
Learning When to Garbage Collect with Random
Forests

Nicholas Jacek
University of Massachusetts Amherst

Amherst, MA, USA
njacek@cs.umass.edu

J. Eliot B. Moss
University of Massachusetts Amherst

Amherst, MA, USA
moss@cs.umass.edu

Abstract
Generational garbage collectors are one of the most common
types of automatic memory management. We can minimize
the costs they incur by carefully choosing the points in a
program’s execution at which they run. However, this deci-
sion is generally based on simple, crude heuristics. Instead,
we train random forest classifiers to decide when to collect
based on features gathered from a running program. This
reduces the total cost of collection in both time and space.
We demonstrate useful generalization of learned policies to
unseen traces of the same program, showing this approach
may be fruitful for further investigation.

CCS Concepts • Computing methodologies → Super-
vised learning by classification; Classification and re-
gression trees; • Software and its engineering→Garbage
collection.

Keywords garbage collection, machine learning

ACM Reference Format:
Nicholas Jacek and J. Eliot B. Moss. 2019. LearningWhen to Garbage
Collect with Random Forests. In Proceedings of the 2019 ACM SIG-
PLAN International Symposium on Memory Management (ISMM ’19),
June 23, 2019, Phoenix, AZ, USA.ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3315573.3329983

1 Introduction
Generational, compacting garbage collectors (GCs) are one
of the most popular types of automatic memory manage-
ment in modern language run-time systems. The cost of
garbage collecting varies widely at different points in time
during a program’s execution, which implies that the total
cost of collection can be minimized by carefully choosing
the points at which to collect. Prior work [12] has shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISMM ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6722-6/19/06. . . $15.00
https://doi.org/10.1145/3315573.3329983

how, given perfect knowledge of a program’s entire run on
a certain input, we can optimally choose these collection
points. For some programs and heap sizes, the cost savings
are significant.
However, this model is unrealistic for a practical system,

which could only have access to a relatively limited amount
of data about a program’s execution so far. This raises the
question: can similar benefits be realized when the decisions
of when to collect are based only on this more limited in-
formation? In this work, we make strides toward answering
this question in the affirmative.

First, we investigate what information could be useful to
help decide when to collect. In theory, any method call or
return, or any object creation, could be instrumented by a
collector. However, instrumenting more than a few would
impose unacceptable performance penalties. We apply ran-
dom forest importance, a concept from machine learning, to
this problem. It gives us a method of ranking how useful a
certain feature is likely to be in informing us when a col-
lection should be performed. Then, we can select a small
number of features that have the highest importance.

Next, we explore how this information can be used actually
to decide when to collect. We develop a proof-of-concept
collection policy based on random forest classifiers. At each
time step, the current features are used to decide whether,
and what type, of collection to perform.

Finally, we evaluate our methods on traces of executions
of Java programs.We show that for many programs and heap
sizes, we can realize significant cost savings, even when our
decisions are only based on a small number of features.

The main contribution of this paper is the combination of
existing trace collection and optimal cost calculation tech-
niques with machine learning methods to produce a novel
algorithm for finding efficient program-specific garbage col-
lection policies. The rest of this paper is organized as follows.
The next section discussed related work, placing this work in
context. In Section 3, we detail our model of a generational
garbage collector and the traces we use to simulate it. Next,
Section 4 contains the main contributions of this paper. It ex-
plains the machine learning techniques we employ, and how
they are used to construct a collection policy. In Section 5,
we give experimental results showing the effectiveness of
our techniques. Finally, Section 6 outlines some directions
in which this work could be extended in the future.

53

https://doi.org/10.1145/3315573.3329983
https://doi.org/10.1145/3315573.3329983

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Nicholas Jacek and J. Eliot B. Moss

2 Related Work
Prior work relates to this contribution in one of three primary
ways: (1) it applies machine learning to a problem in garbage
collection; (2) it addresses, directly or indirectly, the problem
of when to trigger a garbage collection, whether or not it uses
a machine learning technique; or (3) it lays the groundwork
of our approach, which requires knowledge of optimal (or
perhaps near-optimal) choices of when to collect.

2.1 Machine Learning Applied to GC
Adaptive control has a venerable history in automatic mem-
ory management, so it is not surprising that researchers
have used machine learning to derive adaptive GC controls
of various kinds. Singer et al. [22] used random forests to
select which of three GC algorithms (serial, parallel, or con-
current) and which of two young:old heap size ratios (1:2
and 1:8) to use for various inputs in the context of a specific
Java application, namely Map-Reduce. Shen et al. [21] sim-
ilarly used machine learning to determine which collector
algorithm to use based on per-program characterization of
program inputs [15]. Akram et al. [1] presented a scheme
to choose adaptively which kind of core on which to run
GC in a heterogeneous multi-core system. Kang et al. [14]
applied reinforcement learning to a kind of GC employed
within solid-state drives, reducing the occurrence of occa-
sional long wait times for application accesses. Marion et al.
[16] developed decision trees to determine whether a given
allocation site should pre-tenure objects allocated at that
sure, i.e., allocate the objects directly into an immortal space,
a long-lived space, or a short-lived space. This list may not
be exhaustive, given how extensive the GC literature is.

2.2 Triggering Collection
Most other work and deployed systems trigger GC when
some allocation space is full, or when its occupancy passes
some threshold. This corresponds to what we call in this
work the default policy, namely “collect when the heap is
full” (or “when the young generation is full”). In such sys-
tems, the primary way to control when to garbage collect
is to control the heap size.1 Most approaches to adjusting
heap size are based on some model of adaptive feedback con-
trol: during a given program run, they observe past behavior
and adjust heap size for the future. Often there are a num-
ber of user controls that can be adjusted (“knobs” one can
turn), such as minimum and maximum heap size, minimum
and maximum increases or decreases, or rates of increase /
decrease, etc. Many deployed systems use heuristically de-
veloped adaptive heap sizing. An example is the Ergonomics
system in HotSpot [23]. However, White et al. [24] found

1Note that our work examines an orthogonal question: For a given fixed
heap size, when should we trigger collection to obtain lower collection cost,
or so as to require less space with the same cost?

that applying control theory to the problem yielded a more
responsive controller.
Previous work has addressed GC triggering, or adaptive

heap sizing, for certain particular contexts, such as adaptive
heap sizing to minimize battery use [6], applying temporal-
difference reinforcement learning to trigger compacting or
non-compacting GC in a concurrent system [2], and when
to collect in an interactive system [9].

An approach that bears a family resemblance to ours is op-
portunistic collection.2 This led to the idea that certain points
in a program run will tend to be better points at which to col-
lect, and that perhaps they could be identified, maybe even
as a program runs. Hayes [8] suggested triggering collection
when certain key objects become garbage, because a method
holding the last reference to the object has returned. Roh
et al. [20] developed a sophisticated scheme to identify and
exploit different allocation phases of a program, ones where
the live size is growing (ramp phase), where it is relatively
constant (plateau phase), and where it suddenly decreases
(cliff phase). This also involved partitioning the heap accord-
ing to the phase in which an object was allocated, etc. They
determined phases at run time according to key methods,
which they identified by the fact that these methods’ stack
frames were roots for large volumes of long-lived objects.

2.3 Optimal Collection
Our prior work on after-the-fact analysis to determine which
times to collect lead to optimal GC cost is essential to en-
abling the approach presented here. Jacek et al. [11] de-
veloped a method that determines approximately optimal
choices of collection times. It used amachine learningmethod
called least squares policy iteration, a linear method that
is guaranteed to converge to an optimal model, within its
range of models. However, those models do not necessarily
converge to optimal cost. We later developed a dynamic pro-
gramming approach that computes collection schedules with
truly optimal cost [12]. It achieves this in O(n2) time where
n is the length of a trace. Both approaches rely on a detailed
trace that gives object birth times and sizes, pointer updates,
and object death times, such as supplied by Elephant Tracks
[18, 19]. All of this is needed in the approach taken here, so
that we can train a machine learning model based on to the
quality of its decisions in any given situation.

3 Model of Garbage Collection
We now describe our model of a generational collector, the
nature of the traces we obtained for runs of various Java
programs, how we post-processed those traces to prepare
for the learning task, and offer summary statistics about the
specific traces.

2The term seems to originate from [25], who also described a collector
design [26]. However, that actual scheme is more adaptive as opposed to
being driven more directly by program behavior.

54

Learning When to Garbage Collect with Random Forests ISMM ’19, June 23, 2019, Phoenix, AZ, USA

3.1 Model of Generational Collection
We are concerned with a generational garbage collector. In
our model there is a young and an old generation. Each has
a chosen fixed size. The old generation must be at least as
large as the young one. Java objects are first allocated in the
young generation. When that generation fills, or at some
earlier time if the collector so chooses, the young generation
may be collected, using a procedure called young collection.
A young collection copies objects reachable from running
Java threads and global variables, and ones reachable from
objects already in the old generation, to the old generation.
The old contents of the young generation are then discarded.

Another procedure the collector can apply is a full collec-
tion, where all objects reachable from running threads and
globals are compacted together in the old generation, and the
remaining contents of both generations are discarded. No-
tice that a young collection may preserve young generation
objects that are referred to by unreachable old generation
objects, while a full collection requires reachability from Java
roots (threads and globals).

A young collection is generally cheaper than a full collec-
tion because the volume of objects examined is lower—a full
collection traces through all reachable objects, and young
space is smaller than old space. However, a full collection
is necessary in order to reclaim space in the old generation.
The collector can choose a full collection at any point, and
must choose full collection if the space used in the young
generation is more than what remains in the old generation.3
There is also a special case: if the program desires to allocate
an object that is at least as large as the young generation,
then the young generation must first be emptied, by one
kind of collection or the other, and the object will then be
allocated directly into the old generation.

3.2 Cost Model
It is known that the running time of collectors that copy
objects—the kind we consider here—is roughly proportional
to the volume of objects copied, so we use the number of
bytes copied as our cost model. Therefore, the cost of a young
collection is the volume of objects copied from young to old
space, and the cost of an old collection is the size of all the
reachable objects. Other cost models are possible, such as
charging a “rental” for volume of data in the heap at each
time step. Our work focuses on minimizing total garbage

3This differs from the rule used by Jacek et al. [12]. That rule allows a
young collection if the volume of young objects that will be copied will fit
in old space. However, this fact cannot always be known until after one
attempts the young collection. While it is possible to imagine collectors
that can recover from the situation of copies that will overflow old space
(see, e.g., McGachey and Hosking [17]; it is not clear how widely this is
used), it seems more typical to apply the more conservative policy we use
here, because it simplifies collector implementation. The adjustment to the
dynamic program of Jacek et al. [12] was straightforward and did not impact
the asymptotic running time of that algorithm, etc.

collector effort, rather than trying to reclaim heap space as
quickly as possible.

3.3 Collection Schedules and Polices
We next consider our GC model from a Reinforcement Learn-
ing point of view. At each time step in the execution of a
trace, we want to select the action—no collection, young
collection, or full collection—that yields the lowest cost over
the entire trace. The algorithm of Jacek et al. [12] computes
the optimal schedule: a list of which action is optimal at
each step. However, this is only useful for a single program
and input. A list of optimal actions for one trace gives us no
information about how to choose good actions in a different
trace. Instead, we seek a collection policy—a function that
takes measurable features of a program’s execution as input
and gives predictions of the optimal action as output. A good
policy would use these features to give action predictions
for previously unseen inputs to a program.
This is a difficult task. By collecting early, we can se-

lect points that have lower volumes of live data and thus
lower costs. However, early collections can lead to more fre-
quent collections, and the cost of these additional collections
can eliminate any savings. Furthermore, the exact points
at which collections are performed influence which objects
are promoted in future young collections. These effects are
complicated and may not be realized until many steps in
the future. In past unpublished studies we found that locally
optimal collection, i.e., choosing a point to collect between
the current time and the time when young space has just
been filled, such that young space collection cost is mini-
mized, does not lead to globally optimal collection. Globally
optimal collection is a combinatorial optimization problem,
and it requires exact knowledge of future behavior. However,
given features about the execution of a program, such as
we use in the work reported here, gives hope of reasonably
accurate prediction of that future behavior, at least for some
programs.

3.4 Nature of Our Traces
We used the Elephant Tracks (ET) tool [18, 19] to obtain se-
quences of event records from executions of Java programs.
There are two kinds of relevant events in these traces: control
events (method calls, returns, etc.) and heap events (object
allocation, pointer updates, object death). Like its intellectual
predecessor Merlin [10], ET computes precise death times
for each object, i.e., the point at which the object became
no longer reachable. ET’s strategy for this is to record when
references to heap objects are destroyed. The point of de-
struction is a possible end of reachability for the referent; in
any case, the referent was definitely reachable up until the
point of destruction. ET then determines death time as the
last time an object was reachable from a root.
We post-process these event traces in two significant

ways:

55

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Nicholas Jacek and J. Eliot B. Moss

1. By simulating the heap events (allocations, pointer
updates, and deaths), we can determine the pointers
within each object when it dies. We then use that infor-
mation to compute the pre-birth time for each object,
a concept introduced by Jacek et al. [12]. Consider
conceptually a heap large enough to hold all objects
allocated during a program’s execution. Suppose we
inspect that heap at the end of the run and determine,
for a given object o, the set of objects from which we
can reach o in the heap, i.e., the predecessors of o in
the heap graph. (The heap graph is the directed graph
where objects are nodes and pointers are the directed
edges.) The pre-birth time of o is the minimum (earli-
est) of the birth (allocation) times of o’s predecessors.

Knowing the pre-birth time is significant because it
enables direct determination of whether a given young
collection will preserve o. Of course o will be preserved
if it is live (reachable) at the time of the collection—a
requirement of garbage collector correctness. How-
ever, if the previous collection (young or full) occurred
between the pre-birth and birth time of o, and the next
collection is a young collection after o dies, o will also
be preserved. (In the terminology of Jacek et al. [12],
this is the cases in which o is baggage.)

2. We group events of the trace. Every 256 Kbytes of allo-
cation forms an allocation group, andwe also group the
control events that occur in the same interval. Specifi-
cally, if adding a second or later object to the current
group would cause the group’s size (bytes allocated)
to exceed 256 Kbytes, then the allocation event of that
next object starts a new group. Groups are reasonable
in that most real allocators will make a decision about
whether to run the garbage collector only as a block of
some size fills. Groups serve several purposes in this
work.
• Groups facilitate calculating optimal collection sched-
ules efficiently, as discussed by Jacek et al. [12], be-
cause we can deal with whole sets of objects at once
rather than handling each object separately.

• Pre-computed groups further insure consistent def-
inition of the possible times for collection across
heap sizes and previous collection histories.

• Groups are our basis for defining feature vectors
from the control events of a trace. In particular,
within a group we compute for each Java method
two features concerning calls of that method: the
number of times the method was called, and a 0/1
feature that indicates just whether the methods was
called at all. Each source of control events deter-
mines a similar pair of features: calls of a method, re-
turns from themethod, exception throws and catches,
calls from a given call site, and allocations at a given
allocation site. We also have features for the number

of bytes allocated at an allocation site, and the num-
ber of array elements allocated at a site that allocates
arrays.

A given program may have tens of thousands of
possible features. Typically only about 10% of the
possible features are actually used in a given exe-
cution, and of course many of those are zero in the
time window of a given group. Still, the number of
features is large, so ultimately it is important to con-
trol how many are used in a learned policy function.
This is true both because obtaining a feature’s value
at run time has a cost every time the feature’s event
occurs, and because evaluating the learned function
will be costly if it uses a large number of features.

3.5 Trace Products
There are two key post-processed products for each trace:

Allocation cohorts: A cohort is a set of objects whose
pre-birth times fall into the same group, whose birth
times fall into the same group, and whose death times
fall into the same group. Because those times entirely
determine the collector’s behavior and costs (under
our models), for modeling collection behavior all we
need to know is the set of cohorts and their sizes.

Feature vectors: Concerning the feature vectors, fea-
ture numbers for the same method may vary from
trace to trace, since the overall set of methods can be
different. When we handle multiple traces from the
same program, we first map all the features of the in-
dividual traces onto the union of features across the
traces.

An additional trace product is the number of times instrumen-
tation would be triggered for each feature, i.e., an estimate
of the relative cost to obtain that feature at run time. (At
present we do not exploit this information.)

3.6 Trace Details
Table 1 lists the programs from which we gathered traces,
indicating the number of traces for each program and the
ranges of number of groups, number of cohorts, bytes allo-
cated, and maximum live size (maximum number of bytes
reachable at once) for the traces of that program. Except for
javac, these are all from the DaCapo benchmark suite [4],
though we developed additional inputs for most of them.
In the case of javac, the program is a modified version of
the original SPECjvm benchmark of the same name, but
modified to avoid caching of class file information across
compilation of multiple classes, to simulate better what a
compilation server might be like. Across the programs there
is considerable variation in the statistics, and for many of
the programs considerable variation across traces.

56

Learning When to Garbage Collect with Random Forests ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Table 1. Summary of traces used

Program Traces Groups Cohorts Alloc (MB) Max Live (MB)
avrora 4 181– 1606 944– 19603 45– 400 3.6– 105.7
batik 11 99– 586 586– 4766 25– 186 5.0– 24.6
fop 12 124– 6560 1024– 47124 30– 1587 5.0– 38.3
javac 4 1860–15759 25410–308523 459– 3899 10.3– 16.5
luindex 5 26– 27 170– 183 6– 6 2.0– 2.0
lusearch 3 2744–43921 9936–155178 664– 10510 2.0– 2.2
pmd 19 53– 5043 358–134539 13– 1202 1.7– 168.0

4 Learning Algorithm
Our algorithm reduces the problem of finding an efficient
policy to a supervised classification problem. We treat each
action as a class label. For a given program and input, the
dynamic programming algorithm of Jacek et al. [12] provides
us with a method of calculated the optimal action, and thus
ground-truth label, of each point in the trace. We can use this
data to train any supervised classification model. Afterwards,
the model can be used to classify points from traces of new
inputs to the program. The predicted class of each time step
gives us a prediction of what the optimal action is at that
step. The classifier therefore serves as our collection policy.

However, the total number of features in our traces is far
greater than what could be used in a practical system. Our
features are counts of method calls and returns, and object
allocations. In a production system, the compiler would have
to insert instrumentation that increments a counter at each
point that corresponds to one of the features we use. Clearly,
if we use too many features in our policy the cost of this
instrumentation will quickly outweigh the benefit of our
improved collection policies.
To overcome this, we first perform feature selection via

random forest importance to decide which features to use. In
this method, a large number of decision trees are constructed
using random subsets of our training data and the full set
of possible features. The importance of each feature is then
a measure of to what extent the accuracy of these trees
depends on each feature. We then select a small set of the
most important features.
We also investigated different feature selection methods

based on the regularization of linear models. Initial experi-
ments suggested, however, that the linear models were not
powerful enough to capture useful policies accurately. Princi-
ple Component Analysis, another popular method of feature
extraction, is not appropriate for our uses. It calculates a
new, smaller set of features from linear combinations of the
existing features. In the problem we investigate, in order to
construct these new features, we would still have to instru-
ment all of the original features.
After selecting the most important features, we use our

reduced sets of features to build our actual classifiers with
random forests [5]. This is somewhat similar to our feature

selection step. But, when we construct the decision trees that
make up our collection policies, we restrict them to using
only the reduced set of selected features.

4.1 Hellinger Trees
Our learning algorithm is based on decision trees. Each in-
ternal node of the tree holds a feature ID number and a
threshold. To decide which action to take at a time step, we
begin at the root node, and compare the current value of the
feature against the threshold. If it is less than or equal, we
proceed to the left child of the node, and if not, we proceed
to the right child. Eventually we reach a leaf, which lists the
probability that each action should be taken.
Decision trees are built recursively by greedily selecting

the feature and threshold that best splits the examples to
be classified into left and right groups according to some
measure. The most common measures, Gini impurity and
information gain, are not suitable for our purposes. This is
because the distribution of the actions in our data are highly
skewed. In optimal schedules, most of the time no collection
should be performed. Young collections are rare, and full
collections rarer still.
To overcome this limitation, we rank splits according to

the Hellinger distance, which is much more robust to skewed
distributions [7]. To see how it is calculated, consider the
case where we are distinguishing between only two classes;
denote them − and +. A given split creates two conditional
probability distributions. Each represents the chance that an
example will be passed along to either the left or right child,
given that it belongs to a given class. The PMF (probability
mass function) of one distribution is given by P(L|−) and
P(R |−), and the PMF of the other is given by P(L|+) and
P(R |+). The Hellinger distance is then one measure of the
distance between these two distributions. The calculation
is:4

dH =

√
1 −

√
P(L|−)P(L|+) −

√
P(R |−)P(R |+). (1)

To visualize the Hellinger distance, note that these two dis-
tributions form vectors in a two-dimensional space. The
4This formula differs by a constant factor from what is often seen in the
literature. Because we are interested only in finding the point that maximizes
the Hellinger distance, the constant factor is irrelevant for our purposes.

57

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Nicholas Jacek and J. Eliot B. Moss

Hellinger distance is then the Euclidean distance between
the square roots of these two vectors. It reaches its maxi-
mum value, 1, when the two distributions are completely
disjoint, and is zero if the distributions are equal. We select
the split with the largest distance between the distributions
it induces. Note, however, that we have three actions, and
therefore three classes. This gives us three different condi-
tional probability distributions. There is little guidance in
the literature as to the best way to combine the distances
between these three points into a single measure of the qual-
ity of a split. We take what is arguably the simplest option,
and use the sum of the three pairwise distances between the
three distributions.

As we build the tree we split the examples into smaller and
smaller groups. Eventually, either a given group contains
only one action, or no features and thresholds will further
subdivide it. In this case, we add a leaf that records the dis-
tribution of actions in the group. We use Laplace smoothing,
a technique that helps to avoid overfitting. It adds one to
the count of examples in each class. This reduces the confi-
dence the classifier has in the empirical probabilities when
the number of examples at a leaf is small, and ensures that
at every leaf every action has at least a small probability.

4.2 Importance
Importance is a concept originally developed to investigate
the internal workings of random forests [5], but that has
also been used as a method of feature selection [3]. For each
tree of a random forest, a training set is chosen by randomly
selecting examples from the full training data with replace-
ment. The examples that are not selected then naturally form
a different random test set for each tree. We can use these
sets to calculate the importance of each feature.
First, we calculate the classification accuracy of the tree

on the test examples. Then, we randomly permute the val-
ues that a certain feature takes among these examples, and
we calculate the tree’s classification accuracy again. When
these two are compared, the more that permuting the values
decreases the classification accuracy, the more important
we conclude the feature is to the classifier. The overall im-
portance of a feature is then the average of its importance
to each tree in the random forest. We then select the most
important features for use later in our final classification
algorithm.

Note that it is typical to build each tree in a random forest
using a random subset of features, as well as a random subset
of training examples. When we attempted to do this on our
data, most trees did no better than random at classifying
training examples. So, we were unable to calculate meaning-
ful importance values. This is likely because, as discussed
in Section 5, the vast majority of the features do not carry
information relevant to our task. Instead, as we calculate fea-
ture importance, each node in a tree is able to select greedily

a feature and threshold for its split from the entire set of
features and values in the data.

4.3 Learning a Policy with Random Forests
Once we have calculated importance values for all the fea-
tures in the data, we select a small set of the most impor-
tant features, and use them to learn our collection policies.
These also take the form of random forests of Hellinger trees,
similar to what were used to calculate feature importance.
However, the feature used at each node of the trees is se-
lected uniformly at random, though the threshold is still
selected to maximize the Hellinger distance of the resulting
split. It is well known that the performance of ensemble
classification algorithms is proportional to the strength of
the individual classifiers, but inversely proportional to the
correlation between them. Using our reduced set of features,
the classification trees have reasonable strength even when
the feature at each node is chosen randomly. This random se-
lection also decreases the correlation between the individual
trees, improving the overall classifier.

Once the random forest is built, it is straightforward to use
it as a policy. At each time step, we run the current features
of the trace though all the trees in the forest, each of which
yields a probability that each action should be taken. Then,
we take the average of these probabilities and select the most
probable action. In case the predicted action is not feasible
according to our GCmodel, we simply fall back to the default
policy.

5 Empirical Results
5.1 Importance
One importance calculation is performed for each program;
the traces for all the inputs to the program are combined
into one large training set. For each program, we build a
forest of 100 trees. Each tree is trained on a random set of
examples generated by sampling with replacement from the
total training set and equal to it in size.
Figure 1 shows the importance values for the javac pro-

gram, though the results for every program in our suite are
very similar. Clearly, the overwhelming majority of features
are not useful for building a policy. Most of the informa-
tion about which action should be taken is contained in the
several dozen top features. The high classification accuracy,
even using randomly shuffled feature values, is likely due
to the highly skewed nature of our data. Simply predicting
that no collection should be performed at any time step is
correct a large amount of the time.
In addition to the features detailed in Section 3, we add

two: the fractions of the young space and old space that
are full. These turn out to have particular noteworthiness.
For every program in our suite but one, the fraction of the
young space used is the most important feature, and in the
remaining case it is 3rd most important. The fraction of the

58

Learning When to Garbage Collect with Random Forests ISMM ’19, June 23, 2019, Phoenix, AZ, USA

0 5000 10000 15000 20000 25000

Feature

0.95

0.96

0.97

0.98

0.99

C
la

ss
ifi

ca
ti

o
n

A
cc

u
ra

cy

Shuffled Features

True Features

(a)

0 20 40 60 80 100

Feature

0.95

0.96

0.97

0.98

0.99

C
la

ss
ifi

ca
ti

o
n

A
cc

u
ra

cy

Shuffled Features

True Features

(b)

Figure 1. Importance values for the javac program. Note the
truncated vertical axis.

old space used ranges from 3rd to 13th most important. We
conclude that any practical GC policy would need to use
these features. In fact, the default policy is based only on
these features.
To give a sense of the features chosen according to our

importance method, here is a list of the ten most important
features for our javac benchmark:

Kind Feature
fraction young space used
calls javac/util/DefaultFileManager.flush
calls javac/util/Log.hasDiagnosticListener
fraction old space used
any returns javac/util/Name$Table.dispose
calls javac/util/List.nil
elements javac/util/Convert.utf2string12e2:[C
any calls java/lang/Double.doubleValue
returns javac/main/JavaCompiler.close
calls javac/util/List$3.hasNext

Here, javac refers to the com.sun.tools package, # refers
to a counted feature, any refers to a 0/1 feature, and ele-
ments means the number of elements allocated in arrays
of the given type at the given call site. Some of these fea-
tures, such as JavaCompile.close, suggest significant phase
changes, such as being done with compiling one class file
and moving on to the next one, while others would require
deeper analysis and profiling to tease out why they are im-
portant for this learning task. In any case, this illustrates the
usual virtue of decision trees: they tend to lead to models
more interpretable by humans than do many other learning
methods.
The time to perform the importance calculation is quite

large due to the extreme number of features that must be
considered at each split in each decision tree. We list the
times taken for our calculations in Table 2.

5.2 Policy Performance
For policy training, we selected the 32 instrumented features
with the highest importance as an approximation of the
number that could be used in a practical system. The fraction
of the young and old spaces that are occupied would also be
available to a system so they are also included, bringing us
to a total of 34 features. First, we trained a single decision
tree on each trace in our set, and then tested its performance
on that same trace. In all cases, the learned trees were able to
perfectly reproduce the optimal policy. This likely indicates
that they were overfitting to their training data, but it does
suggest that the selected features are informative enough to
represent good policies.

Next, we investigated how well our learned policies could
generalize across different inputs to a program. For this we
used random forests, and each was built with 1000 trees.
We selected this large number in order to give our policies
the best chance of performing well, since random forests
do not tend to overfit as the number of trees they contain
is increased. A practical system would require additional
engineering to reduce this number and minimize the time
the policy needs to make its decision. Still, our results give
insight into what might be possible for any practical system.

We performed leave-one-out cross validation of our policy
by training a random forest on all but one input to a program.
The resulting policy was then simulated on the remaining
input. We repeated this procedure for every input in our
suite.
Our training data represented optimal schedules for old

spaces sized to be three times the maximum live size of the
trace. For all programs except luindex, we used a young space
size of 8MB. This size is large enough that luindex did not
perform any collections, so instead we used a young space
size of 2MB for that program only.

We tested each of our learned policies on 100 different old
sizes ranging from 1 to 5 times the maximum live size of the

59

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Nicholas Jacek and J. Eliot B. Moss

Table 2. Time to perform importance calculations

Program avrora batik fop javac luindex lusearch pmd
Time (hrs) 0.48 2.24 18.93 27.75 0.010 20.09 31.36

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

0

250

500

750

1000

1250

1500

1750

C
o
st

(M
B

)

Default Policy

Learned Policy

Optimal Schedule

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

C
o
st

(S
ca

le
d

fr
om

O
p

ti
m

a
l

to
D

ef
a
u

lt
)

Default Policy

Learned Policy

Optimal Schedule

(b)

Figure 2. Policy costs for javac asm.

trace. The results from one program and input, javac on asm,
are given in Figure 2.

Figure 2(b) shows the same data as Figure 2(a), but the cost
values have been shifted and scaled to bring the cost of the
optimal schedule to 0 and the cost of the default policy to 1.
The graphs show that the performance of the learned policy
does not generalize well to small heap sizes, but for most of
the range it achieves about half the possible improvement.
Unfortunately, not all traces fare as well. Figure 3 shows

similar graphs for the large60 input to the batik program.
For most of the range, the learned policy simply reproduces
the default policy. For some traces, it does so for its entire
range. However, the performance of the learned policies
varies between inputs to a single program, not simply across

different programs. Figure 4 illustrates a different input to
the batik program on which the learned policy has much
better performance than the default.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

60

80

100

120

140

C
o
st

(M
B

)

Default Policy

Learned Policy

Optimal Schedule

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
os

t
(S

ca
le

d
fr

o
m

O
p

ti
m

a
l

to
D

ef
a
u

lt
)

Default Policy

Learned Policy

Optimal Schedule

(b)

Figure 3. Policy costs for batik large60.

Next, Figure 5 gives the distribution of scaled costs for
every program and input in our suite. About half the time,
the learned policy is identical to the default policy, and in
rare cases worse. However, in many cases the learned policy
is better. It gives a mean of about 20 percent of the possible
improvement so long as the heap size is not too small. In a
few cases, it equals the optimal schedule.

Then, Figure 6 presents the same data with the costs scaled
tomultiples of the optimal cost with a heap size of three times
the maximum live size of the trace, the size at which the
policy is trained. It shows that the costs of all three policies

60

Learning When to Garbage Collect with Random Forests ISMM ’19, June 23, 2019, Phoenix, AZ, USA

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

50

60

70

80

90

100

110

120

C
o
st

(M
B

)

Default Policy

Learned Policy

Optimal Schedule

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
o
st

(S
ca

le
d

fr
om

O
p

ti
m

a
l

to
D

ef
a
u

lt
)

Default Policy

Learned Policy

Optimal Schedule

(b)

Figure 4. Policy costs for batik default60.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
os

t
(S

ca
le

d
fr

om
O

p
ti

m
al

to
D

ef
au

lt
)

Median

Mean

Extrema

10th to 90th Percentile

Figure 5. Distribution of learned policy costs.

are greatest with small heap sizes. As the heap size increases,
the costs of the policies slowly approach each other, with

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Size of Old Space (Multiples of Maximum Live Size)

0

2

4

6

8

10

12

14

16

C
os

t
(M

u
lt

ip
le

s
o
f

O
p

ti
m

a
l

at
3

T
im

es
M

a
x

L
iv

e
S

iz
e)

Default Policy Mean

Learned Policy Mean

Optimal Policy Mean

Default Policy 10th to 90th Percentile

Learned Policy 10th to 90th Percentile

Optimal Policy 10th to 90th Percentile

Figure 6. Distribution of learned policy costs.

the cost of the learned policy remaining between those of
the default policy and optimal schedule.
Finally, we show the time needed to train our random

forest classifiers in Table 3. The greatly reduced set of fea-
tures leads to much faster times compared to the importance
calculation.

6 Conclusions
We have shown that it is possible to learn GC policies that
improve collector performance even on new inputs. To our
knowledge, this is the first work in the literature to apply
machine learning techniques to the problem of optimizing
generational garbage collection times.

A number of avenues remain open for future research:
• There are different performance costs to instrumenting
different features. A practical policy may benefit from
selecting features in a cost-aware manner.

• We have simply selected the most important features,
but some of these may be highly correlated with each
other and thus redundant. A more sophisticated selec-
tion scheme may result in a more informative set of
features, and give better results for the same number
of features.

• Classifiers other than random forests may give better
performance on this task. For example, our random
forests classify each time step on its own and do not
make any use of the fact that our data form ordered
series. Likewise, it is possible that neural net models,
for example, might do better (although a quick check
suggested that in this simple case they did worse).

• For each program and input, our classifiers are trained
on a single trace using a single heap size. Including
additional heap sizes in the training data may help the
learned policies to generalize to new inputs and heap
sizes. This may address the issue of the sometimes bad
performance for small heap sizes.

61

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Nicholas Jacek and J. Eliot B. Moss

Table 3. Time to train random forest classifiers

Program avrora batik fop javac luindex lusearch pmd
Minimum Time (mins) 0.25 0.90 2.99 4.57 0.022 3.01 11.41
Median Time (mins) 0.59 1.04 5.28 11.01 0.024 9.60 12.81
Maximum Time (mins) 0.69 1.22 6.54 14.97 0.027 9.98 15.44

• The policies are also given only the exactly optimal
schedules as ground truth, but many schedules have
costs only slightly higher. Training on these slightly
sub-optimal schedules as well may improve the perfor-
mance of our policies by offering more training data
and avoiding over-sensitivity to the exact decisions
needed to achieve optimal cost.

Muchwork remains before collection policies similar to those
we investigate here could be put into production in real run-
time systems. We have, however, made the important first
steps toward using machine learning techniques to decide
when generational garbage collectors should be run in or-
der to optimize their performance, and we have shown that
further investigation may be worthwhile.

Acknowledgments
This work is supported by the National Science Foundation
under grant CCF-1320498. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views
of the National Science Foundation. We thank an anonymous
reviewer, and our colleague Richard Jones, for suggesting
related work to mention.

References
[1] Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest, Wim Heir-

man, and Lieven Eeckhout. 2016. Boosting the Priority of Garbage:
Scheduling Collection on Heterogeneous Multicore Processors. ACM
Transactions on Architecture and Code Optimization 13, 1 (March 2016),
4:1–4:25. https://doi.org/10.1145/2875424

[2] Eva Andreasson, Frank Hoffmann, and Olof Lindholm. 2002. To Collect
or Not to Collect? Machine Learning for Memory Management, See
[13]. http://www.usenix.org/events/jvm02/andreasson.html

[3] Kellie J Archer and Ryan V Kimes. 2008. Empirical characterization of
random forest variable importance measures. Computational Statistics
and Data Analysis 52, 4 (2008), 2249–2260.

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosk-
ing, Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. 2006. The DaCapo benchmarks: Java bench-
marking development and analysis. In Proceedings of the 21th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Peri L. Tarr and William R. Cook (Eds.). ACM, Portland, OR, 169–190.
https://doi.org/10.1145/1167473.1167488

[5] Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (2001),
5–32.

[6] Gungyu Chen, Mahmut T. Kandemir, Narayanan Vijaykrishnan,
Mary Jane Irwin, and Mario Wolczko. 2002. Adaptive Garbage Col-
lection for Battery-Operated Environments, See [13], 1–12. http:
//static.usenix.org/event/jvm02/full_papers/chen_g/chen_g.ps

[7] David A Cieslak, T Ryan Hoens, Nitesh V Chawla, and W Philip
Kegelmeyer. 2012. Hellinger distance decision trees are robust and
skew-insensitive. Data Mining and Knowledge Discovery 24, 1 (2012),
136–158.

[8] Barry Hayes. 1991. Using Key Object Opportunism to Collect Old
Objects. In Proceedings of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (ACM SIGPLAN No-
tices 26(11)). ACM Press, Phoenix, AZ, 33–46. https://doi.org/10.1145/
117954.117957

[9] Roger Henriksson. 1996. Adaptive Scheduling of Incremental Copying
Garbage Collection for Interactive Applications. Technical Report 96–
174. Lund University, Sweden. ftp://mjolner.dna.lth.se/HD/ftp/pub/
papers/LU-CS-TR.96-174.ps

[10] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S.
McKinley, and Darko Stefanovic. 2006. Generating object lifetime
traces with Merlin. ACM Transactions on Programming Languages and
Systems 28, 3 (2006), 476–516. https://doi.org/10.1145/1133651.1133654

[11] Nicholas Jacek, Meng-Chieh Chiu, BenjaminM. Marlin, and Eliot Moss.
2016. Assessing the limits of program-specific garbage collection
performance. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, June
13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, Santa
Barbara, CA, 584–598. https://doi.org/10.1145/2908080.2908120

[12] Nicholas Jacek, Meng-Chieh Chiu, Benjamin M. Marlin, and J. Eliot B.
Moss. 2019. Optimal Choice of When to Garbage Collect. ACM Trans.
Program. Lang. Syst. 41, 1, Article 3 (Jan. 2019), 35 pages. http://doi.
acm.org/10.1145/3282438

[13] JVM 2002 2002. 2nd Java Virtual Machine Research and Technology
Symposium. USENIX, San Francisco, CA. http://www.usenix.org/
event/jvm02

[14] Won-Kyung Kang, Dongkun Shin, and Sungjoo Yoo. 2017. Reinforce-
ment Learning-Assisted Garbage Collection to Mitigate Long-Tail La-
tency in SSD. ACM Transactions on Embedded Computer Systems 16, 5
(2017), 134:1–134:20. https://doi.org/10.1145/3126537

[15] Feng Mao and Xipeng Shen. 2009. Cross-Input Learning and Discrimi-
native Prediction in Evolvable Virtual Machines. In Proceedings of the
CGO 2009, The Seventh International Symposium on Code Generation
and Optimization. IEEE Computer Society, Seattle, WA, USA, 92–101.
https://doi.org/10.1109/CGO.2009.10

[16] SebastienMarion, Richard Jones, and Chris Ryder. 2007. Decrypting the
Java Gene Pool: Predicting Objects’ Lifetimes with Micro-Patterns. In
6th ACM SIGPLAN International Symposium on Memory Management,
Greg Morrisett and Mooly Sagiv (Eds.). ACM Press, Montréal, Canada,
67–78. https://doi.org/10.1145/1296907.1296918

[17] Phil McGachey and Antony L. Hosking. 2006. Reducing generational
copy reserve overhead with fallback compaction. In Proceedings of the
5th International Symposium on Memory Management, ISMM 2006, Erez
Petrank and J. Eliot B. Moss (Eds.). ACM, Ottawa, Ontario, Canada,
17–28. https://doi.org/10.1145/1133956.1133960

[18] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2011. Tool
Demonstration: Elephant Tracks—Generating Program Traces with

62

https://doi.org/10.1145/2875424
http://www.usenix.org/events/jvm02/andreasson.html
https://doi.org/10.1145/1167473.1167488
http://static.usenix.org/event/jvm02/full_papers/chen_g/chen_g.ps
http://static.usenix.org/event/jvm02/full_papers/chen_g/chen_g.ps
https://doi.org/10.1145/117954.117957
https://doi.org/10.1145/117954.117957
ftp://mjolner.dna.lth.se/HD/ftp/pub/papers/LU-CS-TR.96-174.ps
ftp://mjolner.dna.lth.se/HD/ftp/pub/papers/LU-CS-TR.96-174.ps
https://doi.org/10.1145/1133651.1133654
https://doi.org/10.1145/2908080.2908120
http://doi.acm.org/10.1145/3282438
http://doi.acm.org/10.1145/3282438
http://www.usenix.org/event/jvm02
http://www.usenix.org/event/jvm02
https://doi.org/10.1145/3126537
https://doi.org/10.1109/CGO.2009.10
https://doi.org/10.1145/1296907.1296918
https://doi.org/10.1145/1133956.1133960

Learning When to Garbage Collect with Random Forests ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Object Death Records. In Proceedings of the 9th International Conference
on the Principles and Practice of Programming in Java. ACM, ACM,
Kongens Lyngby, Denmark, 39–43.

[19] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Elephant
Tracks: Portable production of complete and precise GC traces. In
International Symposium on Memory Management, ISMM ’13, June 20,
2013, Perry Cheng and Erez Petrank (Eds.). ACM, Seattle, WA, 109–118.
https://doi.org/10.1145/2464157.2466484

[20] Yangwoo Roh, Jaesub Kim, and Kyu Ho Park. 2009. A Phase-Adaptive
Garbage Collector Using Dynamic Heap Partitioning and Opportunis-
tic Collection. IEICE Transactions on Information and Systems E92-D,
10 (Oct. 2009), 2053–2063.

[21] Xipeng Shen, Feng Mao, Kai Tian, and Eddy Zheng Zhang. 2009. The
Study and Handling of Program Inputs in the Selection of Garbage
Collectors. SIGOPS Operating Systems Review 43, 3 (July 2009), 48–61.
https://doi.org/10.1145/1618525.1618531

[22] Jeremy Singer, George Kovoor, Gavin Brown, and Mikel Luján. 2011.
Garbage Collection Auto-Tuning for Java MapReduce on Multi-cores.
In 10th ACM SIGPLAN International Symposium on Memory Manage-
ment, Hans Boehm and David Bacon (Eds.). ACM Press, San Jose, CA,

109–118. https://doi.org/10.1145/1993478.1993495
[23] David Vengerov. 2009. Modeling, Analysis and Throughput Opti-

mization of a Generational Garbage Collector. In 8th ACM SIGPLAN
International Symposium on Memory Management, Hillel Kolodner
and Guy Steele (Eds.). ACM Press, Dublin, Ireland, 1–9. https:
//doi.org/10.1145/1542431.1542433

[24] David R. White, Jeremy Singer, Jonathan M. Aitken, and Richard E.
Jones. 2013. Control Theory for Principled Heap Sizing. In 12th
ACM SIGPLAN International Symposium on Memory Management,
Erez Petrank and Perry Cheng (Eds.). ACM Press, Seattle, WA, 27–38.
https://doi.org/10.1145/2464157.2466481

[25] Paul R. Wilson. 1988. Opportunistic Garbage Collection. ACM SIG-
PLAN Notices 23, 12 (Dec. 1988), 98–102.

[26] Paul R. Wilson and Thomas G. Moher. 1989. Design of the Oppor-
tunistic Garbage Collector. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (ACM
SIGPLAN Notices 24(10)). ACM Press, New Orleans, LA, 23–35. https:
//doi.org/10.1145/74877.74882

63

https://doi.org/10.1145/2464157.2466484
https://doi.org/10.1145/1618525.1618531
https://doi.org/10.1145/1993478.1993495
https://doi.org/10.1145/1542431.1542433
https://doi.org/10.1145/1542431.1542433
https://doi.org/10.1145/2464157.2466481
https://doi.org/10.1145/74877.74882
https://doi.org/10.1145/74877.74882

	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine Learning Applied to GC
	2.2 Triggering Collection
	2.3 Optimal Collection

	3 Model of Garbage Collection
	3.1 Model of Generational Collection
	3.2 Cost Model
	3.3 Collection Schedules and Polices
	3.4 Nature of Our Traces
	3.5 Trace Products
	3.6 Trace Details

	4 Learning Algorithm
	4.1 Hellinger Trees
	4.2 Importance
	4.3 Learning a Policy with Random Forests

	5 Empirical Results
	5.1 Importance
	5.2 Policy Performance

	6 Conclusions
	References

