
Object Fault Handling for Persistent Programming Languages:
A Performance Evaluation*

Antony L. Hosking J. Eliot B. Moss

Object Systems Laboratory

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

Abstract

A key mechanism of a persistent programming lan-
guage is its ability to detect and handle references to
non-resident objects. Ideally, this mechanism should be
hidden from the programmer, allowing the transparent
manipulation of all data regardless of its potential life-
time. We term such a mechanism object faulting, in a
deliberate analogy with page faulting in virtual memory
systems. This paper presents a number of mechanisms
for detecting and handling references to persistent ob-
jects, and evaluates their relative performance within an
implementation of Persistent Smalltalk.

1 Introduction

Persistent programming languages combine the features

of database systems and programming languages to al-

low the seamless manipulation of data, without regard

for its potential lifetime, be it transient or persistent [I].

To achieve this the language must provide a mechanism

for the detection and handling of references to persistent

data. Ideally, this mechanism should be hidden from the

programmer, so that manipulation of persistent and non-

persistent data is as transparent as possible. The term

we use for such a mechanism is object faulting [9, lo].

*This work is supported by National Science Foundation Grants

CCR-8658074 and CCR-92 11272, Digital Equipment Corpora-
tion’s Western Research Laboratory and Systems Research Center,
and Sun Microsystems. The authors can be reached via Internet
addresses {hosking,moss}Qcs.umass.edu.

Permission to copy without fee all or part of this materiel is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

o 1993 ACM 0-89791-587-9/93/0009/0288...$1.50

The analogy with page faulting virtual memory is de-

liberate, since the intent is to provide the illusion of

a persistent virtual heap of objects, potentially much

larger than physical or even virtual memory. Access

to those objects is detected and managed by the object

faulting mechanism, which triggers automatic retrieval

of objects from persistent storage (i.e., disk) on demand.

In effect, persistent objects are cached in memory for

manipulation by the program.

This paper considers a number of implementations

of object faulting. We divide our attention between the

mechanism by which references to non-resident objects

are detected, and the way in which the object faults

themselves are handled. We compare several schemes

for detecting references to non-resident objects, not only

through checks in software, but also by exploiting the

page protection mechanism of the operating system to

detect non-residency through the trapping of references

to non-resident objects. We also explore an orthogonal

design choice: just how many objects should be made

resident per object fault? Naturally, faulting on a given

object must make at least that object available to the pro-

gram, however any number of additional objects might

also be made available. Moreover, making one object

resident may require that other objects also be resident.

Such constraints must be observed by the object fault

handler before program execution can resume. The ad-

vantage of faulting more than one object per object fault

is straightforward: it may reduce the number of object

faults required for execution of a given program. Yet it

may also result in more data being made available to the

program than is absolutely necessary for its execution.

In addition to the comparison of alternative imple-
mentations of object faulting, this paper’s contributions

include the description of our architecture and frame-

work for persistence, and the performance evaluation,

OOPSLA’93, pp. 288303

288

some way to provide some form of persistence. None

of them consider the performance overheads of persis-

tence, accepting the costs as necessary to support the

functionality they desire. Here, we are interested in

exploring the design space for implementing persistent

programming languages, by evaluating the performance

of a number of mechanisms for object faulting.

White and Dewitt [26] have compared the over-

all performance of a number of architectures and sys-

tems that perform object faulting and pointer swizzling.

The systems considered in that study include Object-

Store [13, 161, a commercially available object-oriented

DBMS, and a number of software architectures based

on the EXODUS Storage Manager (ESM) [2,20].

Several of the architectures based on ESM require the

program to manipulate objects through a call interface,

with modifications being performed in the client buffer

pool of ESM, as opposed to the virtual memory space

of the application. White and Dewitt introduce a new

scheme (EPVM 2.0), which avoids this call overhead

through object caching. Objects are still retrieved into
the client buffer pool using the ESM interface. How-

ever, they are then copied into the virtual memory of

the application, while the originals in the buffer pool

are unpinned. Modifications can then be made directly

in virtual memory. At transaction commit, for each

modified object in virtual memory the corresponding

original is pinned and updated in the ESM buffer pool

through a call to ESM. White and Dewitt explored two

versions of this caching scheme. The first copies objects

one at a time from the buffer pool into virtual memory

as they are accessed by the application. The second

copies all of the objects on a given page of the buffer

pool when the first object on the page is accessed.

White and Dewitt’s object caching scheme also per-

forms some pointer swizzling, in which references to

objects that are resident in the cache are converted to

direct memory pointers. Each object includes a bit ta-

ble indicating which of its slots contain direct pointers

and which contain unswizzled OIDs. Translating an

OID means probing a hash table containing pointers for

all cached objects, and caching the object if it is not

already resident. EPVM 2.0 performs swizzling upon
discovery: when a location containing an unswizzled

reference to a persistent object is discovered (usually as

a result of loading the reference to perform some oper-

ation on it) the location is updated with a direct pointer

to the object.

ObjectStore, the final architecture considered by

White and Dewitt, takes a dramatically different ap-

proach. Objects are faulted and pointers are swizzled

using a page mapping scheme similar to virtual mem-

ory. We do not have exact details of the proprietary

mechanisms for object faulting and swizzling, but the

approach is similar to that used in the Texas system,

described in more detail below.

The results obtained by White and Dewitt indicate

that object caching is an attractive architecture for per-

sistent programming languages. For small databases,

in which the entire database can fit in main memory,

caching objects a page at a time seems best, since there

is little extra overhead in copying pages versus objects,

with fewer copying operations being needed. However,

for larger databases that do not fit in main memory, page

caching will copy some objects unnecessarily. This re-

sults in double paging: pages are first cached in virtual

memory by the object caching mechanism, and then

paged out by the virtual memory manager.

The comparison with ObjectStore produced mixed re-

sults. Cold database performance (obtained by running

benchmarks against a database that starts out entirely

on disk at the possibly remote database server) was

worse for ObjectStore than for the architectures based

on ESM. For a small database ObjectStore exhibited

the best warm performance; for the large database its

performance was the worst. White and Dewitt suggest

that these results indicate the cost of mapping data into a

process’s address space. We speculate that it is also due

to the high overhead of fielding page protection traps

from the operating system to fault non-resident pages.’

In contrast to White and Dewitt, who consider the

overall performance of several different architectures,

we have chosen to keep our basic architecture fixed

while varying the mechanisms used to detect and handle

object faults. Our architecture, as described in the next

section, is similar to the object caching architecture of

White and Dewitt. However, the representations we

use for references to non-resident objects are much more

lightweight than those of White and Dewitt, as are the

mechanisms we use for fault detection.

The Texas system [21, 271 uses a page mapping
scheme similar to ObjectStore to fault objects and swiz-

‘N 250,~~s round trip as measured in a tight loop under Ultrix 4. I
on the DECstation 3100. We note that this is generally acknowl-

edged to be one of the best operating system implementations for
trapping page protection faults.

290

In-memory Mneme Application
Client Buffer Pool Memorv SDace

Figure 1: System architecture

zle pointers. When a persistent object is to be assigned

a virtual address, a page of virtual memory is reserved

(and access protected) for the page in the persistent

store that contains the object. The offset of the object

in the persistent page is known, allowing the virtual

address of the object in the reserved virtual memory

page to be calculated. Accessing the page triggers a

virtual memory page trap. Texas handles this trap by

reading in the persistent page from the store and map-

ping it into the previously reserved virtual page. All

pointers in that page are then swizzled by reserving vir-

tual memory pages for the objects to which they refer

(assuming the referenced pages are not already mapped

into virtual memory). The persistent references can then

be replaced with virtual memory addresses, the faulted

page is unprotected, and execution resumes. As exe-

cution proceeds, pages are reserved in a “wave-front”

just ahead of the most recently faulted and swizzled

pages, guaranteeing that the application will only ever

see virtual memory addresses.

Wilson and Kakkad [27] report promising prelimi-

nary performance results for an implementation of per-

sistent C++ using Texas. The beauty of Texas is that it

requires little or no modification to an existing language

to support persistence. As we have already indicated,

fielding a page protection trap from the operating system

is an expensive operation. Whether software-mediated

object faults (realized by augmenting the programming

language implementation) can offer competitive perfor-

mance is a question we explore here.

3 System architecture and rationale

Our architecture (see Figure 1) bears a close resem-

blance to the object caching architecture of White and

Dewitt [26]. Objects are copied on demand into the

virtual memory address space of the program from the

buffer pool of the persistent storage manager, in this case

the Mneme persistent object store [14]. This copying

includes any translation needed to convert the objects

into a form acceptable to the program, including pointer

swizzling. Our choice of such an architecture was

driven by a desire to give the language implementation

maximum control over all objects being manipulated

by an application, without having to go through a re-

strictive interface to the underlying storage manager. In

particular, standard programming language techniques

for memory management, including those of garbage

collection, can be used to manage the objects resident

in the program’s virtual address space [8].

The unit of transfer between the permanent database

and Mneme’s buffers is the physical segment, which

may have arbitrary size (up to some large system-

defined limit). Thus a physical segment may contain

any number of objects. Objects within a physical seg-

ment are further grouped into logical segments. A log-

ical segment may contain at most 255 objects; all log-

ical segments within a physical segment must be full,

except possibly the last, in which new objects are al-

located. Grouping of objects for transfer between disk

and memory eliminates the performance bottleneck ex-

perienced by LOOM, which retrieved objects one at a

time.

291

(a) Fault blocks stand in for non-resident objects (b) Target object faulted in

(c) Indirect block bypassed by garbage collector

Figure 2: Node marking

non-resident object 0 fault block

resident object n indirect block

3.1 Detecting object faults

As mentioned previously, object faulting requires some

mechanism to distinguish between references to resident

and non-resident objects. These mechanisms may be
loosely divided into two categories, depending on the

strategy they adopt. For the purposes of this discussion

we view the persistent heap as a directed graph: the

objects are the nodes and the references between the

objects are the edges.

Edge mm-king schemes take the approach of tagging

the references between the objects. If tagged as swiz-

zled, then a reference is a direct pointer to the corre-

sponding object in memory; if non-swizzled then the

reference consists of an OID. This is the approach used

by EPVM 2.0 [26]. An apparent disadvantage of edge

marking is that OIDs can be fetched from the pointer

fields of objects, passed around, and stored, without ac-

cessing the target object. When the target object finally

is accessed the origin of the reference may no longer

be known. White and Dewitt got around this through

swizzling upon discovery (when a reference is loaded

from a location), assuming that the load is a precursor to

performing some operation on the target object. How-

ever, their solution may swizzle too eagerly, since the

ultimate reason for loading a reference cannot always

be determined at the time of the load.

Node marking schemes require that all object refer-

ences in resident objects be converted to pointers. In

ObjectStore and Texas this is achieved by reserving

(although not necessarily allocating) virtual pages for

the objects referred to by the pointers, and protecting

those pages to trap all access to those pages. Another

approach, similar to LOOM’s leaf objects, is to have

small proxy objects (we call themfault blocks) stand in

for non-resident objects, as illustrated in Figure 2(a). A

fault block contains the OID of the target object, and

is distinguishable from an ordinary object. Whenever a

reference is followed, if it refers to a fault block, then

the target object is made resident (copied and swizzled

as necessary). The fault block is changed to point to

the now-resident object (see Figure 2(b)). We call the

updated fault block an indirect block. If a reference to

be followed refers to an indirect block then the target

object can be located at the cost of an indirection. Occa-

sional scanning (possibly by a garbage collector) can be

used to bypass indirect blocks, as shown in Figure 2(c).

.

References to tagged OIDs and fault blocks may be

detected via explicit checks upon pointer dereference.

Alternatively, fault blocks can be allocated in protected

virtual memory pages, so that dereferencing a pointer to

a fault block is trapped, and handled by making the tar-

get object available. Another approach is to exploit the

indirection implicit in the method invocation schemes

292

of object-oriented programming languages, folding res-

idency checks into the overhead of method invocation

(this approach is used to good effect in the persistent

Smalltalk system used for this study, and will be de-

scribed in detail in the next section).

3.2 Swizzling

When an object is made resident its pointer fields are

swizzled according to the mechanism being employed

for fault detection. All fields referring to objects that are

already resident are converted to point directly to those

objects-Mneme supports this mapping efficiently with

a hash table. Otherwise, for edge marking we convert

the reference to a tagged OID; for node marking, the

reference is converted to point to a fault block for the

non-resident object (a fault block is allocated if one does

not yet exist for the target object).

The architecture leaves open the possibility of copy-

ing and swizzling any number of objects at one time

from the Mneme buffer pool into memory. For this

study we consider the granularities naturally inherent in

this architecture: individual objects, logical segments,

and physical segments. Swizzling just one object at a

time has the advantage of copying and swizzling only

those objects needed immediately by the program for

it to continue execution. This will serve to minimize

object fault latencies (including swizzling), as well as

memory consumption.

Swizzling a logical or physical segment at a time may

take advantage of any clustering present in the physical

layout of objects in the database. Since all the ob-

jects in a segment are mapped before they are swizzled,

any intru-segment references will be converted to direct

pointers. If the static clustering is a good approxima-

tion to the dynamic locality of access by the program

then the speed of program execution will improve since

fewer object faults will occur.

4 Persistent Smalltalk

The prototype persistent programming language used
for these experiments is an implementation of Smalltalk

with extensions to support persistence. The underlying

permanent storage is managed by the Mneme persis-

tent object store [141. Our Smalltalk implementation is

I based on the definition of Goldberg and Robson [6], and

consists of two components: a virtual machine and a vir-

tual image. The virtual machine implements a bytecode

instruction set to which Smalltalk source code is com-

piled, as well as other primitive functionality. While

we have retained the standard bytecode instruction set

of Goldberg and Robson [6], our implementation of the

virtual machine differs somewhat from their original

definition.

The virtual image is derived from an early com-

mercial version of Smalltalk with minor modifications.

It implements (in Smalltalk) all the functionality of a

Smalltalk development environment, including editors,

browsers, the bytecode compiler, class libraries, etc., all
of which are first-class objects in the Smalltalk sense.

Booting a Smalltalk environment involves loading the

virtual image into memory for execution by the virtual

machine.

Our persistent implementation of Smalltalk places the

virtual image in a Mneme database, and the Smalltalk

environment is booted by loading that subset of the ob-

jects in the image sufficient to resume execution by the

virtual machine. We have retained the original bytecode

instruction set, and changes to the virtual image have
been minor. Rather, all extensions for persistence have

been to the virtual machine, which has been carefully

augmented to make persistent objects resident as they

are needed by the executing image.

4.1 Object faulting

Computation in Smalltalk proceeds by sending mes-

sages to objects. A message consists of a message

selector and a number of arguments. The effect of

sending a message is to invoke a method on the receiver

of the message. Invoking a method may be thought

of as a procedure call. The method to be executed is

determined dynamically, based on the message selec-

tor and the class of the receiver. Every class object in

Smalltalk has a pointer to a method dictionary which

associates selectors with compiled methods. A com-

piled method consists of the bytecodes that implement

the method, along with a literal frame, containing the

shared variables, constants, and message selectors used

by the method’s bytecodes. Determining which method

to execute when a message is sent proceeds as follows.

The receiver’s class is checked to see if its method dic-

tionary contains the message selector. If it does then the

corresponding compiled method is invoked. Otherwise,

293

the search continues in the superclass of the object, and

so on, up the class hierarchy. If no matching selector is

found then a run-time error is signalled.

As described so far, the method lookup process is

very expensive. To reduce this lookup cost a method
lookup cache is used. Entries in the cache store a selec-

tor, class, and compiled method. Before proceeding to a

full method lookup, the selector and class are hashed to

index an entry in the cache. If the selector and class of

the cache entry match those of the message send, then

the compiled method has been found. If they do not,

then a full lookup takes place, updating the correspond-

ing cache entry as well.

Our discussion of message sends has illustrated just

how many objects must be accessed as computation

proceeds. For performance reasons it is crucial that

the bytecode interpreter not perform a residency check

for every object reference it must follow. To overcome

this we impose certain residency constraints on critical

objects, restricting residency checks to message sends

as follows.

Because computation is driven by the sending of mes-

sages, most objects will become resident only when a

message is sent to them. The send bytecodes must load

the receiver’s class for method lookup. When an ob-

ject is made resident, we require that its class also be

resident, so that its class field can be swizzled to a di-

rect pointer. In this way we eliminate the need for a

residency check on the class when probing the method

lookup cache.

4.1.1 Edge marking

Smalltalk implementations typically avoid allocating

individual objects for such things as integers by tag-

ging object pointers, and representing the integer value

directly in the tagged pointer.2 Such objects have been

termed immediate, since their value may be obtained

immediately from their object reference. To cope with

this, message sends must always check the pointer tag

of the receiver. Immediate values are mapped to their

class based on the tag, rather than by dereferencing the

object pointer to obtain the class.

For edge marking, references to non-resident objects

are represented as tagged immediate OIDS,~ which we

2We use an immediate representation for Smalllnteger, Char-
acter, nil, true and false.

3Mneme OIDs are only 28 bits, leaving plenty of room for the

map to a special “class” (represented by the null pointer),

whose only “method” primitively responds to all mes-

sages by faulting the target object and forwarding the

message to it. Since the method lookup cache is loaded

with this response the first time a message is sent to an

OID, subsequent message sends can proceed without an

explicit residency check. Only the@11 method lookup

must deal with the case when the class is null, priming

the method cache appropriately.

4.1.2 Node marking

We use a similar trick to obtain check-free message

sends for node marking. Fault and indirect blocks are

distinguished from other objects by their “class” field,

which instead of containing a direct pointer to some

class, contains a tagged OID or indirect pointer instead.4

Similarly to our implementation of edge marking, we

arrange for fault blocks to respond to all messages by

faulting the corresponding object and forwarding the

message to the now-resident object. Once again, only

the full method lookup performs residency checks to

detect fault and indirect blocks, priming the method

cache appropriately so that all future sends to the fault

or indirect block will occur without additional checks.

Our implementation of the page protection variation

for fault blocks achieves the same effect, but makes

sure that the virtual machine sees only resident objects.

Loading the “class” of a fault or indirect block will cause

a trap. The trap handler unprotects the pages containing

fault and indirect blocks, overwrites the offending fault

block with an indirect block, and arranges for the load

instruction that caused the fault to be restarted with a

direct pointer to the resident object. The fault and indi-

rect block pages are then reprotected before resuming

execution in the virtual machine.

In addition to elimination of indirections by the

garbage collector, a fault block implementation can be

more aggressive in its elimination of indirections. At

each object fault our system scans all transient (i.e.,

non-persistent) objects (including active stack frames)

to eliminate any references to fault blocks that have

been converted to indirect blocks. We also maintain a

remembered set [24,25] for each page of allocated fault

blocks, recording all persistent objects whose pointer

tag on a 32-bit machine.
4Mneme’s 28-bit OIDs allow us to keep the size of fault blocks

to 32 bits.

294

fields have been swizzled to refer to a fault block in

the page. At each object fault the objects in the re-

membered set are scanned, and any fields that contain

pointers to (ex-fault) indirect blocks are updated to by-

pass the indirection. In this way the source locations of

fault block references are swizzled, so avoiding repeated

loading and faulting on those references, without having

to adopt the over-eager swizzle-on-discovery approach

of White and Dewitt. We expect this to be particularly

important for the page protection variant, by preempting

unnecessary expensive page traps.

4.1.3 Residency constraints

In addition to the constraint that an object must always

contain a direct pointer to its class, we impose fur-

ther restrictions to elide other residency checks in the

bytecodes of the virtual machine. Whenever a byte-

compiled method is made resident (usually through its

invocation), we make the literals in its literal frame res-

ident along with it. This forces the selectors, constants,

and shared variables5 referred to by the bytecodes to

be resident. It does not force the objects referred to

by the shared variables to be resident. This permits the

bytecodes accessing the selectors, constants, and shared

variables of the literal frame to do so without perform-

ing residency checks. In short, there is no need for

residency checks in the stack bytecodes. Stack frames

are also objects in the Smalltalk system, and so may be

persistent. Requiring all stack frames of an active pro-

cess to be resident further eliminates residency checks

in the return bytecodes.

In summary, by preloading objects that are critical

to the forward progress of computation, we are able to

restrict all residency checks to message sends.‘j

5 Experiments

We compared several versions of the virtual machine,

varying the schemes for object fault detection (tagged

OIDs, fault blocks, and page protection), the granular-

ity of swizzling (object, logical segment, and physical

segment at a time), and whether the virtual machine

5Shared variables are represented as Association objects with
two fields, one for a name and one for a value.

‘Primitive methods must perform additional residency checks
on any objects they need to access other than the receiver of the
message.

is running against a completely resident virtual image

(ordinary non-persistent Smalltalk) or against an im-

age that is faulted in on demand (persistent Smalltalk).

Table 1 enumerates the variants.

As mentioned earlier, our fault block schemes (FB

and PF variants) eliminate indirections at each object

fault by scanning transient space, and processing the

remembered set of the page containing the faulted-on

fault block. We apply this technique in the explicitly

checked FB schemes as well as their page-trapping PF

counterparts, in order to obtain a straight comparison.

This is despite the fact that the explicitly checked FB

schemes can cheaply bypass indirections as they are

encountered, while the scanning and remembered set

processing adds substantial additional overhead at each

fault. In contrast, the page-trapping PF schemes must be

aggressive in eliminating indirections, since the indirect

blocks reside in protected pages, to which any access

will be trapped.

5.1 The benchmark database

Our benchmarks are drawn from the 001 object oper-

ations benchmarks [3]. The 001 benchmark database

consists of a collection of 20,000 “part” objects, indexed

by part numbers in the range 1 through 20,000, with ex-

actly three “connections” from each part to other parts.

The connections are randomly selected to produce some

locality of reference: 90% of the connections are to the

“closest” 1% of parts, with the remainder being made

to any randomly chosen part. Closeness is defined as
parts with the numerically closest part numbers. The

part database and the benchmarks are implemented en-

tirely in Smalltalk, including the B-tree used to index

the parts.

The Mneme database, including the Smalltalk im-

age as well as the parts data, consumes 179 physical

segments, for a total size of just over 6 Mbytes. Each

physical segment is at least 32 Kbytes in size, although

some may be larger since Smalltalk objects larger than

32 Kbytes are allocated in their own private segment.

There are on average three or four logical segments

per physical segment. Newly created objects are clus-

tered into segments only as they are encountered when

unswizzling, using an essentially breadth-first traversal

similar to that of copying garbage collectors [4]. The

part objects are 68 bytes in size (including the object

header). The three outgoing connections are stored di-

295

Variant Description

non-persistent Non-persistent

ID-resident Non-persistent, augmented with checks needed for tagged OIDs

FB-resident Non-persistent, augmented with checks needed for fault blocks

PF-resident Non-persistent, augmented with the page trap handling code,

plus necessary support to decode load instructions that might cause a trap

ID-OB J Persistent, tagged OIDs, swizzle 1 object at a time

ID-LSEG Persistent, tagged OIDS, swizzle 1 logical segment at a time

ID-PSEG Persistent, tagged OIDs, swizzle 1 physical segment at a time

FB-OBJ Persistent, fault blocks, swizzle 1 object at a time

FB-LSEG Persistent, fault blocks, swizzle 1 logical segment at a time

FB-PSEG Persistent, fault blocks, swizzle 1 physical segment at a time

PF-OB J Persistent, fault blocks allocated in protected pages,

swizzle 1 object at a time

PF-LSEG Persistent, fault blocks allocated in protected pages,

swizzle 1 logical segment at a time

PF-PSEG Persistent, fault blocks allocated in protected pages,

swizzle 1 physical segment at a time

Table 1: Schemes measured in experiments

rectly in the part objects. The string fields associated

with each part and connection are represented by ref-

erences to separate Smalltalk objects of 24 bytes each.

Similarly, a part’s incoming connections are represented

as a separate object containing references to the parts

that are the source of the connections. The B-tree index

for the 20,000 parts consumes around 165 Kbytes.

5.2 Benchmarks

We used the Lookup and Traversal portions of the 001

benchmarks, which operate as follows:

l Lookup fetches 1,000 randomly chosen parts from
the database. For each part a null procedure is
invoked, taking as its arguments the x, y, and type
fields of the part.

l Traversal fetches all parts connected to a ran-
domly chosen part, or to any part connected to
it, up to seven hops (for a total of 3,280 parts,
with possible duplicates). Similarly to the Lookup

benchmark, a null procedure is invoked for each
part, taking as its arguments the X, y, and fype fields

of the part.

These benchmarks are intended to be representative of

the data operations in many engineering applications.

The Lookup benchmark emphasizes selective retrieval

of objects based on their attributes, while the Traversal

benchmark illuminates the cost of raw pointer traversal.

Each measure is typically run ten times, the first when

the system is cold, with none of the database cached

(apart from any schema or system information neces-

sary to initialize the system). Each successive iteration

fetches a d$erent set of random parts. Before the first

run of each series of benchmark iterations a “chill” pro-

gram is executed on the client to sequentially read a

32 Mbyte file from the server. This ensures that the

operating system file buffers of both client and server
have been flushed of all database segments, so that the

first iteration is truly cold.

In addition to the ten cold-warm iterations, we mea-

sured the elapsed time for several hot iterations of the

Traversal benchmark, by beginning each hot iteration

at the same initial part used in the last of the warm iter-

ations. These hot runs are guaranteed to traverse only

resident objects, and so will be free of any overheads
due to swizzling and retrieval of non-resident objects.

We varied the number of hot iterations performed per

296

data point gathered, in order to obtain a linear mea-

sure of the CPU overheads of fault detection (excluding

swizzling and disk accesses) for each of the schemes.

5.3 Experimental setup

The client machine on which the benchmarks were run

was a DECstation 3100 (MIPS R2OOOA CPU7 clocked

at 16.67MHz) running ULTRIX 4.1.8 The system has

24 Mbytes of main memory, 10% of which is used for

operating system disk buffers. The Smalltalk interpreter

is coded in C and compiled with the GNU C compiler

(gee) version 2.3.3 at optimization level 2. The bench-

marks were run with the client system in single user

mode and the process’s address space was locked in

main memory to prevent paging.

The database is accessed remotely via NFS. The

server is a SPARCstation 2 running SunOS 4.1.2,’ with

32 Mbytes of main memory,and the database resides on

a 1.3 Gbyte external SCSI disk. The client and server

were connected via a private ethernet.

We measured elapsed time on the client machine us-

ing a custom timer board having a resolution of 100

ns. The fine-grained accuracy of this timer allowed us

to measure the elapsed time of each phase of execu-

tion separately: running time, swizzling, and time spent

retrieving physical segments from disk.

The experiments were repeated several times for each

configuration, and the results averaged. Each run is

presented with exactly the same database (no updates

are ever committed). Note also that the nth iteration of

any given benchmark run will always access the same

parts as the nth iteration within any other benchmark

run, since the script that controls the execution of the

benchmarks presents the same sequence of random part

identifiers to each run.

6 Results

We now report on the results for each of the bench-

marks. All times reported are in seconds, and exclude

‘MIPS and R2000 are trademarks of MIPS Computer Systems.

‘DECstation and ULTRIX are registered trademarks of Digital
Equipment Corporation. The operating system had some official
patches installed that fix bugs in the mprotect system call.

‘SPARCstation is a trademark of SPARC International, licensed
exclusively to Sun Microsystems. SunOS is a trademark of Sun
Microsystems.

I Scheme 1 Elapsed time (s)

Average

non-persistent 0.565

ID-resident 0.557

FB-resident 0.556
I

0.567

Cold Warm

6.75 1.771

7.65 1.448

7.56 1.431

379.79 40.647

26.21 0.558

19.81 0.569

PF-resident

ID-OBJ

ID-LSEG

ID-PSEG

FB-OBJ

FB-LSEG

FB-PSEG

PF-OBJ 390.93 41.579

PF-LSEG 27.21 0.573

PF-PSEG 20.27 0.593

Table 2: Lookup

any Smalltalk initialization time prior to beginning the

benchmark. In all of the figures, the schemes are iden-

tified by their names as specified in Table 1.

6.1 Lookup

The results for the Lookup benchmark are summarized

in Table 2. We give the average elapsed time of the

ten iterations for the non-persistent variants (since the

database is always resident and warm), and the cold

and warm times for the persistent variants. The non-

persistent variants exhibit marginal variation in their

performance, indicating that the overhead of the run-

time residency checks is negligible. It is curious that

both the ID-resident and FB-resident schemes perform

slightly better than non-persistent Smalltalk, since they

have been augmented with residency checks. We can

only speculate that the improvement is due to underlying

cache effects.

The results for the persistent schemes are naturally

more interesting. The FB-OBJ and PF-OBJ schemes

are a clear loss, since object-at-a-time faulting results

in more frequent object faults, and fewer objects are

made resident per fault. Thus, even at the warmest

iteration the object-at-a-time schemes still experience

object faults. Performance is poor since each object

297

0.2 ~

o ! 1

1 2 3 4 5 6 7 8 9 10

iteration (cold-warm)

Figure 3: Lookup

fault incurs significant overhead to eliminate indirec-

tions. Still, FB-OBJ is better than PF-OBJ, because

the page-trapping approach incurs significant overhead

to trap object faults and to manipulate page protections

when swizzling.

We have found that FB-OBJ behaves much less

poorly if we refrain from eliminating indirections at

every object fault, even though indirect blocks will

frequently be encountered when traversing references,

since dereferencing an extra level of indirection can be

performed relatively cheaply. Similarly, the cold times

for all the FB schemes can be improved substantially by

not performing indirection elimination, so that they also

outperform the ID schemes for cold starts. Thus, it may

be preferable to expend effort to eliminate indirections

for the FB schemes only as the system gets warmer,

when the cost of traversing indirections becomes more

important. Ln contrast, for the PF schemes an expensive

page protection trap occurs every time an indirect block
is encountered, making early elimination of indirections

much more important.
To compare the schemes more effectively we have

plotted their performance in Figure 3, expanding the
scale to focus on the warm run performance, and omit-

ting the poorly performing FB-OBJ and PF-OBJ vari-

I

1-u-n on-persistent

---.zr-
ID-OBJ ~

--*- ID-LSEG
I

/ - ID-PSEG
/
I I

/ p*- FB-LSEG
!

- FB-PSEG

p*- PF-LSEG

,a--- PF-PSEG :

ants. The non-persistent Smalltalk results are also plot-
ted as a baseline. The ID schemes are ranked by their

eagerness to swizzle, since swizzling more objects at a

time reduces the number of locations containing OIDs.

Still, the ID schemes are significantly less competitive

overall. The FB and PF schemes behave very similarly,

with warm performance close to optimal, due to the

aggressive approach taken to eliminate references to in-

direct blocks. Nevertheless, the software-mediated FB

schemes are marginally better than the page-trapping PF

approach for the warmest runs, which incur no object

faults or swizzling. The reason is that for the page trap

handler to decode the contents of the registers at the time

of a fault (in order to fix the faulting reference), we have

had to impose a less than natural code sequence at each

potential fault site in the interpreter. This yields a slight

run-time performance penalty for the PF schemes.

The schemes illustrated in Figure 3 show almost im-

mediate warmup, since the first iteration touches enough

of the database to bring most of the database’s physical

segments into Mneme’s client buffers, whence objects

can be swizzled very quickly. Only the FB-LSEG and

PF-LSEG schemes exhibit noticeable further warming

effects after the first iteration, as additional objects are

swizzled from the buffers. By the fifth iteration the

298

1.6

1.4

z is 1.2

‘3
u 1

3
3 0.8
z

0.6

1 2 3 4 5 6 7 8 9 10

iteration (cold-warm)

Figure 4: Traversal

LSEG schemes have made sufficient objects resident to

proceed without further object faults. The ID schemes

are dominated by the overhead to convert OJDs to direct

pointers, masking any faults that might occur.

6.2 Traversal

We summarize the Traversal benchmark results in

Table 3. Once again, the non-persistent variants show

marginal differences in elapsed time, indicating that

the overhead of the run-time residency checks is slight.
Also, the results for the persistent variants show that the

object-at-a-time faulting schemes still have the worst

performance, due to the increased per-fault swizzling

costs imposed by indirection elimination. Thus, we

again omit FB-OBJ and PF-OBJ in plotting the results

in Figure 4.

The warming effect is slower than for the Lookup

benchmark, despite the fact that each iteration accesses

more parts. This is due to the locality of references

encoded in the connections between parts, which has

been replicated in the clustering used to group objects

into physical segments. Thus, traversals mostly touch

parts whose physical segments are already resident in

Mneme’s client buffers, with only a few connection

---o--m ID-PSEG

----A--- FB-LSEG

*- FB-PSEG

--.--- PF-LSEG

-* PF-PSEG

Scheme Elapsed time (s)

Average

non-persistent 0.0880

/ ID-resident 1 0.0880
/ I /

FB-resident

PF-resident

0.0880

0.0886

Cold / Warm

ID-OBJ 4.01 0.184

ID-LSEG 5.17 0.119

Table 3: Traversal

299

160 -

T

140 -
,/

120 -

‘J
u 80-

0 200 400 600

hot iterations

800 1000

Figure 5: Hot traversal

traversals needing to be serviced by a disk access. The

ID schemes warm up more quickly, although their per-

formance is bounded by the overhead of translating

OIDs to pointers, while the FB and PF schemes are

penalized for indirection removal. Nevertheless, indi-

rection removal pays off by the fourth iteration for FB-

PSEG and PF-PSEG, and by the eighth iteration for FB-

LSEG and PF-LSEG, when all resident part references

have been converted to direct pointers, and enough of

the database has been made resident for execution to

proceed without object faults.

6.3 Hot traversals

The hot Traversal results (plotted in Figure 5) give some

idea of the run-time CPU costs for the schemes, in the

absence of any object faults or swizzling overheads.

We have obtained excellent linear regression fits for

these results, for the model y = a + bt, where y is the

elapsed time, and z the number of hot iterations per run.
As expected, the fitted y-axis intercepts a are close to

zero. More interesting is the slope 6, which is a measure

of time per traversal, given in Table 4.

The results confirm the drawbacks of the ID schemes,

showing that OID conversion is a significant run-time

.-- non-persistent

__ -- ID-OBJ -

--•- ID-LSEG I

--+- I D-PSEG

-~ *-- FB-OBJ

h- FB-LSEG

---a--- FB-PSEG

-CT- PF-OBJ

--X- PF-LSEG

--x- PF-PSEG
I

ID-LSEG 0.1178

ID-PSEG 0.1086

FB-OBJ 0.0850

FB-LSEG 0.0867

FB-PSEG 0.0866

PF-OBJ 0.0872

PF-LSEG 0.0862

PF-PSEG 0.0870

Table 4: Estimated elapsed time per hot traversal

300

overhead. Also, the ID schemes are ranked by their

eagerness to swizzle, since swizzling a whole physi-

cal or logical segment at one time allows many intra-

segment references to be converted to direct pointers

rather than OIDs; recall that the OIDs are never updated

with direct pointers. The FB and PF schemes have hot

performance close to that of non-persistent Smalltalk

since they convert all resident object references to di-

rect pointers. Most importantly, the software-mediated

residency checks used by the FB schemes pose insignif-

icant overhead for hot execution.

7 Conclusions

Our results are conclusive in establishing that software

object fault detection mechanisms can provide perfor-

mance very close to optimal, even surpassing the perfor-

mance of comparable hardware-assisted schemes. This

has been achieved through careful assumptions about

residency. In particular, the object-oriented execution

paradigm allows many residency checks to be elided,

with residency checks being restricted mostly to method

invocation. This approach can be applied to any lan-

guage that includes dynamic binding of method calls,

by arranging for fault blocks to respond to all methods

by first faulting the target object and then forwarding the

invocation to it. We have also shown that it pays to be

eager in object swizzling, by swizzling related objects

in advance of the application’s need for them.

7.1 Compilation

The fact that the results have been obtained for an inter-

preted language cannot be taken lightly, since run-time

overheads are several times higher than those of com-

piled programs. Nevertheless, we see no reason why the

results will not carry over to a compiled setting; only the

relative overheads of object fault detection and handling

will change with respect to total execution time. How-

ever, some languages (e.g., Modula-3 [15,7], C++ [23])

do not enforce the pure object-oriented style of execu-

tion that enables residency checks to be piggy-backed

with method invocation. Operations on an object can

be performed without necessarily invoking a method

on it. This means that explicit residency checks must

be compiled into the code in advance of such opera-

tions, to ensure that the object is resident. Compiler

optimizations [19, 18, 9, lo] may allow these explicit

residency checks to be merged or eliminated. For exam-

ple, control-flow information may reveal that multiple

traversals of a particular object reference along a given

execution path require only one residency check, rather

than a check per traversal. We look forward to explor-

ing the effect of such techniques in our forthcoming

implementation of Persistent Modula-3.

7.2 Other architectures

We acknowledge that our architectural framework is

one of several that might be considered. For example,

we have chosen a copy swizzling approach, whereas

it may be possible for applications to manipulate ob-

jects directly in the client buffer pool. We have already

discussed the reasons for our choice, on the grounds of

flexibility in the management of resident objects. More-

over, the performance study of White and Dewitt [26]

indicated that such an architecture was superior to the

others they considered.

We also recognize that our page trapping approach,

which allocates fault blocks in protected pages, does

not compare directly with the memory-mapped file ap-

proaches of ObjectStore and Texas. In particular, Ob-

jectstore makes some effort to allow objects to be

mapped directly into the same memory locations in

which they were originally allocated, thus reducing or

eliminating the need to swizzle pointers upon object

fault.

Nevertheless, our results stand as a relative compar-

ison of object faulting techniques within a fixed archi-

tectural framework. It is reasonable to assume that the

relative standing of our fault detection mechanisms will

remain the same even if the underlying persistent object

storage architecture changes.

7.3 Summary

In summary, we have explored the design space of

mechanisms for detecting and handling references to

persistent objects, and compared their performance

within a prototype persistent programming language.

Most importantly, we have demonstrated that software-

mediated object faulting can be a viable alternative to

hardware-assisted techniques, and that adding persis-

tence to a programming language does not necessarily

imply degradation of performance.

301

8 Acknowledgements

We thank Eric Brown for his enhancements to Mneme

in support of this work. We also thank the Western

Research Laboratory of Digital Equipment Corporation,

and Jeff Mogul in particular, for giving us the high

resolution timing board and the necessary supporting

software.

References

[II

PI

[31

[41

PI

[61

171

PI

M. P Atkinson, P. J. Bailey, K. J. Chisholm, P. W.

Cockshott, and R. Morrison. An approach to
persistent programming. The Computer Journal,

26(4):36&365, Nov. 1983.

M. J. Carey, D. J. Dewitt, J. E. Richardson, and

E. J. Shekita. Storage management for objects in

EXODUS. In W. Kim and F. H. Lochovsky,

editors, Object-Oriented Concepts, Databases,

and Applications, chapter 14, pages 341-369.

ACM Press/Addison-Wesley, New York, New

York, 1989.

R. G. G. Cattell and J. Skeen. Object operations

benchmark. ACM Trans. Database Syst.,

17(1):1-31, Mar. 1992.

C. J. Cheney. A nonrecursive list compacting

algorithm. Commun. ACM, 13(11):677478,

Nov. 1970.

A. Dearle, G. M. Shaw, and S. B. Zdonik, editors.

Proceedings of the Fourth International

Workshop on Persistent Object Systems, Martha’s

Vineyard, Massachusetts, Sept. 1990. Published

as Implementing Persistent Object Bases:

Principles and Practice, Morgan Kaufmann,

1990.

A. Goldberg and D. Robson. Smalltalk-80: The

Language and its Implementation.

Addison-Wesley, 1983.

S. I? Harbison. Mod&a-3. Prentice Hall, New

Jersey, 1992.

A. L. Hosking. Main memory management for

persistence, Oct. 1991. Position paper presented

at the OOPSLA ‘91 Workshop on Garbage

Collection.

[91

[lOI

u11

WI

P31

P41

WI

[161

r171

1181

u91

A. L. Hosking and J. E. B. Moss. Towards

compile-time optimisations for persistence. In

Dearle et al. [5], pages 17-27.

A. L. Hosking and J. E. B. Moss. Compiler

support for persistent programming. COINS

Technical Report 91-25, University of

Massachusetts, Amherst, MA 01003, Mar. 1991.

T. Kaehler. Virtual memory on a narrow machine

for an object-oriented language. In Proceedings

of the Conference on Object-Oriented

Programming Systems, Languages, and

Applications, pages 87-106, Portland, Oregon,

Sept. 1986. ACM SZGPLAN Not. 21, 1 I (Nov.

1986).

T. Kaehler and G. Krasner. LOOM-large

object-oriented memory for Smalltalk-

systems. In G. Krasner, editor, Smalltalk-80: Bits

of History, Words of Advice, chapter 14, pages

251-270. Addison-Wesley, 1983.

C. Lamb, G. Landis, J. Orenstein, and

D. Weinreb. The ObjectStore database system.

Commun. ACM, 34(10):50-63, Oct. 1991.

J. E. B. Moss. Design of the Mneme persistent

object store. ACM Trans. In. Syst.,

8(2): 103-l 39, Apr. 1990.

G. Nelson, editor. Systems Programming with

Modula-3. Prentice Hall, New Jersey, 1991.

Object Design, Inc. ObjectStore User Guide,

Oct. 1990. Release 1.0.

A. Purdy, B. Schuchardt, and D. Maier.

Integrating an object server with other worlds.

ACM Trans. OfJice Znf Syst., 5(1):27-47, Jan.

1987.

J. E. Richardson. Compiled item faulting: A new

technique for managing I/O in a persistent

language. In Dearle et al. [5], pages 3-16.

J. E. Richardson and M. J. Carey. Persistence in

the E language: Issues and implementation.

Sofhyare: Practice and Experience,

19(12):1115-1150, Dec. 1990.

302

[20] D. Schuh, M. Carey, and D. Dewitt. Persistence

in E revisited-implementation experiences. In

Dearle et al. [5], pages 345-359.

[21] V. Singhal, S. V. Kakkad, and P. R. Wilson.

Texas, an efficient, portable persistent store. In

Proceedings of the Fifth International Workshop

on Persistent Object Systems, pages 1 l-33, San

Miniato, Italy, Sept. 1992.

[22] A. Straw, F. Mellender, and S. Riegel. Object

management in a persistent Smalltalk system.

Software: Practice and Experience,

19(8):719-737, Aug. 1989.

[23] B. Stroustrup. The C++ Programming

Language. Addison-Wesley, 1986.

[24] D. Ungar. Generation scavenging: A

non-disruptive high performance storage

reclamation algorithm. In Proceedings of the

A CM SIGSOFTLUGPLA N SofhYare Engineering

Symposium on Practical SofnYare Development

Environments, pages 157-l 67, Pittsburgh,

Pennsylvania, Apr. 1984. ACM SIGPLAN Not.

19, 5 (May 1984).

[25] D. M. Ungar. The Design and Evaluation of a

High Performance Smalltalk System. ACM

Distinguished Dissertations. The MIT Press,

Cambridge, MA, 1987. Ph.D. Dissertation,

University of California at Berkeley, February

1986.

[26] S. J. White and D. J. Dewitt. A performance

study of alternative object faulting and pointer

swizzling strategies. In Proceedings of the

Eighteenth International Conference on Very

Large Data Bases, pages 419-431, Vancouver,

Canada, Aug. 1992. Morgan Kaufmann.

[27] P. R. Wilson and S. V. Kakkad. Pointer swizzling

at page fault time: Efficiently and compatibly

supporting huge address spaces on standard

hardware. In Proceedings of the 1992

International Workshop on Object Orientation in

Operating Systems, pages 364-377, Paris,

France, Sept. 1992. IEEE Press.

303

