conllicts by allowing variables to be added to both vnrsZXplit and vad’dnir, 
we need only perform the data flow analysis once. Doing so might significantly reduce 
time needed to generate stack maps for methods that require rewriting. 

another). Ref-uninit conflicts were somewhat more common. An 
average of 20 variables per program required initialization. ‘Ihese 
were concentrated in two programs that used the Java Abstract Wm- 
dows Toolkit. 

On the other hand, the performance of the first iteration of the 
analysis, the only iteration required by most methods, is of some 
interest since it will be performed for any dynamically loaded code 
before that code is executed.” Further below we report some mea- 
sures of the cost of the data flow analysis. 

7 Live variable analysis 
The additional live variable analysis is straightforward, and requires 
only a two-element lattice. Since liveness is a backwards flow prop- 
erty, we unfortunately cannot compute liveness by augmenting the 
forward flow type analysis lattice. We observe, though, that the live- 
ness analysis may eliminate some conflicts at gc points. However, 
by the Gosling property, except at j sr instructions and in jsr sub- 
routines, ref-uninit and ref-nonref conflicts indicate variables that 
must be dead, so such items should be dropped from stack maps 
anyway. Still, the liveness analysis will identify dead references. 

Since the JVM instruction set is stack-oriented, data movement 
operations such as the assignment x = y ; present themselves as 
pushes and pops. Our live variable analysis propagates liveness 
information through local variables and stack temporaries. This 
means that in the data flow analysis, the live/dead values for differ- 
ent variables are coupled, so the height of the lattice is the number 
of variables; i.e., variables cannot be analyzed separately from one 
another. It is unlikely that one would see worst case iteration of the 
algorithm in practice, though. 

On the run-time side, what should the collector do with dead 
reference variables? Obviously it should ignore any dead reference 
for tracing purposes. Less obviously, if a program is run in the 
presence of a debugger, the collector has three options. It can trace 
dead references (so they can still be examined in the debugger for 
as long as possible); it can set dead references to null (so that the 
debugger will not try to follow a reference that may be invalid after 
collection); or it can treat dead references as “weak” references, 
retaining their value if and only if the referent objects are otherwise 
reachable. 

It also appears that omitting dead references when collecting can 
expose program bugs. For example, suppose object x refers to ob- 
ject y, object x has a finalizer that uses object y, and the program’s 
last reference to n becomes dead while the program is still using 
y.” If a gc occurs at this point, y may be accessed concurrently by 
the linalizer and by the main program code, a form of concurrency 
that may surprise the programmer. ‘Ihis does not appear to violate 
the Java programming language specifications, so we consider it to 
be legal. We also observe that many optimizing transformations can 
expose (or hide) bugs, so our liveness analysis is far from unique in 
this regard. 

“‘While it is conceimble that one might generate stack maps at gc time, it is prob- 
lematic because implementations of the data flow analyses will tend to allocate heap 
storage, which is not generally possible during gc. It is also possible to pre-analyze 
code and insert gc stack maps into class files as additional attributes, but this is possi- 
ble only for local trusted class files. 

“This example was supplied by an anonymous reviewer. 
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7.1 Why liveness analysis? 
Why might it be important to include a live variable analysis? One 
school of thought is that the dead variable heap object retention 
problem can be fixed simply by having programmers insert assign- 
ments of null at the right places. ‘Ihere are several problems with 
this view. First, it introduces an overhead all the time to address 
a situation that occurs relatively rarely (gc). It is more efficient to 
have the gc treat the slots as containing null than it is to set them 
to null. Second, why should programmers have to waste their time 
even thinking about an issue like this when an automated tool can 
address it? It is not as if programmers are likely to wunt dead ob- 
jects retained, and thus perhaps desire control over this behavior. 
Third, even if programmers insert assignments of null, an optimiz- 
ing compiler might remove them, since they are assignments to 
dead variables!12 Finally, and we think this is the nail in the coffin, 
there are cases where it is virtually impossible for the programmer 
to do the assignment at the critical moment. A good example of this 
is a method call such as v . m (x) , where x is the last live reference 
to some sizeable object subgraph, variable x is dead after the call, 
and method m also reaches a point where it no longer uses x. This 
is a particularly disturbing possibility, since a call has indefinite du- 
ration and may be deep in the stack, thus retaining garbage for quite 
a long time. 

One of us ran into a concrete example when working on a 
theorem-proving system in Modula-3. Rewriting the essential part 
in the Java programming language, the pertinent code was: 

boo1 proveTheorem(InputStream is) { 
Sexp sx = Sexp.read(is); 
Pred p = Pred.sxToPred(sx); 
return refute (Pred.not (p) ) ; 

1 

The salient feature of this code is that the Sexp form was used only 
because there was a convenient library available to read expressions 
in LISP S-expression form. The S-expression form was immedi- 
ately converted to a predicate form and discarded. In realistic situ- 
ations, sx might refer to a megabyte or more of S-expression data 
that is dead, across a long running call to refute. Even more in- 
teresting, the actual code was written in a more functional style, and 
the dead variable was actually a compiler temporary! This made the 
problem quite difficult to discover and remedy. Furthermore, when 
the original functional form was rewritten to the form shown above, 
and then modified by explicitly assigning null to sx after its last 
use, the problem still persisted. We speculate that this was because 
the Modula-3 collector was an ambiguous roots collector, and an- 
other copy of the sx pointer, which had been passed in the call to 
Pred, was lying in the stack frame for refute, or some place 
even further towards the top of the stack. Our fix was to null out the 
entire sx structure after building the pred form. 

Our reason for including this story is to make it clear how diffi- 
cult it cm be to locate and resolve problems of unexpected storage 
retention. 

8 Experiments 
In this section we give experimental data obtained on a 296 Mhz Ul- 
tra SPARC with 512 Mbytes of memory, running Solaris 2.6. The 

‘*David Chase brought this to our attention; he mentions the possibility in passing 
in his dissertation [Chase, 19871. 

programs we measured are a collection of benchmarks under con- 
sideration for a SPEC suite to measure Java platforms.13 We had 
to exclude four of the programs because thread-library issues pre- 
vented us from running them correctly; we excluded two more be- 
cause they allocated too little storage to be interesting in this study. 
Finally, we added ellisgc, a GC stress test program, that John Ellis 
sent to us. While it bears some relationship to gcbench, they react 
differently under liveness analysis, so we felt it useful to include 
both. 

The VM we used is based on the Javasoft JDK VM, modified to 
(among other things) support generation and use of our stack maps. 
Note that since we are comparing the amount of reachable heap data 
as we vary the stack root set, the actual gc technique is irrelevant (it 
happened to be mark-sweep). 

8.1 Cost of type and liveness analysis 

We measured the elapsed time used by stack map generation and 
liveness analysis while running our benchmark suite on an oth- 
erwise idle workstation. For purposes of comparison, we also 
measured total time, time consumed by class loading, and time 
for bytecode verification (running the VM in a mode where all 
classes are verified). Table 1 displays these measurements. The 
“Stack map/loading” column divides stack map computation by 
class loading time, and the “Verification/Stack map” column ex- 
presses verification time as a multiple of stack map computation 
time. ‘Ihe “Average” row gives geometric means for the columns 
containing ratios. 

Just as verification can be done once (off-line) for local trusted 
classes, one could similarly compute stack map information off- 
line for such classes, speeding up program startup accordingly. On 
the other hand, for classes obtained over a network, possibly from 
untrusted sites, verification is necessary, and as our numbers show, 
usually dominates stack map computation time by an order of mag- 
nitude. 

We also measured how much liveness analysis increased the cost 
of stack map generation. The increase was quite uniform, be- 
tween 54% and 58% over all the benchmarks. A further breakdown 
showed that the forward analysis and backward analysis were quite 
similar in cost. However, the liveness analysis is able to reuse data 
structures created for the type analysis (basic blocks, etc.), thus de- 
creasing its incremental cost. 

8.2 Stack map size measurements 
We present a range of stack map size and related statistics in Ta- 
bles 2 and 3. In these and subsequent measurements, we have 
added runs of three more programs. The spreaukheet program is 
a prototype financial calculation engine, obtained via private com- 
munication. The hotjuva run is part of a morning’s exploration 
with the HotJava web browser. Both of these programs have elab- 
orate graphical user interfaces. The volano run gives the behav- 
ior of the server-side program in Volano LLC’s VolanoMark 1.0 
benchmark, over several invocations of a client-side program pm- 
vided in the benchmark that imposes a workload on the server. 
This benchmark is intended to estimate the performance of the real 

‘%ose benchmarks selected by SPEC (if any) may have different versions and/or 
Workloads, so our results cannot necessarily be compared meaningfully with any SPEC 
re.3ult.x Our purpose was only to compare different gc algor&ms on a se4 of programs. 
not to compare platforms differing in any other way. 
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’ Benchmark Total run time Loading Stack map Stack map/ Verification Verification/ 
(se4 (msec) (msec) Loading (msec) Stack map 

compress 82.0 269.6 172.0 0.63 1838.6 
I 

10.6 

iess 9.9 128.2 lW? 1.01 _--.I _._- 1147.8 1 8.8 
i iinoack I 89.9 1 991 I 918 I n-98 I 711.5 I 7.2 ,,,A , I.- -._ - I 

Oh? I 912 I n95 I 821.0 1 8.9 
1107.8 I 9.3 

newmst 32.2 ,v.- , ,a.- , -._- 

raytrace 21.5 114.0 1 118.8 1 1.04 1 ----.- , 
cst 17.9 llA1 1 1115 I 0.99 I 729.2 1 6.4 1 

db I 7.6 1 1u1.8 1 lU1.3 1 U.YY 1 030.0 , si 12.3 I 108.4 I 106.0 I 0.97 I 632.2 1 L&I -_ I _-.- I 
anaoram 1 1.8 I 97.2 i 94.8 1 0.97 I 732.7 1 7.7 I 
----e--- I - .- I I 
gcbench 1 2.8 1 98.4 1 96.0 1 0.97 1 1697 I 801 

iavac I 7.4 I 143.5 I 1717 I 119 I 
_I 

deltablue 
mpegaudio 
jack 
t sgp 
ellisgc 

Average 

. -..- -.- 
_. *.- _.-. 4531.7 26.4 

w3 I n93 I 723.2 7.3 
1479.7 10.0 

23.4 105.2 ,v._ -.r- , 
91.6 107.2 146.9 1.37 _ .._.. 
21.4 156.6 175.0 1.11 2102.4 12.0 

350.4 98.0 93.2 0.95 614.3 6.5 

8.8 40.2 62.3 1.54 936.3 15.0 

Table 1: Comparison of stack map computation with class loading and bytecode verification 

VolanoChat chat server on a given Java platform, and is available at 
http://www.volano.com/mark.html. 

In Table 2, the “Code size” column shows the number of byte- 
codes in all methods executed in the run. The “GC points” column 
gives the total number of gc points, bytecode instructions for which 
stackmaps were computed, for the methods executed in the run. The 
“Code bytes/gc point” column gives the ratio of these two numbers, 
an estimate of the interval between bytecode instructions requiring 
stack maps. The “Slots” column shows the sum of the number of 
local variable and operand stack slots in use at all gc points, and the 
average number for each gc point. The “Refs” column shows how 
many of these slots contained references, and the “Live” columns 
shows how many of these were live. The last two columns show 
the fraction of slots that contained references, and the fraction of 
reference slots that were live. The “Average” row gives geometric 

means for the rows representing ratios. Table 3 presents the same 
information, averaged over methods instead of gc points. Again, 
the “Average” row gives geometric means for the rows representing 
ratios. Roughly speaking, a little more than half of all slots are ref- 
erences, and approximately 314 of these are live. In the particular 
system in which we did these experiments, stackmaps consumed 
an average of 57% as much space as the bytecode itself. However, 
the representation uses no compression, so we believe this overhead 
could be substantially reduced. 

8.3 Run-time heap size measurements 
To measure the impact of liveness analysis, we ran the suite of 
benchmark programs on our modified JVM. This system uses our 
stack maps to trace stack frames in either a type-precise or live- 
precise manner. In fact, both levels of precision are available in the 
same system, so we compared them directly, as follows. 

After every 1OOK words of allocation, we invoked the mark 
phase of the type-precise collector and determined the number of 
words of objects marked. We then reset the mark bits and invoked 

the mark phase of the live-precise collector and determined the 
number of words of objects it marked. We did a sweep only when 
the allocation area was exhausted. 

For each precision we can construct a function giving the heap 
size over time, where time is measured in words allocated and is 
sampled every 1OOK words. We connect the points of each func- 
tion and compute the integral under the function’s curve, which 
gives us the space-time product of the run. We report total space- 
time products, and the ratio of those products, for the two levels of 
precision in Table 4. We also report for each benchmark the (geo- 
metric) mean of the ratios of the heap sizes at each sampled point 
during the run. Finally we report geometric means of each column 
of the table, i.e., across all benchmarks.14 We present some sample 
curves showing reachable data with and without liveness analysis 
in Figure 1. The ellisgc run shows the most dramatic improvement 
from liveness analysis of the programs we ran. The volano run is 
more typical. (Each “hump” corresponds to the response of the 
server-side program to one invocation of the client-side simulated 
load.) 

Overall, liveness information reduces the time-space product by 
an average of 11%. This result is skewed by the ellisgc program. 
That program is somewhat contrived and is intended to challenge 
garbage collectors. However, it does not intentionally include dead 
variables. Still, we include averages omitting ellisgc and see that 
the time-space product improves by an average of 3.6%. We note 
that it is not necessarily reasonable to reject ellisgc from the results, 
since dead variable space retention is likely to be an occurrence that 
is usually not too bad, but occasionally terrible. It is interesting to 
see that almost every program we ran shows a measurable differ- 
ence, so some degree of dead variable space retention appears to be 
common. 

A separate point is that this is a non-generational collector. In a 

14We use geometric rather than arithmetic means since they are more suitable for 
comparing ratios. The geometric mean of n item is the nth root of their product, or, 
equivalently, the anti-logarithm of the arithmetic mean of their logarithms. 
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Benchmark Code size GC Code bytes/ Slots I Refs I Live 
(bytes) points gc point # 1 per pt 1 # I perpt I # 1 perpt 

quantum 357035 61166 5.8 419349 6.86 240788 3.94 166998 2.73 
hotjava 399746 67248 5.9 1005937 14.96 597734 8.89 520071 7.73 
volano 97797 7136 13.7 42357 5.94 24241 3.40 18098 2.54 

Average 1 I 7.9 I 1 7.48 1 I 3.97 I I 3.04 

Refsl 
Slots 

0.528 
0.564 
0.505 
0.518 
0.535 
0.431 
0.522 
0.484 
0.519 
0.511 
0.596 
0.546 
0.511 
0.552 
0.508 
0.522 
0.574 
0.594 
0.572 

0.530 

0.785 
0.720 
0.789 
0.791 
0.771 
0.774 
0.784 
0.758 
0.790 
0.781 
0.702 
0.780 
0.830 
0.746 
0.795 
0.667 
0.694 
0.870 
0.747 m 

Table 2: Measured stack map size and related statistics 

1 Benchmark 1 Methods I Bytes/method 1 GC points/method I Slots/method 1 Refs/method 1 Live refs/method 1 
I 

cnm”rerr I 1li9 I 

javac 1124 141.68 16.24 128.74 76.68 53.86 
deltablue 404 225.22 14.35 98.19 53.66 41.88 
mpegaudio 535 139.97 18.01 123.81 63.24 52.47 
jack 759 179.67 18.77 126.40 69.79 52.10 --.-_ 
tsgp I 337 83.07 15.49 113.79 &8k 45.99 
ellisgc 182 52.99 8.99 51.76 27.04 18.03 
quantum 5843 61.10 10.47 71.77 41.21 28.58 
hotjava 4669 85.62 14.40 215.45 128.02 111.39 
volano 596 164.09 11.97 71.07 40.67 30.37 
Average 117.16 14.91 111.63 59.14 45.28 

Table 3: Measured stack map size reported per method 
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compress 61128242 
jess 868824 
linpack 3355585 
newmst 78055 
raytrace 37817490 
cst 12504270 
db 7978578 
si 22599024 

Time space 
with liveness 

w kd) 
57363160 

825482 
3292842 

73266 
37508324 
12258149 
7882272 

20103152 
anagram 27918894 1 27712322 0.9926 0.9858 
gcbench 226114414 ] 224068: i99 0.9910 0.9888 
iavac 9186308 9007787 0.9806 0.9759 
.-_---_I- I 3741663 3426734 
npegaudio I 76096 71294 
nrk 9716810 9419524 

0.9384 0.9330 
0.9501 0.9472 
0.9813 0.9497 

0.9803 0.9685 
0.9879 0.9736 
0.8896 0.8896 

_. ----- _ .-_--. 

--or 710108 686164 
ellisgc 289690805 61671602 

sureaclsheet 154266857 154255015 
hotj ava 929502587 929484329 
volano 39938934 38008136 

Average 11778354 10487525 
Average, without ellisgc 9858598 9504470 

0.2129 I 0.0904 

Table 4: Heap sizes with and without liveness 

generational collector the benefit of liveness analysis may turn out 
to be greater, since one might reduce the volume of tenured garbage, 
which takes longer to collect. 

9 Conclusions 

We found that adding a live variable analysis to a type-precise 
garbage collector, so as to increase its precision, reduced heap size 
(time-space product) by an average of 11% for a suite of bench- 
mark programs, with most programs showing some difference and 
a few showing more dramatic differences. Liveness analysis ap- 
pears to offer minimal benefit to many programs, but it is important 
in reducing the possibility of surprisingly large volumes of retained 
garbage. Preliminary measurements indicate that the cost of gener- 
ating live-precise stack maps for Java bytecode is about 50% greater 
than the cost of generating only type-precise stack maps. We also 
described some technical difficulties in generating stack maps for 
Java bytecode so as to accomplish type-precise collection, and in- 
dicated several solution approaches. 
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