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Abstract 

A key mechanism of a persistent programming lan- 
guage is its ability to detect and handle references to 
non-resident objects. Ideally, this mechanism should be 
hidden from the programmer, allowing the transparent 
manipulation of all data regardless of its potential life- 
time. We term such a mechanism object faulting, in a 
deliberate analogy with page faulting in virtual memory 
systems. This paper presents a number of mechanisms 
for detecting and handling references to persistent ob- 
jects, and evaluates their relative performance within an 
implementation of Persistent Smalltalk. 

1 Introduction 

Persistent programming languages combine the features 

of database systems and programming languages to al- 

low the seamless manipulation of data, without regard 

for its potential lifetime, be it transient or persistent [I]. 

To achieve this the language must provide a mechanism 

for the detection and handling of references to persistent 

data. Ideally, this mechanism should be hidden from the 

programmer, so that manipulation of persistent and non- 

persistent data is as transparent as possible. The term 

we use for such a mechanism is object faulting [9, lo]. 
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The analogy with page faulting virtual memory is de- 

liberate, since the intent is to provide the illusion of 

a persistent virtual heap of objects, potentially much 

larger than physical or even virtual memory. Access 

to those objects is detected and managed by the object 

faulting mechanism, which triggers automatic retrieval 

of objects from persistent storage (i.e., disk) on demand. 

In effect, persistent objects are cached in memory for 

manipulation by the program. 

This paper considers a number of implementations 

of object faulting. We divide our attention between the 

mechanism by which references to non-resident objects 

are detected, and the way in which the object faults 

themselves are handled. We compare several schemes 

for detecting references to non-resident objects, not only 

through checks in software, but also by exploiting the 

page protection mechanism of the operating system to 

detect non-residency through the trapping of references 

to non-resident objects. We also explore an orthogonal 

design choice: just how many objects should be made 

resident per object fault? Naturally, faulting on a given 

object must make at least that object available to the pro- 

gram, however any number of additional objects might 

also be made available. Moreover, making one object 

resident may require that other objects also be resident. 

Such constraints must be observed by the object fault 

handler before program execution can resume. The ad- 

vantage of faulting more than one object per object fault 

is straightforward: it may reduce the number of object 

faults required for execution of a given program. Yet it 

may also result in more data being made available to the 

program than is absolutely necessary for its execution. 

In addition to the comparison of alternative imple- 
mentations of object faulting, this paper’s contributions 

include the description of our architecture and frame- 

work for persistence, and the performance evaluation, 

OOPSLA’93, pp. 288303 

288 



some way to provide some form of persistence. None 

of them consider the performance overheads of persis- 

tence, accepting the costs as necessary to support the 

functionality they desire. Here, we are interested in 

exploring the design space for implementing persistent 

programming languages, by evaluating the performance 

of a number of mechanisms for object faulting. 

White and Dewitt [26] have compared the over- 

all performance of a number of architectures and sys- 

tems that perform object faulting and pointer swizzling. 

The systems considered in that study include Object- 

Store [ 13, 161, a commercially available object-oriented 

DBMS, and a number of software architectures based 

on the EXODUS Storage Manager (ESM) [2,20]. 

Several of the architectures based on ESM require the 

program to manipulate objects through a call interface, 

with modifications being performed in the client buffer 

pool of ESM, as opposed to the virtual memory space 

of the application. White and Dewitt introduce a new 

scheme (EPVM 2.0), which avoids this call overhead 

through object caching. Objects are still retrieved into 
the client buffer pool using the ESM interface. How- 

ever, they are then copied into the virtual memory of 

the application, while the originals in the buffer pool 

are unpinned. Modifications can then be made directly 

in virtual memory. At transaction commit, for each 

modified object in virtual memory the corresponding 

original is pinned and updated in the ESM buffer pool 

through a call to ESM. White and Dewitt explored two 

versions of this caching scheme. The first copies objects 

one at a time from the buffer pool into virtual memory 

as they are accessed by the application. The second 

copies all of the objects on a given page of the buffer 

pool when the first object on the page is accessed. 

White and Dewitt’s object caching scheme also per- 

forms some pointer swizzling, in which references to 

objects that are resident in the cache are converted to 

direct memory pointers. Each object includes a bit ta- 

ble indicating which of its slots contain direct pointers 

and which contain unswizzled OIDs. Translating an 

OID means probing a hash table containing pointers for 

all cached objects, and caching the object if it is not 

already resident. EPVM 2.0 performs swizzling upon 
discovery: when a location containing an unswizzled 

reference to a persistent object is discovered (usually as 

a result of loading the reference to perform some oper- 

ation on it) the location is updated with a direct pointer 

to the object. 

ObjectStore, the final architecture considered by 

White and Dewitt, takes a dramatically different ap- 

proach. Objects are faulted and pointers are swizzled 

using a page mapping scheme similar to virtual mem- 

ory. We do not have exact details of the proprietary 

mechanisms for object faulting and swizzling, but the 

approach is similar to that used in the Texas system, 

described in more detail below. 

The results obtained by White and Dewitt indicate 

that object caching is an attractive architecture for per- 

sistent programming languages. For small databases, 

in which the entire database can fit in main memory, 

caching objects a page at a time seems best, since there 

is little extra overhead in copying pages versus objects, 

with fewer copying operations being needed. However, 

for larger databases that do not fit in main memory, page 

caching will copy some objects unnecessarily. This re- 

sults in double paging: pages are first cached in virtual 

memory by the object caching mechanism, and then 

paged out by the virtual memory manager. 

The comparison with ObjectStore produced mixed re- 

sults. Cold database performance (obtained by running 

benchmarks against a database that starts out entirely 

on disk at the possibly remote database server) was 

worse for ObjectStore than for the architectures based 

on ESM. For a small database ObjectStore exhibited 

the best warm performance; for the large database its 

performance was the worst. White and Dewitt suggest 

that these results indicate the cost of mapping data into a 

process’s address space. We speculate that it is also due 

to the high overhead of fielding page protection traps 

from the operating system to fault non-resident pages.’ 

In contrast to White and Dewitt, who consider the 

overall performance of several different architectures, 

we have chosen to keep our basic architecture fixed 

while varying the mechanisms used to detect and handle 

object faults. Our architecture, as described in the next 

section, is similar to the object caching architecture of 

White and Dewitt. However, the representations we 

use for references to non-resident objects are much more 

lightweight than those of White and Dewitt, as are the 

mechanisms we use for fault detection. 

The Texas system [21, 271 uses a page mapping 
scheme similar to ObjectStore to fault objects and swiz- 

‘N 250,~~s round trip as measured in a tight loop under Ultrix 4. I 
on the DECstation 3100. We note that this is generally acknowl- 

edged to be one of the best operating system implementations for 
trapping page protection faults. 
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Figure 1: System architecture 

zle pointers. When a persistent object is to be assigned 

a virtual address, a page of virtual memory is reserved 

(and access protected) for the page in the persistent 

store that contains the object. The offset of the object 

in the persistent page is known, allowing the virtual 

address of the object in the reserved virtual memory 

page to be calculated. Accessing the page triggers a 

virtual memory page trap. Texas handles this trap by 

reading in the persistent page from the store and map- 

ping it into the previously reserved virtual page. All 

pointers in that page are then swizzled by reserving vir- 

tual memory pages for the objects to which they refer 

(assuming the referenced pages are not already mapped 

into virtual memory). The persistent references can then 

be replaced with virtual memory addresses, the faulted 

page is unprotected, and execution resumes. As exe- 

cution proceeds, pages are reserved in a “wave-front” 

just ahead of the most recently faulted and swizzled 

pages, guaranteeing that the application will only ever 

see virtual memory addresses. 

Wilson and Kakkad [27] report promising prelimi- 

nary performance results for an implementation of per- 

sistent C++ using Texas. The beauty of Texas is that it 

requires little or no modification to an existing language 

to support persistence. As we have already indicated, 

fielding a page protection trap from the operating system 

is an expensive operation. Whether software-mediated 

object faults (realized by augmenting the programming 

language implementation) can offer competitive perfor- 

mance is a question we explore here. 

3 System architecture and rationale 

Our architecture (see Figure 1) bears a close resem- 

blance to the object caching architecture of White and 

Dewitt [26]. Objects are copied on demand into the 

virtual memory address space of the program from the 

buffer pool of the persistent storage manager, in this case 

the Mneme persistent object store [14]. This copying 

includes any translation needed to convert the objects 

into a form acceptable to the program, including pointer 

swizzling. Our choice of such an architecture was 

driven by a desire to give the language implementation 

maximum control over all objects being manipulated 

by an application, without having to go through a re- 

strictive interface to the underlying storage manager. In 

particular, standard programming language techniques 

for memory management, including those of garbage 

collection, can be used to manage the objects resident 

in the program’s virtual address space [8]. 

The unit of transfer between the permanent database 

and Mneme’s buffers is the physical segment, which 

may have arbitrary size (up to some large system- 

defined limit). Thus a physical segment may contain 

any number of objects. Objects within a physical seg- 

ment are further grouped into logical segments. A log- 

ical segment may contain at most 255 objects; all log- 

ical segments within a physical segment must be full, 

except possibly the last, in which new objects are al- 

located. Grouping of objects for transfer between disk 

and memory eliminates the performance bottleneck ex- 

perienced by LOOM, which retrieved objects one at a 

time. 
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(a) Fault blocks stand in for non-resident objects (b) Target object faulted in 

(c) Indirect block bypassed by garbage collector 

Figure 2: Node marking 

non-resident object 0 fault block 

resident object n indirect block 

3.1 Detecting object faults 

As mentioned previously, object faulting requires some 

mechanism to distinguish between references to resident 

and non-resident objects. These mechanisms may be 
loosely divided into two categories, depending on the 

strategy they adopt. For the purposes of this discussion 

we view the persistent heap as a directed graph: the 

objects are the nodes and the references between the 

objects are the edges. 

Edge mm-king schemes take the approach of tagging 

the references between the objects. If tagged as swiz- 

zled, then a reference is a direct pointer to the corre- 

sponding object in memory; if non-swizzled then the 

reference consists of an OID. This is the approach used 

by EPVM 2.0 [26]. An apparent disadvantage of edge 

marking is that OIDs can be fetched from the pointer 

fields of objects, passed around, and stored, without ac- 

cessing the target object. When the target object finally 

is accessed the origin of the reference may no longer 

be known. White and Dewitt got around this through 

swizzling upon discovery (when a reference is loaded 

from a location), assuming that the load is a precursor to 

performing some operation on the target object. How- 

ever, their solution may swizzle too eagerly, since the 

ultimate reason for loading a reference cannot always 

be determined at the time of the load. 

Node marking schemes require that all object refer- 

ences in resident objects be converted to pointers. In 

ObjectStore and Texas this is achieved by reserving 

(although not necessarily allocating) virtual pages for 

the objects referred to by the pointers, and protecting 

those pages to trap all access to those pages. Another 

approach, similar to LOOM’s leaf objects, is to have 

small proxy objects (we call themfault blocks) stand in 

for non-resident objects, as illustrated in Figure 2(a). A 

fault block contains the OID of the target object, and 

is distinguishable from an ordinary object. Whenever a 

reference is followed, if it refers to a fault block, then 

the target object is made resident (copied and swizzled 

as necessary). The fault block is changed to point to 

the now-resident object (see Figure 2(b)). We call the 

updated fault block an indirect block. If a reference to 

be followed refers to an indirect block then the target 

object can be located at the cost of an indirection. Occa- 

sional scanning (possibly by a garbage collector) can be 

used to bypass indirect blocks, as shown in Figure 2(c). 

. 

References to tagged OIDs and fault blocks may be 

detected via explicit checks upon pointer dereference. 

Alternatively, fault blocks can be allocated in protected 

virtual memory pages, so that dereferencing a pointer to 

a fault block is trapped, and handled by making the tar- 

get object available. Another approach is to exploit the 

indirection implicit in the method invocation schemes 

292 



of object-oriented programming languages, folding res- 

idency checks into the overhead of method invocation 

(this approach is used to good effect in the persistent 

Smalltalk system used for this study, and will be de- 

scribed in detail in the next section). 

3.2 Swizzling 

When an object is made resident its pointer fields are 

swizzled according to the mechanism being employed 

for fault detection. All fields referring to objects that are 

already resident are converted to point directly to those 

objects-Mneme supports this mapping efficiently with 

a hash table. Otherwise, for edge marking we convert 

the reference to a tagged OID; for node marking, the 

reference is converted to point to a fault block for the 

non-resident object (a fault block is allocated if one does 

not yet exist for the target object). 

The architecture leaves open the possibility of copy- 

ing and swizzling any number of objects at one time 

from the Mneme buffer pool into memory. For this 

study we consider the granularities naturally inherent in 

this architecture: individual objects, logical segments, 

and physical segments. Swizzling just one object at a 

time has the advantage of copying and swizzling only 

those objects needed immediately by the program for 

it to continue execution. This will serve to minimize 

object fault latencies (including swizzling), as well as 

memory consumption. 

Swizzling a logical or physical segment at a time may 

take advantage of any clustering present in the physical 

layout of objects in the database. Since all the ob- 

jects in a segment are mapped before they are swizzled, 

any intru-segment references will be converted to direct 

pointers. If the static clustering is a good approxima- 

tion to the dynamic locality of access by the program 

then the speed of program execution will improve since 

fewer object faults will occur. 

4 Persistent Smalltalk 

The prototype persistent programming language used 
for these experiments is an implementation of Smalltalk 

with extensions to support persistence. The underlying 

permanent storage is managed by the Mneme persis- 

tent object store [ 141. Our Smalltalk implementation is 

I based on the definition of Goldberg and Robson [6], and 

consists of two components: a virtual machine and a vir- 

tual image. The virtual machine implements a bytecode 

instruction set to which Smalltalk source code is com- 

piled, as well as other primitive functionality. While 

we have retained the standard bytecode instruction set 

of Goldberg and Robson [6], our implementation of the 

virtual machine differs somewhat from their original 

definition. 

The virtual image is derived from an early com- 

mercial version of Smalltalk with minor modifications. 

It implements (in Smalltalk) all the functionality of a 

Smalltalk development environment, including editors, 

browsers, the bytecode compiler, class libraries, etc., all 
of which are first-class objects in the Smalltalk sense. 

Booting a Smalltalk environment involves loading the 

virtual image into memory for execution by the virtual 

machine. 

Our persistent implementation of Smalltalk places the 

virtual image in a Mneme database, and the Smalltalk 

environment is booted by loading that subset of the ob- 

jects in the image sufficient to resume execution by the 

virtual machine. We have retained the original bytecode 

instruction set, and changes to the virtual image have 
been minor. Rather, all extensions for persistence have 

been to the virtual machine, which has been carefully 

augmented to make persistent objects resident as they 

are needed by the executing image. 

4.1 Object faulting 

Computation in Smalltalk proceeds by sending mes- 

sages to objects. A message consists of a message 

selector and a number of arguments. The effect of 

sending a message is to invoke a method on the receiver 

of the message. Invoking a method may be thought 

of as a procedure call. The method to be executed is 

determined dynamically, based on the message selec- 

tor and the class of the receiver. Every class object in 

Smalltalk has a pointer to a method dictionary which 

associates selectors with compiled methods. A com- 

piled method consists of the bytecodes that implement 

the method, along with a literal frame, containing the 

shared variables, constants, and message selectors used 

by the method’s bytecodes. Determining which method 

to execute when a message is sent proceeds as follows. 

The receiver’s class is checked to see if its method dic- 

tionary contains the message selector. If it does then the 

corresponding compiled method is invoked. Otherwise, 
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the search continues in the superclass of the object, and 

so on, up the class hierarchy. If no matching selector is 

found then a run-time error is signalled. 

As described so far, the method lookup process is 

very expensive. To reduce this lookup cost a method 
lookup cache is used. Entries in the cache store a selec- 

tor, class, and compiled method. Before proceeding to a 

full method lookup, the selector and class are hashed to 

index an entry in the cache. If the selector and class of 

the cache entry match those of the message send, then 

the compiled method has been found. If they do not, 

then a full lookup takes place, updating the correspond- 

ing cache entry as well. 

Our discussion of message sends has illustrated just 

how many objects must be accessed as computation 

proceeds. For performance reasons it is crucial that 

the bytecode interpreter not perform a residency check 

for every object reference it must follow. To overcome 

this we impose certain residency constraints on critical 

objects, restricting residency checks to message sends 

as follows. 

Because computation is driven by the sending of mes- 

sages, most objects will become resident only when a 

message is sent to them. The send bytecodes must load 

the receiver’s class for method lookup. When an ob- 

ject is made resident, we require that its class also be 

resident, so that its class field can be swizzled to a di- 

rect pointer. In this way we eliminate the need for a 

residency check on the class when probing the method 

lookup cache. 

4.1.1 Edge marking 

Smalltalk implementations typically avoid allocating 

individual objects for such things as integers by tag- 

ging object pointers, and representing the integer value 

directly in the tagged pointer.2 Such objects have been 

termed immediate, since their value may be obtained 

immediately from their object reference. To cope with 

this, message sends must always check the pointer tag 

of the receiver. Immediate values are mapped to their 

class based on the tag, rather than by dereferencing the 

object pointer to obtain the class. 

For edge marking, references to non-resident objects 

are represented as tagged immediate OIDS,~ which we 

2We use an immediate representation for Smalllnteger, Char- 
acter, nil, true and false. 

3Mneme OIDs are only 28 bits, leaving plenty of room for the 

map to a special “class” (represented by the null pointer), 

whose only “method” primitively responds to all mes- 

sages by faulting the target object and forwarding the 

message to it. Since the method lookup cache is loaded 

with this response the first time a message is sent to an 

OID, subsequent message sends can proceed without an 

explicit residency check. Only the@11 method lookup 

must deal with the case when the class is null, priming 

the method cache appropriately. 

4.1.2 Node marking 

We use a similar trick to obtain check-free message 

sends for node marking. Fault and indirect blocks are 

distinguished from other objects by their “class” field, 

which instead of containing a direct pointer to some 

class, contains a tagged OID or indirect pointer instead.4 

Similarly to our implementation of edge marking, we 

arrange for fault blocks to respond to all messages by 

faulting the corresponding object and forwarding the 

message to the now-resident object. Once again, only 

the full method lookup performs residency checks to 

detect fault and indirect blocks, priming the method 

cache appropriately so that all future sends to the fault 

or indirect block will occur without additional checks. 

Our implementation of the page protection variation 

for fault blocks achieves the same effect, but makes 

sure that the virtual machine sees only resident objects. 

Loading the “class” of a fault or indirect block will cause 

a trap. The trap handler unprotects the pages containing 

fault and indirect blocks, overwrites the offending fault 

block with an indirect block, and arranges for the load 

instruction that caused the fault to be restarted with a 

direct pointer to the resident object. The fault and indi- 

rect block pages are then reprotected before resuming 

execution in the virtual machine. 

In addition to elimination of indirections by the 

garbage collector, a fault block implementation can be 

more aggressive in its elimination of indirections. At 

each object fault our system scans all transient (i.e., 

non-persistent) objects (including active stack frames) 

to eliminate any references to fault blocks that have 

been converted to indirect blocks. We also maintain a 

remembered set [24,25] for each page of allocated fault 

blocks, recording all persistent objects whose pointer 

tag on a 32-bit machine. 
4Mneme’s 28-bit OIDs allow us to keep the size of fault blocks 

to 32 bits. 
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fields have been swizzled to refer to a fault block in 

the page. At each object fault the objects in the re- 

membered set are scanned, and any fields that contain 

pointers to (ex-fault) indirect blocks are updated to by- 

pass the indirection. In this way the source locations of 

fault block references are swizzled, so avoiding repeated 

loading and faulting on those references, without having 

to adopt the over-eager swizzle-on-discovery approach 

of White and Dewitt. We expect this to be particularly 

important for the page protection variant, by preempting 

unnecessary expensive page traps. 

4.1.3 Residency constraints 

In addition to the constraint that an object must always 

contain a direct pointer to its class, we impose fur- 

ther restrictions to elide other residency checks in the 

bytecodes of the virtual machine. Whenever a byte- 

compiled method is made resident (usually through its 

invocation), we make the literals in its literal frame res- 

ident along with it. This forces the selectors, constants, 

and shared variables5 referred to by the bytecodes to 

be resident. It does not force the objects referred to 

by the shared variables to be resident. This permits the 

bytecodes accessing the selectors, constants, and shared 

variables of the literal frame to do so without perform- 

ing residency checks. In short, there is no need for 

residency checks in the stack bytecodes. Stack frames 

are also objects in the Smalltalk system, and so may be 

persistent. Requiring all stack frames of an active pro- 

cess to be resident further eliminates residency checks 

in the return bytecodes. 

In summary, by preloading objects that are critical 

to the forward progress of computation, we are able to 

restrict all residency checks to message sends.‘j 

5 Experiments 

We compared several versions of the virtual machine, 

varying the schemes for object fault detection (tagged 

OIDs, fault blocks, and page protection), the granular- 

ity of swizzling (object, logical segment, and physical 

segment at a time), and whether the virtual machine 

5Shared variables are represented as Association objects with 
two fields, one for a name and one for a value. 

‘Primitive methods must perform additional residency checks 
on any objects they need to access other than the receiver of the 
message. 

is running against a completely resident virtual image 

(ordinary non-persistent Smalltalk) or against an im- 

age that is faulted in on demand (persistent Smalltalk). 

Table 1 enumerates the variants. 

As mentioned earlier, our fault block schemes (FB 

and PF variants) eliminate indirections at each object 

fault by scanning transient space, and processing the 

remembered set of the page containing the faulted-on 

fault block. We apply this technique in the explicitly 

checked FB schemes as well as their page-trapping PF 

counterparts, in order to obtain a straight comparison. 

This is despite the fact that the explicitly checked FB 

schemes can cheaply bypass indirections as they are 

encountered, while the scanning and remembered set 

processing adds substantial additional overhead at each 

fault. In contrast, the page-trapping PF schemes must be 

aggressive in eliminating indirections, since the indirect 

blocks reside in protected pages, to which any access 

will be trapped. 

5.1 The benchmark database 

Our benchmarks are drawn from the 001 object oper- 

ations benchmarks [3]. The 001 benchmark database 

consists of a collection of 20,000 “part” objects, indexed 

by part numbers in the range 1 through 20,000, with ex- 

actly three “connections” from each part to other parts. 

The connections are randomly selected to produce some 

locality of reference: 90% of the connections are to the 

“closest” 1% of parts, with the remainder being made 

to any randomly chosen part. Closeness is defined as 
parts with the numerically closest part numbers. The 

part database and the benchmarks are implemented en- 

tirely in Smalltalk, including the B-tree used to index 

the parts. 

The Mneme database, including the Smalltalk im- 

age as well as the parts data, consumes 179 physical 

segments, for a total size of just over 6 Mbytes. Each 

physical segment is at least 32 Kbytes in size, although 

some may be larger since Smalltalk objects larger than 

32 Kbytes are allocated in their own private segment. 

There are on average three or four logical segments 

per physical segment. Newly created objects are clus- 

tered into segments only as they are encountered when 

unswizzling, using an essentially breadth-first traversal 

similar to that of copying garbage collectors [4]. The 

part objects are 68 bytes in size (including the object 

header). The three outgoing connections are stored di- 
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Variant Description 

non-persistent Non-persistent 

ID-resident Non-persistent, augmented with checks needed for tagged OIDs 

FB-resident Non-persistent, augmented with checks needed for fault blocks 

PF-resident Non-persistent, augmented with the page trap handling code, 

plus necessary support to decode load instructions that might cause a trap 

ID-OB J Persistent, tagged OIDs, swizzle 1 object at a time 

ID-LSEG Persistent, tagged OIDS, swizzle 1 logical segment at a time 

ID-PSEG Persistent, tagged OIDs, swizzle 1 physical segment at a time 

FB-OBJ Persistent, fault blocks, swizzle 1 object at a time 

FB-LSEG Persistent, fault blocks, swizzle 1 logical segment at a time 

FB-PSEG Persistent, fault blocks, swizzle 1 physical segment at a time 

PF-OB J Persistent, fault blocks allocated in protected pages, 

swizzle 1 object at a time 

PF-LSEG Persistent, fault blocks allocated in protected pages, 

swizzle 1 logical segment at a time 

PF-PSEG Persistent, fault blocks allocated in protected pages, 

swizzle 1 physical segment at a time 

Table 1: Schemes measured in experiments 

rectly in the part objects. The string fields associated 

with each part and connection are represented by ref- 

erences to separate Smalltalk objects of 24 bytes each. 

Similarly, a part’s incoming connections are represented 

as a separate object containing references to the parts 

that are the source of the connections. The B-tree index 

for the 20,000 parts consumes around 165 Kbytes. 

5.2 Benchmarks 

We used the Lookup and Traversal portions of the 001 

benchmarks, which operate as follows: 

l Lookup fetches 1,000 randomly chosen parts from 
the database. For each part a null procedure is 
invoked, taking as its arguments the x, y, and type 
fields of the part. 

l Traversal fetches all parts connected to a ran- 
domly chosen part, or to any part connected to 
it, up to seven hops (for a total of 3,280 parts, 
with possible duplicates). Similarly to the Lookup 

benchmark, a null procedure is invoked for each 
part, taking as its arguments the X, y, and fype fields 

of the part. 

These benchmarks are intended to be representative of 

the data operations in many engineering applications. 

The Lookup benchmark emphasizes selective retrieval 

of objects based on their attributes, while the Traversal 

benchmark illuminates the cost of raw pointer traversal. 

Each measure is typically run ten times, the first when 

the system is cold, with none of the database cached 

(apart from any schema or system information neces- 

sary to initialize the system). Each successive iteration 

fetches a d$erent set of random parts. Before the first 

run of each series of benchmark iterations a “chill” pro- 

gram is executed on the client to sequentially read a 

32 Mbyte file from the server. This ensures that the 

operating system file buffers of both client and server 
have been flushed of all database segments, so that the 

first iteration is truly cold. 

In addition to the ten cold-warm iterations, we mea- 

sured the elapsed time for several hot iterations of the 

Traversal benchmark, by beginning each hot iteration 

at the same initial part used in the last of the warm iter- 

ations. These hot runs are guaranteed to traverse only 

resident objects, and so will be free of any overheads 
due to swizzling and retrieval of non-resident objects. 

We varied the number of hot iterations performed per 
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data point gathered, in order to obtain a linear mea- 

sure of the CPU overheads of fault detection (excluding 

swizzling and disk accesses) for each of the schemes. 

5.3 Experimental setup 

The client machine on which the benchmarks were run 

was a DECstation 3100 (MIPS R2OOOA CPU7 clocked 

at 16.67MHz) running ULTRIX 4.1.8 The system has 

24 Mbytes of main memory, 10% of which is used for 

operating system disk buffers. The Smalltalk interpreter 

is coded in C and compiled with the GNU C compiler 

(gee) version 2.3.3 at optimization level 2. The bench- 

marks were run with the client system in single user 

mode and the process’s address space was locked in 

main memory to prevent paging. 

The database is accessed remotely via NFS. The 

server is a SPARCstation 2 running SunOS 4.1.2,’ with 

32 Mbytes of main memory,and the database resides on 

a 1.3 Gbyte external SCSI disk. The client and server 

were connected via a private ethernet. 

We measured elapsed time on the client machine us- 

ing a custom timer board having a resolution of 100 

ns. The fine-grained accuracy of this timer allowed us 

to measure the elapsed time of each phase of execu- 

tion separately: running time, swizzling, and time spent 

retrieving physical segments from disk. 

The experiments were repeated several times for each 

configuration, and the results averaged. Each run is 

presented with exactly the same database (no updates 

are ever committed). Note also that the nth iteration of 

any given benchmark run will always access the same 

parts as the nth iteration within any other benchmark 

run, since the script that controls the execution of the 

benchmarks presents the same sequence of random part 

identifiers to each run. 

6 Results 

We now report on the results for each of the bench- 

marks. All times reported are in seconds, and exclude 

‘MIPS and R2000 are trademarks of MIPS Computer Systems. 

‘DECstation and ULTRIX are registered trademarks of Digital 
Equipment Corporation. The operating system had some official 
patches installed that fix bugs in the mprotect system call. 

‘SPARCstation is a trademark of SPARC International, licensed 
exclusively to Sun Microsystems. SunOS is a trademark of Sun 
Microsystems. 

I Scheme 1 Elapsed time (s) 

Average 

non-persistent 0.565 

ID-resident 0.557 

FB-resident 0.556 
I 

0.567 

Cold Warm 

6.75 1.771 

7.65 1.448 

7.56 1.431 

379.79 40.647 

26.21 0.558 

19.81 0.569 

PF-resident 

ID-OBJ 

ID-LSEG 

ID-PSEG 

FB-OBJ 

FB-LSEG 

FB-PSEG 

PF-OBJ 390.93 41.579 

PF-LSEG 27.21 0.573 

PF-PSEG 20.27 0.593 

Table 2: Lookup 

any Smalltalk initialization time prior to beginning the 

benchmark. In all of the figures, the schemes are iden- 

tified by their names as specified in Table 1. 

6.1 Lookup 

The results for the Lookup benchmark are summarized 

in Table 2. We give the average elapsed time of the 

ten iterations for the non-persistent variants (since the 

database is always resident and warm), and the cold 

and warm times for the persistent variants. The non- 

persistent variants exhibit marginal variation in their 

performance, indicating that the overhead of the run- 

time residency checks is negligible. It is curious that 

both the ID-resident and FB-resident schemes perform 

slightly better than non-persistent Smalltalk, since they 

have been augmented with residency checks. We can 

only speculate that the improvement is due to underlying 

cache effects. 

The results for the persistent schemes are naturally 

more interesting. The FB-OBJ and PF-OBJ schemes 

are a clear loss, since object-at-a-time faulting results 

in more frequent object faults, and fewer objects are 

made resident per fault. Thus, even at the warmest 

iteration the object-at-a-time schemes still experience 

object faults. Performance is poor since each object 
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Figure 3: Lookup 

fault incurs significant overhead to eliminate indirec- 

tions. Still, FB-OBJ is better than PF-OBJ, because 

the page-trapping approach incurs significant overhead 

to trap object faults and to manipulate page protections 

when swizzling. 

We have found that FB-OBJ behaves much less 

poorly if we refrain from eliminating indirections at 

every object fault, even though indirect blocks will 

frequently be encountered when traversing references, 

since dereferencing an extra level of indirection can be 

performed relatively cheaply. Similarly, the cold times 

for all the FB schemes can be improved substantially by 

not performing indirection elimination, so that they also 

outperform the ID schemes for cold starts. Thus, it may 

be preferable to expend effort to eliminate indirections 

for the FB schemes only as the system gets warmer, 

when the cost of traversing indirections becomes more 

important. Ln contrast, for the PF schemes an expensive 

page protection trap occurs every time an indirect block 
is encountered, making early elimination of indirections 

much more important. 
To compare the schemes more effectively we have 

plotted their performance in Figure 3, expanding the 
scale to focus on the warm run performance, and omit- 

ting the poorly performing FB-OBJ and PF-OBJ vari- 

I 

1-u-n on-persistent 

---.zr- 
ID-OBJ ~ 

--*- ID-LSEG 
I 

/ - ID-PSEG 
/ 
I I 

/ p*- FB-LSEG 
! 

- FB-PSEG 

p*- PF-LSEG 

,a--- PF-PSEG : 

ants. The non-persistent Smalltalk results are also plot- 
ted as a baseline. The ID schemes are ranked by their 

eagerness to swizzle, since swizzling more objects at a 

time reduces the number of locations containing OIDs. 

Still, the ID schemes are significantly less competitive 

overall. The FB and PF schemes behave very similarly, 

with warm performance close to optimal, due to the 

aggressive approach taken to eliminate references to in- 

direct blocks. Nevertheless, the software-mediated FB 

schemes are marginally better than the page-trapping PF 

approach for the warmest runs, which incur no object 

faults or swizzling. The reason is that for the page trap 

handler to decode the contents of the registers at the time 

of a fault (in order to fix the faulting reference), we have 

had to impose a less than natural code sequence at each 

potential fault site in the interpreter. This yields a slight 

run-time performance penalty for the PF schemes. 

The schemes illustrated in Figure 3 show almost im- 

mediate warmup, since the first iteration touches enough 

of the database to bring most of the database’s physical 

segments into Mneme’s client buffers, whence objects 

can be swizzled very quickly. Only the FB-LSEG and 

PF-LSEG schemes exhibit noticeable further warming 

effects after the first iteration, as additional objects are 

swizzled from the buffers. By the fifth iteration the 
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Figure 4: Traversal 

LSEG schemes have made sufficient objects resident to 

proceed without further object faults. The ID schemes 

are dominated by the overhead to convert OJDs to direct 

pointers, masking any faults that might occur. 

6.2 Traversal 

We summarize the Traversal benchmark results in 

Table 3. Once again, the non-persistent variants show 

marginal differences in elapsed time, indicating that 

the overhead of the run-time residency checks is slight. 
Also, the results for the persistent variants show that the 

object-at-a-time faulting schemes still have the worst 

performance, due to the increased per-fault swizzling 

costs imposed by indirection elimination. Thus, we 

again omit FB-OBJ and PF-OBJ in plotting the results 

in Figure 4. 

The warming effect is slower than for the Lookup 

benchmark, despite the fact that each iteration accesses 

more parts. This is due to the locality of references 

encoded in the connections between parts, which has 

been replicated in the clustering used to group objects 

into physical segments. Thus, traversals mostly touch 

parts whose physical segments are already resident in 

Mneme’s client buffers, with only a few connection 

---o--m ID-PSEG 

----A--- FB-LSEG 

*- FB-PSEG 

--.--- PF-LSEG 

-* PF-PSEG 

Scheme Elapsed time (s) 

Average 

non-persistent 0.0880 

/ ID-resident 1 0.0880 
/ I / 

FB-resident 

PF-resident 

0.0880 

0.0886 

Cold / Warm 

ID-OBJ 4.01 0.184 

ID-LSEG 5.17 0.119 

Table 3: Traversal 
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Figure 5: Hot traversal 

traversals needing to be serviced by a disk access. The 

ID schemes warm up more quickly, although their per- 

formance is bounded by the overhead of translating 

OIDs to pointers, while the FB and PF schemes are 

penalized for indirection removal. Nevertheless, indi- 

rection removal pays off by the fourth iteration for FB- 

PSEG and PF-PSEG, and by the eighth iteration for FB- 

LSEG and PF-LSEG, when all resident part references 

have been converted to direct pointers, and enough of 

the database has been made resident for execution to 

proceed without object faults. 

6.3 Hot traversals 

The hot Traversal results (plotted in Figure 5) give some 

idea of the run-time CPU costs for the schemes, in the 

absence of any object faults or swizzling overheads. 

We have obtained excellent linear regression fits for 

these results, for the model y = a + bt, where y is the 

elapsed time, and z the number of hot iterations per run. 
As expected, the fitted y-axis intercepts a are close to 

zero. More interesting is the slope 6, which is a measure 

of time per traversal, given in Table 4. 

The results confirm the drawbacks of the ID schemes, 

showing that OID conversion is a significant run-time 

.-- non-persistent 

__ -- ID-OBJ - 

--•- ID-LSEG I 

--+- I D-PSEG 

-~ *-- FB-OBJ 

h- FB-LSEG 

---a--- FB-PSEG 

-CT- PF-OBJ 

--X- PF-LSEG 

--x- PF-PSEG 
I 

ID-LSEG 0.1178 

ID-PSEG 0.1086 

FB-OBJ 0.0850 

FB-LSEG 0.0867 

FB-PSEG 0.0866 

PF-OBJ 0.0872 

PF-LSEG 0.0862 

PF-PSEG 0.0870 

Table 4: Estimated elapsed time per hot traversal 
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overhead. Also, the ID schemes are ranked by their 

eagerness to swizzle, since swizzling a whole physi- 

cal or logical segment at one time allows many intra- 

segment references to be converted to direct pointers 

rather than OIDs; recall that the OIDs are never updated 

with direct pointers. The FB and PF schemes have hot 

performance close to that of non-persistent Smalltalk 

since they convert all resident object references to di- 

rect pointers. Most importantly, the software-mediated 

residency checks used by the FB schemes pose insignif- 

icant overhead for hot execution. 

7 Conclusions 

Our results are conclusive in establishing that software 

object fault detection mechanisms can provide perfor- 

mance very close to optimal, even surpassing the perfor- 

mance of comparable hardware-assisted schemes. This 

has been achieved through careful assumptions about 

residency. In particular, the object-oriented execution 

paradigm allows many residency checks to be elided, 

with residency checks being restricted mostly to method 

invocation. This approach can be applied to any lan- 

guage that includes dynamic binding of method calls, 

by arranging for fault blocks to respond to all methods 

by first faulting the target object and then forwarding the 

invocation to it. We have also shown that it pays to be 

eager in object swizzling, by swizzling related objects 

in advance of the application’s need for them. 

7.1 Compilation 

The fact that the results have been obtained for an inter- 

preted language cannot be taken lightly, since run-time 

overheads are several times higher than those of com- 

piled programs. Nevertheless, we see no reason why the 

results will not carry over to a compiled setting; only the 

relative overheads of object fault detection and handling 

will change with respect to total execution time. How- 

ever, some languages (e.g., Modula-3 [15,7], C++ [23]) 

do not enforce the pure object-oriented style of execu- 

tion that enables residency checks to be piggy-backed 

with method invocation. Operations on an object can 

be performed without necessarily invoking a method 

on it. This means that explicit residency checks must 

be compiled into the code in advance of such opera- 

tions, to ensure that the object is resident. Compiler 

optimizations [19, 18, 9, lo] may allow these explicit 

residency checks to be merged or eliminated. For exam- 

ple, control-flow information may reveal that multiple 

traversals of a particular object reference along a given 

execution path require only one residency check, rather 

than a check per traversal. We look forward to explor- 

ing the effect of such techniques in our forthcoming 

implementation of Persistent Modula-3. 

7.2 Other architectures 

We acknowledge that our architectural framework is 

one of several that might be considered. For example, 

we have chosen a copy swizzling approach, whereas 

it may be possible for applications to manipulate ob- 

jects directly in the client buffer pool. We have already 

discussed the reasons for our choice, on the grounds of 

flexibility in the management of resident objects. More- 

over, the performance study of White and Dewitt [26] 

indicated that such an architecture was superior to the 

others they considered. 

We also recognize that our page trapping approach, 

which allocates fault blocks in protected pages, does 

not compare directly with the memory-mapped file ap- 

proaches of ObjectStore and Texas. In particular, Ob- 

jectstore makes some effort to allow objects to be 

mapped directly into the same memory locations in 

which they were originally allocated, thus reducing or 

eliminating the need to swizzle pointers upon object 

fault. 

Nevertheless, our results stand as a relative compar- 

ison of object faulting techniques within a fixed archi- 

tectural framework. It is reasonable to assume that the 

relative standing of our fault detection mechanisms will 

remain the same even if the underlying persistent object 

storage architecture changes. 

7.3 Summary 

In summary, we have explored the design space of 

mechanisms for detecting and handling references to 

persistent objects, and compared their performance 

within a prototype persistent programming language. 

Most importantly, we have demonstrated that software- 

mediated object faulting can be a viable alternative to 

hardware-assisted techniques, and that adding persis- 

tence to a programming language does not necessarily 

imply degradation of performance. 
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