
Garbage Collection and Local Variable ‘Qpe-Precision and Liveness
in JavaTM Virtual Machines

Ole Agesen and David Detlefs
Sun Microsystems Laboratories

2 Elizabeth Drive
Chelmsford, MA 01824, USA

ole.agesen@sun.com, david.detlefs@sun.com

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610, USA

moss@cs.umass.edu

Abstract. Full precision in garbage collection implies retaining
only those heap allocated objects that will actually be used in the fu-
ture, Since full precision is not computable in general, garbage col-
lectors use safe (i.e., conservative) approximations such as reach-
ability from a set of root references. Ambiguous roots collectors
(commonly called “conservative”) can be overly conservative be-
cause they overestimate the root set, and thereby retain unexpect-
edly large amounts of garbage. We consider two more precise col-
lection schemes for Java virtual machines (JVMs). One uses a type
analysis to obtain a type-precise root set (only those variables that
contain references); the other adds a live variable analysis to reduce
the root set to only the live reference variables. Even with the Java
programming language’s strong typing, it turns out that the JVM
specification has a feature that makes type-precise root sets difficult
to compute. We explain the problem and ways in which it can be
solved.

if and only if they are reachable from a set of roof references. Such
roots include local and global variables. We focus on precision of
that part of the root set resulting from local variables, which we
term the local variable root set, or l-roots for short. At the imple-
mentation level, local variables are stored in slots in stack frames.
Since our setting is the JavaTM programming language, there will
be multiple stacks, one for each thread, but many of the same no-
tions apply to single-threaded languages or those requiring closures
rather than stacks.

There are at least four degrees of precision one might apply in
calculating l-roots:

1.

Our experimental results include measurements of the costs of
the type and liveness analyses at load time, of the incremental ben-
efits at run time of the liveness analysis over the type- analysis alone,
and of various map sixes and counts. We find that the liveness anal-
ysis often produces little or no improvement in heap size, some-
times modest improvements, and occasionally the improvement is
dramatic. While further study is in order, we conclude that the main
benefit of the liveness analysis is preventing bad surprises.

2.

3.

1 Introduction 4.

The goal of garbage collection (gc) is to reclaim memory allocated
to objects that will not be used again. Knowing exactly which ob-
jects a program will not access again is equivalent to the halting
problem, and is thus not computable. In response, researchers and
implementers have devised gc algorithms spanning a wide range of
precision. We are concerned with gc algorithms that retain objects

One can also analyze liveness of heap objects, and fields of heap
objects; this is often called compile-time gc. Note, though, that
we are concerned with which mot references will be used again,
not with which objects will be. We do assume that the pointer-
containing fields of heap objects can be determined precisely.

Sun, Sun Microsystems, the Sun Logo, Java, and HotJava are trademarh or regis-
tered trademarks of Sun Microsystems, Inc.. in the United States and other countries.
Volaoo, VolanoChat, and VolanoMark are trademarks of Volano LLC.

v

Q 1996 ACM 0-69791-967-4/96/0006...$5.00

A requirement of precise collection is that one must somehow
provide the collector with information about the locations of ref-
erences. This may introduce both performance overhead and ex-
tra implementation complexity. We can provide type-precision in-
formation via tags that make stack frames and their contents self-
describing. Tags may be supported by hardware, but more com-
monly require the generation of extra instructions to check, mask,
and insert tags. If tagging is not used, then the system must asso-
ciate information with each stack frame to indicate the l-roots of the
frame; we call such a data structure a stack map.

‘Beat every local variable as an l-mot, without regard to type.
This is ambiguous roots collection [Boehm & Weiser, 1988;
Boehm & Shao, 1993; Bartlett, 1988; Bartlett, 1989; Appel &
Hanson, 19881, also commonly called conservative gc.’

Use type information to obtain type-pnxise roots, i.e., only
those l-roots whose variable is of reference type. This has
also been called “accurate”, “precise”, and “aggressive” (in
contrast with “conservative”).

Extend type-precision by adding liveness information from an
intra-procedurallive variable analysis; we call this live-precise
collection.

More refined liveness analyses, such as inter-procedural anal-
ysis.

‘The term “conservative” has been applied (ambiguously) to ambiguous treatment
of heap contents a$ well as ambiguous determination of roots.

269

Here we are concerned with how to generate stack maps for code
presented as bytecodes used in the Java Virtual Machine (JVM)
[Lindholm & Yellin, 19961, hereafter referred to as “Java bytecode,”
and thus to implement type-precise collection. We are also con-
cerned with the impact of refining type-precision to live-precision.
We describe the problems in generating stack maps for Java byte-
code and how to solve the problems. We have implemented both
type-precise and live-precise collection in the same system, and of-
fer direct comparison of the resulting heap sizes during the execu-
tion of a suite of benchmark programs. We have also measured the
cost of generating both type-precise and live-precise stack maps,
which is of greater relevance in Java virtual machines than many
other systems since Java bytecode is loaded (and stack maps are
generated) at run time.

2 Related work
Work most closely related to our topics falls into three categories:
tagless garbage collection, compile-time analyses for garbage col-
lection, and experimental results related to precision of garbage col-
lection.

Tagless collection goes back at least to Branquart and Lewi’s
[Branquart & Lewi, 19711 and Wodon’s [Wodon, 19711 collectors
for Algold and Britton’s [Britton, 19751 for Pascal. Branquart
and Lewi’s collector is notable in that it updated tables at run time
as stack slot contents changed. More recently Appel [Appel, 19891
and Goldberg [Goldberg, 19911 considered tagless collection for
Standard ML, which is complicated by the presence of polymor-
phic functions, where the types of their arguments vary from call
to call. In a followup paper [Goldberg & Gloger, 19921, Goldberg
and Gloger presented a system that uses type unifications to derive
types at gc time. If the collector is unable to determine a type for
any given variable or field, then that variable or field will not be
accessed in the future, and can safely be ignored by the collector.
Baker discussed the general idea of using Hindley-Milner unifica-
tion in this way a bit earlier [Baker, 19901. A little later, Fradet
[Fradet, 19941 extended this sort of collector to include a certain
kind of liveness information, based on the intuitive idea that if a
polymorphic function does not depend on a type parameter, then it
could not actually use any dataitems of that type. A simple example
of this is length on lists, which does not examine the list elements,
but only counts how many there are. We observe that Fradet’s
scheme can in some cases determine that object fields are dead,
and that it relies on Hindley-Milner style polymorphism, somewhat
different from the type system of the Java programming language.
Aditya, ef al. compared, in the context of the polymorphic func-
tional language Id, the cost of type-reconstruction-based collection
and conservative collection [Aditya et al., 19941, and found that
run-time type reconstruction can have a significant impact.

Tolmach [Tolmach, 19941 and Tarditi, er al. [Tarditi et al., 19961
describe schemes that represent the polymorphic type parameters
more explicitly, potentially at run time, but frequently optimized
away. The Tarditi, et al., object and stack information is similar to
ours, and they use liveness information at gc points (but do not re-
port any experience with it). They also handle callee-save registers,
which require traversing the stack to find callers’ register informa-
tion in order to type a register saved by a callee; we also encoun-
tered that issue in implementing the scheme laid out by Diwan, et
al. [Diwan et al., 19921. We need not do that in a bytecode inter-

pretation implementation of the JVM, but if we produced optimized
native code, the issue would arise.

Note that many of these schemes are concerned not only with
eliminating reference/non-reference tags in the stack, but also with
eliminating type tags in heap objects. In object-oriented languages
similar to the Java progr amming language, objects carry full type
information to support run-time type discrimination operations.
The availability of full type information makes it possible to iden-
tify reference 6elds in heap objects, and thus we are concerned only
with reference/non-reference distinctions for roots.

The Java programming language, as it currently stands, does not
have parametric polymorphism, though there is considerable dis-
cussion of possible techniques for adding parameter&d types and
classes. If these were implemented with shared code bodies, then
some of the same stack map generation issues would arise as do
with Standard ML polymorphic functions [Agesen et uf., 19971.

In the area of procedural and object-oriented languages, Diwan,
et al., described a scheme for building stack maps for Modula-
3 [Diwan et al., 19921, which deals with reconstructing pointers
to heap objects from offsets and other optimized representations,
which come about at least in part from the ability to pass object
fields by reference in calls. They also considered how stack maps
might be compressed to save space. A related topic is ensuring
that compiler optimizations will not effectively hide live pointers
from a collector, and has been considered by Boehm and Chase (at
least), separately and together [Chase, 1988; Boehm, 1991; Boehm
& Chase, 1992; Boehm, 19961. The relatively simple and highly
constrained model of references presented by the JVM avoids the
optimization-induced problems these other works address, such as
interior and derived pointers. However, once one considers gener-
ating native code from Java bytecode, the optimization issues may
arise. In other work, Boehm and Shao considered how to con-
struct a useful conservative approximation of object type informa-
tion at run time for a conservative collector poehm, 19931. Finally,
Thomas, with Jones, built routines for tracing stack frames, moving
from an interpretive to a compiled model for stack maps [Thomas,
1993; Thomas &Jones, 1994; Thomas, 19951.

Clearly the notion of tagless collection is now fairly well devel-
oped; we certainly do not claim that building stack maps for Java
bytecode is a novel idea or even that the difticulties peculiar to this
context require deep new approaches.

Turning to compile-time analyses for garbage collection, there
has been much work done on such analyses for functional and
applicative languages [Barth, 1977; Bruynooghe, 1987; Chase
et al., 1990; Deutsch, 1990; Foster & Winsborough, 1991; Hamil-
ton & Jones, 1991; Hamilton, 1993; Hamilton, 1995; Heder-
man, 1988; Hicks, 1993; Hudak, 1986; Hudak, 1987; Hughes,
1992; Inoue et al., 1988; Jensen & Mogensen, 1990; Jones &
le Metayer, 1989; Jones &White, 1991; Jones & ‘lyas, 1993; Jones,
1995; Mohnen, 1995; Mulkers, 1993; Mulkers et al., 1994; Wadler,
19841. There are two important ways in which that work does not
carry over to our situation. The most obvious difference is that the
Java programming language is not functional, so the patterns of al-
location, mutation, and heap use in general might be quite different.
A more subtle difference is that most of the work on compile-time
gc is focused on showing (statically) that certain objects are not
reachable and can be reused or collected immediately. We are con-
cerned only with whether references in local variables will be used
again, which is a weaker property.

270

Some schemes are more similar to our liveness analysis. For ex-
ample, Appel described a continuation-passing style compiler for
Standard ML [Appel, 19921, which effectively removed dead vari-
ables from closures. This resulted in there being more closures (one
for each set of live variables), prompting some to call for closure
combination to save on closure allocation, but Appel has noted that
this would risk retaining more allocated heap objects because of
dead variables. Shao and Appel devised an arguably better scheme,
based on control and data flow analyses, that shares closures heavily
but still guarantees that dead variables are unreachable [Shao & Ap-
pel, 19941. Thomas’s compiler-generated tracing routines [Thomas,
1993; Thomas & Jones, 1994; Thomas, 19951 take liveness into ac-
count for closures, and a given closure may be traced more than
once, with different livenesses for the variables, to trace all live ref-
erences.

Again, we do not claim that the idea of using liveness information
is new. However, we found no reports of its use for procedural or
object-oriented languages (other than an indication that Chase has
built a collector similar to ours for a JVM [Chase, 19971). On the
other hand, it has likely been done before but simply not reported.
Most significantly, we have found no previous measurement of the
impact of live variable analysis, only anecdotal discussions in the
context of functional languages, which leads us to the topic of ex-
perimental results.

Overall, the improvements obtained with compile-time gc for
functional languages have been minor. For example, Jones [Jones,
19951 obtained an 8% reduction in bytes allocated for Haskell, re-
ducing overall execution time by 4.5%. Likewise, Wentworth found
that conservative gc generally did well [Wentworth, 19901. On the
other hand, he made a telling observation: sometimes conservatism
makes a big difference.2 Similarly, it appears that the primary ben-
efit of liveness analyses is in reducing the likelihood of surpris-
ing space retention. Evaluations of conservative gc have been in
terms of the incidence of non-reference values looking like refer-
ences and thus causing garbage to be retained. We note that such
evaluations overlook the storage that can be reclaimed by omitting
dead variables from the root set; that is, type-precision and live-
precision constitute two separate precision improvements over am-
biguous roots gc.

Our contributions: From this overview of related work, we con-
clude that our primary contribution lies in reporting measurements
of the impact of liveness analysis for a procedural object-oriented
language. We previously reported in more detail on the difticul-
ties in producing stack maps for Java bytecode [Agesen & Detlefs,
19971, and summarize that work here, extending it with the liveness
analysis.

3 Stack maps and gc points
The contents of a stack slot can change during the execution of a
Java method. Slots, with the exception of those occupied by ar-
guments to the method, start uninitialized. Thus a simple way in
which slot types can change is from uninitialized to containing a
value of a particular type. However, a Java compiler is permitted
to (and indeed existing ones do) store source variables with disjoint
live ranges in the same slot. Thus a slot can contain values of differ-

2Ropooents of conservative gc argue that cases where it performed poorly for
Wentworth can be largely prevented by avoiding allocation in regions of virtual mem-
ory whose addresses look like numeric values in we by the program at hand.

ent types at different points in the execution of a method; some of
those types may be reference types and others may be non-reference

types.
At this juncture, we stress that we are concerned with processing

Java bytecode, loaded at run time. Thus we are concerned not so
much with the Java pmgmmming language specification [Gosling
et al., 19961 as with the Java virtual machine specification [Lind-
holm & Yellin, 19961. (The instruction set also has been described
separately by Gosling [Gosling, 19951.) Java bytecode must pass
well-formedness tests performed by a run-time bytecode verifier,
we assume that we deal only with such well-formed Java bytecode
methods. Some of the relevant verified properties are:

A type can be calculated for each local variable and stack tem-
porary at each instruction of a method, using a straightforward
data flow analysis over the lattice of object types, augmented
with some non-object types. This implies that types may de-
pend on program point, but nor on the path by which the pro-
gram point is reached. We call this the Gosling property be-
low, since it was first stated explicitly by Gosling [Gosling,
19951.3

The types of the operands for each instruction will satisfy the
instruction’s type constraints. In particular, integer, floating
point, and reference handling instructions are distinct and type
checked.

The simple static data flow analysis suffices to show that no
uninitialized variable is ever used.

Following Diwan, et al. [Diwan et al., 19921, we do not generate
stack maps for every instruction. Rather, we restrict the VM im-
plementation so that collection can occur only at certain gc points.
These must include the allocation bytecodes. In the absence of a
whole-program style inter-procedural analysis, which would be dif-
ficult in the face of the JVM’s dynamic loading capabilities, one
must also include calls as possible gc points. Finally, to insure that
one can stop each thread if another thread initiates collection, each
loop should contain a gc point. This is easily accomplished by
making backward branches gc points. Beyond that, the choice of
gc points is an engineering decision. Discussion of techniques to
advance threads to gc points falls outside the scope of this paper.

Bytecode verification uses a full type lattice, but for stack map
generation we need to know only whether a slot contains a reference
or non-reference, etc., and not the specific type. We do, however,
need to track program counter (pc) values, as will be described in
Section 4. We may thus use this lattice:

top/conflict

PC val ref uninit

bottom/untouched

To start the data flow analysis for a method, we set all variable
values to bottom, except for the entry point to the method, where we

3As we will see, the Gosling property does not CJway~ hold; the complete story is
more complex.

271

set arguments to val or refaccording to their incoming type, and re-
maining variables to uninit. Any of the well-known data flow analy-
sis computation algorithms will suffice; we used a simple work-list
algorithm.

4 The jsr problem

Unfortunately, we have not yet told the complete story. The JVM
specification explicitly allows one exception to the Gosling prop-
erty. ‘Ihe Java bytecode instruction set includes a pair of operations
called jsr and ret. The jsr instruction jumps to an address
specified in the instruction and pushes a return address value on the
operand stack4 of the current method. The ret instruction speci-
6es a local variable that must contain a return address, and jumps
to that return address.

The intended use of these bytecodes is in the implementation of
the

try { body } finally { handler }
construct of the Java programming languaie, in which harder is
executed no matter how body is exited. ‘Ihe bandlerwould be trans-
lated as a jsr subroutine: a “mini-method” within the method. Ev-
ery instruction that exits body, such as return or throw state-
ments or “falling off the end”, would be preceded in the translation
by a j sr to the handler subroutine, which would store the pushed
return address in a local variable, perform the work of handler, then
perform a ret. Although a jsr subroutine resembles a real method,
there is a crucial difference: it executes in the same stack frame as
its containing method and has access to all the local variables of the
method.

The JVM specification for verification of jsr subroutines contains
an explicit exception to the Gosling property [Lindholm & Yellin,
1996, p. 1361: the bytecode veritier permits any local variable v that
is neither read nor written in a jsr subroutine to retain its type across
a j sr to that subroutine.

This seemingly reasonable weakening of the Gosling property
causes serious difficulty for precise garbage collection. Consider a
case in which there are two jsrs to the same jsr subroutine. At
one j sr, local variable v is being used to hold an integer, and at the
other, it holds a reference. Should a garbage collection occur while
a thread is in the jsr subroutine, a simple program-counter based
stack map scheme cannot determine if v contains a reference, since
the stack layout is now path dependent. Simply disallowing garbage
collections for the duration of the jsr subroutine is not an option
since try-f inally handlers can perform arbitrary computation,
including calling methods that may execute indefinitely and allocate
an unbounded number of objects.

5 Possible solutions
There are several possible solutions to the jsr problem. An obvious
one is to change the JVM specification to remove the Gosling prop-
erty exception for jsr subroutines, which would simplify bytecode
verification as well as stack map generation. However, removing
the exception might increase the size of some stack frames, and

‘For the present discussion, it is unnecessary to distinguish behveen stack frame
slots holding operand stack values and stack frame slots holding local variables: we
think of them as two separate sets of local variables, one being addressed from the
stack frame. base, the other being addressed from the top of stack pointer.

in any case it would be politically difficult to make changes to the
speciEcation that would invalidate any existing code.

A second class of solutions rewrites the bytecodes to eliminate
any violation of the Gosling property. One specific technique is
to replicate jsr subroutines that are called from sites with different
stack maps, so that each replica is called only from sites with the
same stack map. Since jsr routine calls can be nested, this can re-
sult in exponential code duplication. While the occurrence of the
jsr problem is rare for many programs, even one case of exponen-
tial expansion might be fatal. Also, we anticipate that exception
handling features will be used more in the future than they are now,
as programmers become more accustomed to them. Rather than du-
plicating code, we chose to split variables; we describe this in more
detail below.

A third class of solutions is to allow the Gosling property viola-
tion, and add additional information to stack maps so that one can
determine the nesting of jsr subroutine calls in progress, and com-
bine stack map information through the j sr call chain. One of us
is pursuing this approach, which has the advantages of not affecting
the VM specification, of not requiring any bytecode rewriting, and
of not imposing any normal case overhead in method execution. It
is more complex, and may require slightly more work at collection
time (probably not enough to matter), and slightly larger and more
complex stack maps (again, probably not significant in practice).

6 Bytecode rewriting to split conflicting
variables

Our first step was to refine the lattice used in the data flow analysis
that computes stack maps to record not only that a conflict occurs
but also the kind of conflict. Essentially, we used the power set
lattice, adding cases for ref-nonref, ref-knit, vahninit, etc. This
is easy to implement using bit vector operations.

We need this more detailed information because we resolve
conflicts between references and uninitialized values (ref-uninit
conflicts) differently from conflicts between references and non-
reference values (ref-nonref conflicts):

ref-uninit conflicts are eliminated by prepending code to the
start of the method to initialize the variables to null.

ref-nonref conflicts are eliminated by splitting the variables.

top (ref-nonref-uninit) conflicts are resolved by a combination
of the above two actions: we first introduce initializations to
null, eliminating the uninit conflicts, and then split to eliminate
the ref-nonref conflicts? Note that the initialization to null will
be associated with the part of the split variable that has a ref
type, and not with the part that has a non-reftype.

We extend the stack map computation for a method m as fol-
lows. We alternate data flow analysis and conflict elimination, iter-
ating until all conflicts have been eliminated. During the data flow
analysis, a variable vars’ZHnit holds a set of reference-containing
variables requiring initialization. It is initially empty. The data flow
analysis treats variables in the set as holding initialized reference
values at the start of the method. Each iteration initializes a vari-
able varstiSplit to the empty set of variables. This set will hold

‘We ignore vnl-&nit conflicts since they are irrelevant to garbage collection.

272

variables that were found to hold a ref-nonref conflict at a point
when they were used. (Such a conflict can happen only when the
Gosling property is violated, i.e., through the type merging that jsr
subroutines can induce.)

The stack map computation then proceeds as described previ-
ously, except in its handling of conflict values. A use of a vari-
able whose value in the data flow analysis is the ref-knit conflict
value causes the variable to be added to varsToInit. A use of a
variable holding the ref-nonref conflict value adds the variable to
varsZbSplit. If a use is of a value having both kinds of conflicts, we
add the variable to varsToInit only.6

At the end of an iteration, varsToSplit is checked. If it is non-
empty, then each variable in it is split. To split local variable n, we
increase the number of local variables allocated in stack frames for
method m by one; let nn be the number of the newly allocated local
variable. We then examine the bytecodes for method m, modifying
them so that instructions that use the original variable n to hold ref-
erences are unchanged, but non-reference uses are changed to use
variable nn instead? It is a happy property of the Java bytecode
instruction set that instructions have sufficient type information en-
coded in theiropcodes to determine locally whether a given instruc-
tion uses a local variable as a reference, making the rewriting fairly
simp1e.s

There is one more complication. Rewriting instructions can
cause instruction positions and lengths to change, so code must be
relocated, branch offsets updated, etc., a process we will not de-
scribe in detail.

If any uses of conflict variables are detected, at least some are
repaired by this variable-splitting process or by addition to the
vardblnit set. ‘Ihe next iteration of the loop may still find some
conflicts in the rewritten code (perhaps a variable has both ref-uninit
and ref-nonref conflicts), causing another iteration, or it will detect
no conflicts and successfully generate the stack mapse9

The rewriting may fail, in the following ways. Allocating new
local variables could exceed the limit on the number of locals in a
method imposed by the bytecode instruction set. Widening instruc-
tions could conceivably cause a method to exceed the maximum
method size. In such cases, the VM would have to somehow indi-
cate an error akin to a verification error. Such programs would be
exceedingly unlikely to occur in practice.

The performance of the by&ode rewriting part of the process is
not a crucial issue since with the most commonly used compiler,
javac, very few methods need rewriting. In the benchmark suite we
used for the comprehensive measurements we describe in more de-
tail later, we split only six variables (five in one program, one in

%te in the game we realized that it is also correct, and probably slightly better, to
add the viable only to varsToSpZif. A later iteration will add it to varsTolnir, but only
if a ref-uninit conflict remains after splitting the variable.

‘The other choice, where reference uses of n are changed to use nn and non-
reference uses are unchanged, is equivalent.

‘There is one exception to this property: the astore instruction is usually used
to pop a reference (an address, hence the prefix letter a) from the operand stack and
store it in a local variable, but it may also be used to do the same with return addresses
pushed on the stack by j ST instructions. Fortunately, the data flow analysis already
maintains sufficient state to determine whether the opemnd stack top at the point of the
astore is such a return addre~, so this complication is easily circumvented.

‘Again. late in the game, we realized that varsZbSplit can only be non-empty after
the first iteration of the overall process. So we need perform the data flow analysis
no more than two times. Furthermore, if we are willing possibly to over-estimate ref-
uninit conllicts by allowing variables to be added to both vnrsZXplit and vad’dnir,
we need only perform the data flow analysis once. Doing so might significantly reduce
time needed to generate stack maps for methods that require rewriting.

another). Ref-uninit conflicts were somewhat more common. An
average of 20 variables per program required initialization. ‘Ihese
were concentrated in two programs that used the Java Abstract Wm-
dows Toolkit.

On the other hand, the performance of the first iteration of the
analysis, the only iteration required by most methods, is of some
interest since it will be performed for any dynamically loaded code
before that code is executed.” Further below we report some mea-
sures of the cost of the data flow analysis.

7 Live variable analysis
The additional live variable analysis is straightforward, and requires
only a two-element lattice. Since liveness is a backwards flow prop-
erty, we unfortunately cannot compute liveness by augmenting the
forward flow type analysis lattice. We observe, though, that the live-
ness analysis may eliminate some conflicts at gc points. However,
by the Gosling property, except at j sr instructions and in jsr sub-
routines, ref-uninit and ref-nonref conflicts indicate variables that
must be dead, so such items should be dropped from stack maps
anyway. Still, the liveness analysis will identify dead references.

Since the JVM instruction set is stack-oriented, data movement
operations such as the assignment x = y ; present themselves as
pushes and pops. Our live variable analysis propagates liveness
information through local variables and stack temporaries. This
means that in the data flow analysis, the live/dead values for differ-
ent variables are coupled, so the height of the lattice is the number
of variables; i.e., variables cannot be analyzed separately from one
another. It is unlikely that one would see worst case iteration of the
algorithm in practice, though.

On the run-time side, what should the collector do with dead
reference variables? Obviously it should ignore any dead reference
for tracing purposes. Less obviously, if a program is run in the
presence of a debugger, the collector has three options. It can trace
dead references (so they can still be examined in the debugger for
as long as possible); it can set dead references to null (so that the
debugger will not try to follow a reference that may be invalid after
collection); or it can treat dead references as “weak” references,
retaining their value if and only if the referent objects are otherwise
reachable.

It also appears that omitting dead references when collecting can
expose program bugs. For example, suppose object x refers to ob-
ject y, object x has a finalizer that uses object y, and the program’s
last reference to n becomes dead while the program is still using
y.” If a gc occurs at this point, y may be accessed concurrently by
the linalizer and by the main program code, a form of concurrency
that may surprise the programmer. ‘Ihis does not appear to violate
the Java programming language specifications, so we consider it to
be legal. We also observe that many optimizing transformations can
expose (or hide) bugs, so our liveness analysis is far from unique in
this regard.

“‘While it is conceimble that one might generate stack maps at gc time, it is prob-
lematic because implementations of the data flow analyses will tend to allocate heap
storage, which is not generally possible during gc. It is also possible to pre-analyze
code and insert gc stack maps into class files as additional attributes, but this is possi-
ble only for local trusted class files.

“This example was supplied by an anonymous reviewer.

273

7.1 Why liveness analysis?
Why might it be important to include a live variable analysis? One
school of thought is that the dead variable heap object retention
problem can be fixed simply by having programmers insert assign-
ments of null at the right places. ‘Ihere are several problems with
this view. First, it introduces an overhead all the time to address
a situation that occurs relatively rarely (gc). It is more efficient to
have the gc treat the slots as containing null than it is to set them
to null. Second, why should programmers have to waste their time
even thinking about an issue like this when an automated tool can
address it? It is not as if programmers are likely to wunt dead ob-
jects retained, and thus perhaps desire control over this behavior.
Third, even if programmers insert assignments of null, an optimiz-
ing compiler might remove them, since they are assignments to
dead variables!12 Finally, and we think this is the nail in the coffin,
there are cases where it is virtually impossible for the programmer
to do the assignment at the critical moment. A good example of this
is a method call such as v . m (x) , where x is the last live reference
to some sizeable object subgraph, variable x is dead after the call,
and method m also reaches a point where it no longer uses x. This
is a particularly disturbing possibility, since a call has indefinite du-
ration and may be deep in the stack, thus retaining garbage for quite
a long time.

One of us ran into a concrete example when working on a
theorem-proving system in Modula-3. Rewriting the essential part
in the Java programming language, the pertinent code was:

boo1 proveTheorem(InputStream is) {
Sexp sx = Sexp.read(is);
Pred p = Pred.sxToPred(sx);
return refute (Pred.not (p)) ;

1

The salient feature of this code is that the Sexp form was used only
because there was a convenient library available to read expressions
in LISP S-expression form. The S-expression form was immedi-
ately converted to a predicate form and discarded. In realistic situ-
ations, sx might refer to a megabyte or more of S-expression data
that is dead, across a long running call to refute. Even more in-
teresting, the actual code was written in a more functional style, and
the dead variable was actually a compiler temporary! This made the
problem quite difficult to discover and remedy. Furthermore, when
the original functional form was rewritten to the form shown above,
and then modified by explicitly assigning null to sx after its last
use, the problem still persisted. We speculate that this was because
the Modula-3 collector was an ambiguous roots collector, and an-
other copy of the sx pointer, which had been passed in the call to
Pred, was lying in the stack frame for refute, or some place
even further towards the top of the stack. Our fix was to null out the
entire sx structure after building the pred form.

Our reason for including this story is to make it clear how diffi-
cult it cm be to locate and resolve problems of unexpected storage
retention.

8 Experiments
In this section we give experimental data obtained on a 296 Mhz Ul-
tra SPARC with 512 Mbytes of memory, running Solaris 2.6. The

‘*David Chase brought this to our attention; he mentions the possibility in passing
in his dissertation [Chase, 19871.

programs we measured are a collection of benchmarks under con-
sideration for a SPEC suite to measure Java platforms.13 We had
to exclude four of the programs because thread-library issues pre-
vented us from running them correctly; we excluded two more be-
cause they allocated too little storage to be interesting in this study.
Finally, we added ellisgc, a GC stress test program, that John Ellis
sent to us. While it bears some relationship to gcbench, they react
differently under liveness analysis, so we felt it useful to include
both.

The VM we used is based on the Javasoft JDK VM, modified to
(among other things) support generation and use of our stack maps.
Note that since we are comparing the amount of reachable heap data
as we vary the stack root set, the actual gc technique is irrelevant (it
happened to be mark-sweep).

8.1 Cost of type and liveness analysis

We measured the elapsed time used by stack map generation and
liveness analysis while running our benchmark suite on an oth-
erwise idle workstation. For purposes of comparison, we also
measured total time, time consumed by class loading, and time
for bytecode verification (running the VM in a mode where all
classes are verified). Table 1 displays these measurements. The
“Stack map/loading” column divides stack map computation by
class loading time, and the “Verification/Stack map” column ex-
presses verification time as a multiple of stack map computation
time. ‘Ihe “Average” row gives geometric means for the columns
containing ratios.

Just as verification can be done once (off-line) for local trusted
classes, one could similarly compute stack map information off-
line for such classes, speeding up program startup accordingly. On
the other hand, for classes obtained over a network, possibly from
untrusted sites, verification is necessary, and as our numbers show,
usually dominates stack map computation time by an order of mag-
nitude.

We also measured how much liveness analysis increased the cost
of stack map generation. The increase was quite uniform, be-
tween 54% and 58% over all the benchmarks. A further breakdown
showed that the forward analysis and backward analysis were quite
similar in cost. However, the liveness analysis is able to reuse data
structures created for the type analysis (basic blocks, etc.), thus de-
creasing its incremental cost.

8.2 Stack map size measurements
We present a range of stack map size and related statistics in Ta-
bles 2 and 3. In these and subsequent measurements, we have
added runs of three more programs. The spreaukheet program is
a prototype financial calculation engine, obtained via private com-
munication. The hotjuva run is part of a morning’s exploration
with the HotJava web browser. Both of these programs have elab-
orate graphical user interfaces. The volano run gives the behav-
ior of the server-side program in Volano LLC’s VolanoMark 1.0
benchmark, over several invocations of a client-side program pm-
vided in the benchmark that imposes a workload on the server.
This benchmark is intended to estimate the performance of the real

‘%ose benchmarks selected by SPEC (if any) may have different versions and/or
Workloads, so our results cannot necessarily be compared meaningfully with any SPEC
re.3ult.x Our purpose was only to compare different gc algor&ms on a se4 of programs.
not to compare platforms differing in any other way.

274

’ Benchmark Total run time Loading Stack map Stack map/ Verification Verification/
(se4 (msec) (msec) Loading (msec) Stack map

compress 82.0 269.6 172.0 0.63 1838.6
I

10.6

iess 9.9 128.2 lW? 1.01 _--.I _._- 1147.8 1 8.8
i iinoack I 89.9 1 991 I 918 I n-98 I 711.5 I 7.2 ,,,A , I.- -._ - I

Oh? I 912 I n95 I 821.0 1 8.9
1107.8 I 9.3

newmst 32.2 ,v.- , ,a.- , -._-

raytrace 21.5 114.0 1 118.8 1 1.04 1 ----.- ,
cst 17.9 llA1 1 1115 I 0.99 I 729.2 1 6.4 1

db I 7.6 1 1u1.8 1 lU1.3 1 U.YY 1 030.0 , si 12.3 I 108.4 I 106.0 I 0.97 I 632.2 1 L&I -_ I _-.- I
anaoram 1 1.8 I 97.2 i 94.8 1 0.97 I 732.7 1 7.7 I
----e--- I - .- I I
gcbench 1 2.8 1 98.4 1 96.0 1 0.97 1 1697 I 801

iavac I 7.4 I 143.5 I 1717 I 119 I
_I

deltablue
mpegaudio
jack
t sgp
ellisgc

Average

. -..- -.-
_. *.- _.-. 4531.7 26.4

w3 I n93 I 723.2 7.3
1479.7 10.0

23.4 105.2 ,v._ -.r- ,
91.6 107.2 146.9 1.37 _ .._..
21.4 156.6 175.0 1.11 2102.4 12.0

350.4 98.0 93.2 0.95 614.3 6.5

8.8 40.2 62.3 1.54 936.3 15.0

Table 1: Comparison of stack map computation with class loading and bytecode verification

VolanoChat chat server on a given Java platform, and is available at
http://www.volano.com/mark.html.

In Table 2, the “Code size” column shows the number of byte-
codes in all methods executed in the run. The “GC points” column
gives the total number of gc points, bytecode instructions for which
stackmaps were computed, for the methods executed in the run. The
“Code bytes/gc point” column gives the ratio of these two numbers,
an estimate of the interval between bytecode instructions requiring
stack maps. The “Slots” column shows the sum of the number of
local variable and operand stack slots in use at all gc points, and the
average number for each gc point. The “Refs” column shows how
many of these slots contained references, and the “Live” columns
shows how many of these were live. The last two columns show
the fraction of slots that contained references, and the fraction of
reference slots that were live. The “Average” row gives geometric

means for the rows representing ratios. Table 3 presents the same
information, averaged over methods instead of gc points. Again,
the “Average” row gives geometric means for the rows representing
ratios. Roughly speaking, a little more than half of all slots are ref-
erences, and approximately 314 of these are live. In the particular
system in which we did these experiments, stackmaps consumed
an average of 57% as much space as the bytecode itself. However,
the representation uses no compression, so we believe this overhead
could be substantially reduced.

8.3 Run-time heap size measurements
To measure the impact of liveness analysis, we ran the suite of
benchmark programs on our modified JVM. This system uses our
stack maps to trace stack frames in either a type-precise or live-
precise manner. In fact, both levels of precision are available in the
same system, so we compared them directly, as follows.

After every 1OOK words of allocation, we invoked the mark
phase of the type-precise collector and determined the number of
words of objects marked. We then reset the mark bits and invoked

the mark phase of the live-precise collector and determined the
number of words of objects it marked. We did a sweep only when
the allocation area was exhausted.

For each precision we can construct a function giving the heap
size over time, where time is measured in words allocated and is
sampled every 1OOK words. We connect the points of each func-
tion and compute the integral under the function’s curve, which
gives us the space-time product of the run. We report total space-
time products, and the ratio of those products, for the two levels of
precision in Table 4. We also report for each benchmark the (geo-
metric) mean of the ratios of the heap sizes at each sampled point
during the run. Finally we report geometric means of each column
of the table, i.e., across all benchmarks.14 We present some sample
curves showing reachable data with and without liveness analysis
in Figure 1. The ellisgc run shows the most dramatic improvement
from liveness analysis of the programs we ran. The volano run is
more typical. (Each “hump” corresponds to the response of the
server-side program to one invocation of the client-side simulated
load.)

Overall, liveness information reduces the time-space product by
an average of 11%. This result is skewed by the ellisgc program.
That program is somewhat contrived and is intended to challenge
garbage collectors. However, it does not intentionally include dead
variables. Still, we include averages omitting ellisgc and see that
the time-space product improves by an average of 3.6%. We note
that it is not necessarily reasonable to reject ellisgc from the results,
since dead variable space retention is likely to be an occurrence that
is usually not too bad, but occasionally terrible. It is interesting to
see that almost every program we ran shows a measurable differ-
ence, so some degree of dead variable space retention appears to be
common.

A separate point is that this is a non-generational collector. In a

14We use geometric rather than arithmetic means since they are more suitable for
comparing ratios. The geometric mean of n item is the nth root of their product, or,
equivalently, the anti-logarithm of the arithmetic mean of their logarithms.

275

Benchmark Code size GC Code bytes/ Slots I Refs I Live
(bytes) points gc point # 1 per pt 1 # I perpt I # 1 perpt

quantum 357035 61166 5.8 419349 6.86 240788 3.94 166998 2.73
hotjava 399746 67248 5.9 1005937 14.96 597734 8.89 520071 7.73
volano 97797 7136 13.7 42357 5.94 24241 3.40 18098 2.54

Average 1 I 7.9 I 1 7.48 1 I 3.97 I I 3.04

Refsl
Slots

0.528
0.564
0.505
0.518
0.535
0.431
0.522
0.484
0.519
0.511
0.596
0.546
0.511
0.552
0.508
0.522
0.574
0.594
0.572

0.530

0.785
0.720
0.789
0.791
0.771
0.774
0.784
0.758
0.790
0.781
0.702
0.780
0.830
0.746
0.795
0.667
0.694
0.870
0.747 m

Table 2: Measured stack map size and related statistics

1 Benchmark 1 Methods I Bytes/method 1 GC points/method I Slots/method 1 Refs/method 1 Live refs/method 1
I

cnm”rerr I 1li9 I

javac 1124 141.68 16.24 128.74 76.68 53.86
deltablue 404 225.22 14.35 98.19 53.66 41.88
mpegaudio 535 139.97 18.01 123.81 63.24 52.47
jack 759 179.67 18.77 126.40 69.79 52.10 --.-_
tsgp I 337 83.07 15.49 113.79 &8k 45.99
ellisgc 182 52.99 8.99 51.76 27.04 18.03
quantum 5843 61.10 10.47 71.77 41.21 28.58
hotjava 4669 85.62 14.40 215.45 128.02 111.39
volano 596 164.09 11.97 71.07 40.67 30.37
Average 117.16 14.91 111.63 59.14 45.28

Table 3: Measured stack map size reported per method

276

compress 61128242
jess 868824
linpack 3355585
newmst 78055
raytrace 37817490
cst 12504270
db 7978578
si 22599024

Time space
with liveness

w kd)
57363160

825482
3292842

73266
37508324
12258149
7882272

20103152
anagram 27918894 1 27712322 0.9926 0.9858
gcbench 226114414] 224068: i99 0.9910 0.9888
iavac 9186308 9007787 0.9806 0.9759
.-_---_I- I 3741663 3426734
npegaudio I 76096 71294
nrk 9716810 9419524

0.9384 0.9330
0.9501 0.9472
0.9813 0.9497

0.9803 0.9685
0.9879 0.9736
0.8896 0.8896

_. ----- _ .-_--.

--or 710108 686164
ellisgc 289690805 61671602

sureaclsheet 154266857 154255015
hotj ava 929502587 929484329
volano 39938934 38008136

Average 11778354 10487525
Average, without ellisgc 9858598 9504470

0.2129 I 0.0904

Table 4: Heap sizes with and without liveness

generational collector the benefit of liveness analysis may turn out
to be greater, since one might reduce the volume of tenured garbage,
which takes longer to collect.

9 Conclusions

We found that adding a live variable analysis to a type-precise
garbage collector, so as to increase its precision, reduced heap size
(time-space product) by an average of 11% for a suite of bench-
mark programs, with most programs showing some difference and
a few showing more dramatic differences. Liveness analysis ap-
pears to offer minimal benefit to many programs, but it is important
in reducing the possibility of surprisingly large volumes of retained
garbage. Preliminary measurements indicate that the cost of gener-
ating live-precise stack maps for Java bytecode is about 50% greater
than the cost of generating only type-precise stack maps. We also
described some technical difficulties in generating stack maps for
Java bytecode so as to accomplish type-precise collection, and in-
dicated several solution approaches.

Acknowledgments. The greatly simplifying realization that ref
and noltlt?fuses of variables can be distinguished based only on
the opcode of the using instruction came about in a discussion
with Boris Beylin, Ross Knippel, and Bob Wilson. John Rose ex-
plained to us the behavior of the javac compiler when translating
the try-finally construct. Hans Boehm, David Chase, and
Richard Jones were particularly helpful in referring us to related
work. Eliot Moss’s participation in this work is supported in part

by gifts from Sun Microsystems Laboratories and grants from the
National Science Foundation.

References
(Aditya et a!., 19941 Shail Aditya, Christine Flood, and James Hicks.

Garbage collection for strongly-typed languages using run-time type
reconstruction. In [LFP, 19941, pp. 12-23.

[Agesen & Detlefs, 19971 Ole Agesen and David Detlefs. Finding
references in Java stacks. Tech. Rep. SMGB97-67, Sue Microsystems
Laboratories, Chelmsford, MA, USA, Oct. 1997. Presented at the
OOPSLA ‘97 workshop on garbage collection.

[Agesen etal., 19971 Ole Agesen, Stephen Freuad, and John C. Mitchell.
Adding type parameterization to Java. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Pmgramming Systems,
languages aruiApp1ication.s (OOPSLA-97) (New York, Oct.5-9 1997),
vol. 32, 10 of ACM SIGPLAN Notices, ACM Press, pp. 49-65.

(Appel, 19891 Andrew W. Appe]. Runtime tags aren’t necessary. Lisp and
Symbolic Computation 2 (1989), 153-162.

[Appel, 19921 Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992, ch. 16, pp. 205-214.

[Appel & Hanson, 19881 Andrew W. Appel and David R. Hanson.
Copying garbage collection in the presence of ambiguous references.
Tech. Rep. CS-TR-162-88, Princeton University, 1988.

[Baker, 19901 Henry G. Baker. Unify and conquer (garbage, updating,
aliasing, . . .) in functional languages. In Conference Record of the 1990
ACM Symposium on L&p and Functional Programming (Nice, Prance,
June 1990), ACM Press, pp. 218-226.

[Barth, 19771 Jeffrey M. Barth. Shifting garbage collection overhead to
compile time. Comman ications of the ACM 20.7 (July 1977). 513-518.

277

o I 2 3 4 5 6 7 8 9 IO
tme (mrllion words)

0.5

0.45
type-preliae -
live-pra& -.

0.4

g 0.35

ioX
4 0.2
P a 0.15

0.1

0.05

0
0 0.5 I 1.5 2 25

lime (minion words)

Figure 1: Sample curves showing reachable data over time

[Bartlett, 19881 Joel F. Bartlett. Compacting garbagecollection with
ambiguous roots. Tech. Rep. 88i2, DEC Western Research Laboratory,
Palo Alto, CA, Feb. 1988. Also in Lisp Pointers 1,6 (April-June 1988),
pp. 2-12.

[Bartlett, 19891 Joel F. Bartlett. Mostly-Copying garbage collection picks
up generations and C++. Technical note, DEC Western Research
Laboratory, Palo Alto, CA, Oct. 1989. Sources available in
ftp://gatekeeper.dec.com/pub/DEC/CCgc.

[Boehm, 19911 Hans-Juergen Boehm. Simple GC-safe compilation. In
OOPSLA/ECOOP ‘91 Workshop on Garbage Collection in
Object-Oriented Systems (Oct. 1991), Paul R. Wilson and Barry Hayes,
Ed.%

[Boehm, 19931 Hans-Juergen Boehm. Space efficient conservative
garbage collection. In Proceedings of SIGPL4N’93 Conference on
Programming Languages Design and Implementation (Albuquerque,
New Mexico, June 1993), vol. 28(6) of ACM SIGPLAN Notices, ACM
Press, pp. 197-206.

[Boehm, 19961 Hans-Juergen Boehm. Simple garbage-collector safety. In
[PLDI, 19961, pp. 89-98.

[Boehm & Chase, 19921 Hans-Juergen Boehm and David R. Chase. A
proposal for garbage-collector-safe C compilation. Journal of C
Language Translation (1992), 126-141.

[Boehm & Shao, 19931 Hans-Juergen Boehm and Zhong Shao. Inferring
type maps during garbage collection. In OOPSWECOOP ‘93
WanGshop on Garbage Collection in Object-Oriented Systems (Oct.
1993), Eliot Moss, Paul R. Wilson, and Benjamin Zorn, Eds.

[Boehm % Weiser, 19881 Hans-Juergen Boehm and Mark Weiser.
Garbage collection in an uncooperative environment. Sofhare Practice
and Experience l&9 (1988), 807-820.

[Branquart & Lewi, 19711 l? Branquart and J. Lewi. A scheme of storage
allocation and garbage collection for Algol-68. In [Peck, 19711,
pp. 198-238.

[Britton, 19751 Dianne Ellen B&ton. Heap storage management for the
programming language Pascal. Master’s thesis, University of Arizona,
1975.

[Bruynooghe, 19871 Maurice Bruynooghe. Compile-time garbage
collection or How to transform programs in an assignment-free
language into code with assignments. In Program specification and
transfotmation. ‘Ihe IFIP TC2/WG 2.1 Working Conference, Bad Tok
Germany, L. G. L. T. Meertens, Ed. North-Holland, Amsterdam, April
15-17,1986 1987, pp. 113-129.

[Chase, 19971 David Chase, Nov. 1997. Personal communication.

[Chase, 19871 David R. Chase. Garbage collection and other
optimizations. Tech. rep., Rice University, Aug. 1987.

[Chase, 19881 David R. Chase. Safety considerations for storage
allocation optimizations. ACM SIGPL4N Notices 23,7 (1988), I-IO.

[Chase et al., 19901 David R. Chase, Wegman, and Zadeck Analysis of
pointers and structures. ACM SIGPIAN Notices 25.6 (1990).

[Deutsch, 19901 A. Deutsch. On determining lifetime and aliasing of
dynamically allocated data in higher-order functional specifications. In
Conference Record of the Seventeenth Annual ACMSymposium on
Principles of Programmiing Lunguages (San Francisco, CA, Jan. 1990),
ACM SIGPLAN Notices, ACM Press, pp. 157 - 168.

[Diwan et al., 19921 Amer Diwan, J. Eliot B. Moss, and Richard L.
Hudson. Compiler support for garbage collection in a statically typed
language. In Proceedings of SIGPLAN’92 Conference on Programming
Languages Design and Implementation (San Francisco, CA, June
1992), vol. 27 of ACM SlGPLANNotices, ACM Press, pp. 273-282.

[Foster & Winsborough, 19911 Ian Foster and William Winsborough.
Copy avoidance through compile-time analysis and local reuse. In
Proceedings of International Logic Programming Sympsium (1991),
pp. 455-469.

[Fradet, 19941 Pascal Fradet. Collecting more garbage. In [LFP, 19941,
pp. 24-33.

[Goldberg, 19911 Benjamin Goldberg. Tag-free garbage collection for
strongly typed programming languages. ACM SIGPLAN Notices 26,6
(1991), 165-176.

[Goldberg & Gloger, 19921 Benjamin Goldberg and Michael Gloger.
Polymorphic type reconstruction for garbage collection without tags. In
Conference Record of the 1992 ACM Symposium on Lisp and
Functional Programming (San Francisco, CA, June 1992), ACM Press,
pp. 53-65.

[Gosling, 199.51 James Gosling. Java intermediate bytecodes. In
Proceedings of the ACM SIGPLAN Workshop on Intermediate
Representations (IR ‘9.5) (Jan. 1995), pp. 111-l 18. published as ACM
SIGPLAN Notices 30(3), March 1995.

[Gosling et al., 19961 James Gosling, Bill Joy, and Guy Steele. The Java
hguage Specification. Addison-Wesley, 1996.

[Hamilton, 19931 G. W. Hamilton. Compile-Time Optimisation of Store
Usage in Lazy Funtional Programs. PhD thesis, University of Stirling,
1993.

[Hamilton, 19951 G. W. Hamilton. Compile-time garbage collection for
lazy functional languages. In Proceedings of International Workshop on
Memory Management (Dept. of Computer Science, Keele University,
Sept. 1995), Henry Baker, Ed., Lecture Notes in Computer Science,
Springer-Verlag.

[Hamilton & Jones, 19911 G. W. Hamilton and Simon B. Jones.
Compile-time garbage collection by necessity analysis. In [Peyton
Jones et al., 19911, pp. 6670.

[Hederman, 19881 Lucy Hederman. Compile-time garbage collection
using reference count analysis. Master’s thesis, Rice University, Aug.

278

1988. Also Rice University Technical Report TR88-75 but, according
to Rice University’s technical report list, this report is no longer
available for distribution.

[Hicks, 19931 James Hicks. Experiences with compiler-directed storage
reclamation. In Record of the 1993 Conference on Functional
Programming and Computer Architecturn motorola Cambridge
Research Center, June 1993), R. John M. Hughes, Ed., vol. 523 of
Lecture Notes in Computer Science, Springer-Verlag.

[Hudak, 19861 Paul R. Hudak. A semantic model of reference counting
and its abstraction (detailed summary). In Conference Record of the
I986 A CM Symposium on Lkp and Functional Programming
(Cambridge, MA, Aug. 1986). ACM SIGPLAN Notices, ACM Press,
pp. 351-363.

[Hudak, 19871 Paul R. Hudak A semantic model of reference counting
and its abstraction. In Absrract Interpmtation of Declarative
Languages, Samson Abramsky and Chris Hankin, Eds. Ellis Horward,
1987, pp. 45-62.

[Hughes, 19921 Simon Hughes. Compile-time garbage collection for
higher-order functional languages. Journal of Log& and Computution
2,4 (Aug. 1992), 483-509. Special Issue on Abstract Interpretation.

[Inoue et al., 19881 Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi.
Analysis of functional programs to detect run-time garbage cells. ACM
Tmnsactions on Programming Languages and Systems IO, 4 (Oct.
1988), 555-578.

[Jensen & Mogensen, 19901 Thomas P. Jensen and Torben Mogensen. A
backwards analysis for compile-time garbage collection. In ESOP’9U
3ni European Symposium on Programming, Copenhagen, Denmark,
May 1990. (Lecture Notes in Computer Science, vol. 432) (1990),
Neil D. Jones, Ed., Springer-Verlag, pp. 227-239.

[Jones, 19951 Simon B. Jones. An experiment in compile time garbage
collection. Tech. Rep. 84, Programming Methodology Group, Giiteborg
University and Chalmers University of Technology, Jan. 1995.

[Jones & le M&ayer, 19891 Simon B. Jones and D. le M&ayer.
Compile-time garbage collection by sharing analysis. In Reconi of the
1989 Conference on Functional Programming and Computer
Architecture (Imperial College, London, Aug. 1989), ACM Press,
pp. 54-74.

[Jones & Tyas, 19931 Simon B. Jones and Andrew S. Tyas. The
implementer’s dilemma: A mathematical model of compile-time
garbage collection. In Sixth Annual GIapgow Workshop on Functional
Pmgmmming (1993), Workshops in Computer Science,
Springer-Verlag, pp. 139-144.

[Jones & White, 19911 Simon B. Jones and M. White.. Is compile time
garbage collection worth the effort. In [Peyton Jones etal., 19911,
pp. 172176.

[LFP, 19941 Conference Record of the 1994 ACM Symposium on Lisp and
Functional Programming (June 1994), ACM Press.

[Lindholm & Yellin, 19961 lim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison-Wesley, 1996.

[Mohnen, 19951 Markus Mohnen. Efficient compile-time garbage
collection for arbitrary data structures. Tech. Rep. 95-08, University of
Aachen, May 1995. Also in Seventh International Symposium on
Programming Languages, Implementations, Logics and Programs,
PLILP95.

[Mulkers, 19931 Anne Mulkers. Live Data Structures in Lagic Pmgramx
No. 675 in Lecture Notes in Computer Science. Springer-Verlag, 1993.

[Mulkers eta& 19941 Anne Mulkers, William Winsborough, and Maurice
Bruyncqhe. Live-structure analysis for Prolog. ACM Transactions on
Programming Languages and Systems 16,2 (Mar. 1994).

[Peck, 19711 J. E. L Peck, Ed. Algol-68 implementation. North-Holland,
Amsterdam, 1971.

[Peyton Jones et al., 19911 Simon L. Peyton Jones, G. Hutton, and C. K.
HOIS, Eds. ThiniAnnual Gkzvgow Workshop on Functional
Pmgrtunming (1991), Spinger-Verlag.

[PLDI, 19961 Pmceedings of SIGPIAN’96 Conference on Programming
Languages Design and Implementation (1996), ACM SIGPLAN
Notices, ACM Press.

[Shao & Appel, 19941 Zhong Shao and Andrew W. Appel. Space-efficient
closure representations. In [LFP, 19941, pp. 150-161.

[Tarditi et al., 19961 David Tarditi, Greg Morrisett, Perry Cheng, Chris
Stone, Robert Harper, and Peter Lee. TIL: A type-directed optimizing
compiler for ML. In [PLDI, 19961.

[Thomas, 19951 Stephen Thomas. Garbage collection in
shared-environment closure reducers: Space-efficient depth first
copying using a tailored approach. Information Processing Ltters 56,l
(Oct. 1995), l-7.

[Thomas, 19931 Stephen P. Thomas. The Pragmatics of Closure
Reduction. PhD thesis, The Computing Laboratory, University of Kent
at Canterbury, Oct. 1993.

[Thomas & Jones, 19941 Stephen P. Thomas and Richard E. Jones.
Garbage collection for shared environment closure reducers. Tech. rep.,
University of Kent and University of Nottingham, Dec. 1994.

[Tolmach, 19941 Andrew Tolmach. Tag-free garbage collection using
explicit type parameters. In Proceedings of SIGPIAN’94 Conference on
Programming Languages Design and Implementation (Orlando,
Florida, June 1994), vol. 29 of ACM SIGPL4N Notices, ACM Press,
pp. l-11. Also Lisp Pointers VIII 3, July-September 1994.

[wadler, 19841 Philip L. Wadler. Listlessness is batter than laziness: Lazy
evaluation and garbage collection at compile time. In Conference
Record of the 1984 ACM Symposium on tip a& Functional
Programming (Austin, Texas, Aug. 1984), Guy L. Steele, Ed., ACM
Press, pp. 45-52.

[wentworth, 19901 E. P. Wentworth. Pitfalls of conservative garbage
collection. Software Practice andExperience 20,7 (1990), 719-727.

[Wodon, 19711 P. L. Wodon. Methods of garbage collection for AlgoI-68.
In [Peck, 19711, pp. 245-262.

279

