Global Common Subexpression Elimination with Data-flow Analysis

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Review

So far, we have seen

- Local Value Numbering
 - → Finds redundancy, constants, & identities in a block
- Superlocal Value Numbering
 - → Extends local value numbering to EBBs
 - → Used SSA-like name space to simplify bookkeeping
- Dominator Value Numbering
 - → Extends scope to "almost" global (no back edges)
 - \rightarrow Uses dominance information to handle join points in CFG

Today

- Global Common Subexpression Elimination (GCSE)
 - → Applying data-flow analysis to the problem

Today's lecture: computing AVAIL

Using Available Expressions for GCSE

The goal

Find common subexpressions whose range spans basic blocks, and eliminate unnecessary re-evaluations

Safety

- Available expressions proves that the replacement value is current
- Transformation must ensure right name→value mapping

Profitability

- Don't add any evaluations
- Add some copy operations

- Copies are inexpensive
- Many copies <u>coalesce</u> away
- Copies can shrink or stretch live ranges

For each block b

- Let AVAIL(b) be the set of expressions available on entry to b
- Let EXPRKILL(b) be the set of expression not killed in b
- Let DEEXPR(b) be the set of expressions defined in b and not subsequently killed in b

Now, AVAIL(b) can be defined as:

$$AVAIL(b) = \bigcap_{x \in pred(b)} (DEEXPR(x) \cup (AVAIL(x) \cap EXPRKILL(x)))$$

preds(b) is the set of b's predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problem → Solve it with a data-flow algorithm

All paths" Forward Flow Lattice f Condition

All paths Termand Flow Lattice f Condition

Lettice f Condition

Lettice f Condition

Expressions defined in b pressions for GCSE and exposed downward

The Method

Expressions killed in b

- ✓ 1. \forall block b, compute DEEXPR(b) and EXPRKILL(b)
- ✓ 2. \forall block b, compute AVAIL(b)
 - 3. \forall block b, value number the block starting from AVAIL(b)
 - 4. Replace expressions in AVAIL(b) with references

Two key issues

• Computing AVAIL(b)

Managing the replacement process

We'll look at the replacement issue first

Assume, w.l.og, that we can compute available expressions for a procedure.

This annotates each basic block, b, with a set AVAIL(b) that contains all expressions that are available on entry to b.

Global CSE

(replacement step)

Managing the name space

Need a unique name $\forall e \in AVAIL(b)$

- 1. Can generate them as replacements are done (Fortran H)
- 2. Can compute a static mapping
- 3. Can encode value numbers into names (Briggs 94)

Strategies

- 1. This works; it is the classic method
- 2. Fast, but limits replacement to textually identical expressions
- 3. Requires more analysis (VN), but yields more CSEs

Assume, w.l.o.g., solution 2

Global CSE

(replacement step, strategy two)

Compute a static mapping from expression to name

- After analysis & before transformation
 - $\rightarrow \forall b, \forall e \in AVAIL(b)$, assign e a global name by hashing on e
- During transformation step
 - \rightarrow Evaluation of $e \Rightarrow$ insert copy $name(e) \leftarrow e$
 - \rightarrow Reference to $e \Rightarrow$ replace e with name(e)

The major problem with this approach

- Inserts extraneous copies
 - → At all definitions and uses of any
 - → Those extra copies are dead and tay
 - → The useful ones often coalesce away

Common strategy:

- Insert copies that might be useful
- Let DCE sort them out

Simplifies design & implementation

An Aside on Dead Code Elimination

What does "dead" mean?

- Useless code result is never used
- Unreachable code code that <u>cannot</u> execute
- Both are lumped together as "dead"

To perform DCE

- Must have a global mechanism to recognize usefulness
- Must have a global mechanism to eliminate unneeded stores
- Must have a global mechanism to simplify control-flow predicates

All of these will come later in the course

Global CSE

Now a three step process

- Compute AVAIL(b), ∀ block b
- Assign unique global names to expressions in AVAIL(b)
- Perform replacement with local value numbering

Earlier in the lecture, we said

Assume, without loss of generality, that we can compute available expressions for a procedure.

This annotates each basic block, b, with a set AVAIL(b) that contains all expressions that are Now, we n available on entry to b.

The Big Picture

- 1. Build a control-flow graph
- 2. Gather the initial (local) data DEEXPR(b) & EXPRKILL(b)
- 3. Propagate information around the graph, evaluating the equation
- 4. Post-process the information to make it useful (if needed)

All data-flow problems are solved, essentially, this way

For each block b

- Let AVAIL(b) be the set of expressions available on entry to b
- Let EXPRKILL(b) be the set of expression not killed in b
- Let DEExpr(b) be the set of expressions defined in b and not subsequently killed in b

Now, AVAIL(b) can be defined as:

$$AVAIL(b) = \bigcap_{x \in pred(b)} (DEEXPR(x) \cup (AVAIL(x) \cap EXPRKILL(x)))$$
 $preds(b)$ is the set of b's predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problem

→ Solve it with a data-flow algorithm

Using Available Expressions for GCSE

The Big Picture

- 1. \forall block b, compute DEEXPR(b) and EXPRKILL(b)
- 2. \forall block b, compute AVAIL(b)
- 3. \forall block b, value number the block starting from AVAIL(b)
- 4. Replace expressions in AVAIL(b) with references

First step is to compute DEEXPR & EXPRKILL

```
Many data-flow
assume a block b with operations o_1, o_2, ..., o_k
                                                                   problems have
                                                                   initial information
VarKill \leftarrow \emptyset
                                                                   that costs less to
\mathsf{DEExpr}(b) \leftarrow \emptyset
                               Backward through block
                                                                   compute
for i = k \text{ to } 1
     assume o_i is "x \leftarrow y + z"
     add x to VARKILL
     if (y ∉ VARKILL) and (z ∉ VARKILL) then
           add "y + z" to DEExpr(b)
EXPRKILL(b) \leftarrow \emptyset
For each expression e
     for each variable v \in e
           if v \in VarKill(b) then
                 \mathsf{ExprKill}(b) \leftarrow \mathsf{ExprKill}(b) \cup \{e\}
```

The worklist iterative algorithm

```
Worklist \leftarrow \{ \text{ all blocks, } b_i \}
\text{while } (\textit{Worklist} \neq \emptyset)
\text{remove a block } b \text{ from } \textit{Worklist}
\text{recompute AVAIL}(b) \text{ as}
\textit{AVAIL}(b) = \bigcap_{x \in pred(b)} (\textit{DEEXPR}(x) \cup (\textit{AVAIL}(x) \cap \overline{\textit{EXPRKILL}(x)}))
\text{if AVAIL}(b) \text{ changed then}
\text{Worklist} \leftarrow \text{Worklist} \cup \textit{successors}(b)
```

- Finds fixed point solution to equation for AVAIL
- That solution is unique
- Identical to "meet over all paths" solution

How do we know these things?

Data-flow Analysis

Data-flow analysis is a collection of techniques for compile-time reasoning about the run-time flow of values

Almost always involves building a graph

Flow graph

- → Problems are trivial on a basic block
- \rightarrow Global problems \Rightarrow control-flow graph (or derivative)
- \rightarrow Whole program problems \Rightarrow call graph (or derivative)
- Usually formulated as a set of simultaneous equations
 - → Sets attached to nodes and edges
 - → Lattice (or semilattice) to describe values

Data-flow problem

- Desired result is usually meet over all paths
 - → "What is true on every path from the entry?"
 - → "Can this happen on any path from the entry?"
 - → Related to the safety of optimization

Data-flow Analysis

Limitations

- 1. Precision "up to symbolic execution"
 - → Assume all paths are taken
- 2. Solution cannot afford to compute MOP solution
 - → Large class of problems where MOP = MFP= LFP
 - → Not all problems of interest are in this class
- 3. Arrays treated naively in classical analysis
 - → Represent whole array with a single fact
- 4. Pointers difficult (and expensive) to analyze
 - → Imprecision rapidly adds up
 - → Need to ask the right questions

Summary

For scalar values, we can quickly solve simple problems can carry us pretty far

Good news:

$$AVAIL(b) = \bigcap_{x \in pred(b)} (DEEXPR(x) \cup (AVAIL(x) \cap EXPRKILL(x)))$$

where

- EXPRKILL(b) is the set of expression not killed in b, and
- DEEXPR(b) is the set of downward exposed expressions in b (defined and not subsequently killed in b)

Initial condition

 $AVAIL(n_0) = \emptyset$, because nothing is computed before n_0

The other node's *AVAIL* sets will be computed over their *preds*. n_o has no predecessor.

Making Theory Concrete

Computing AVAIL for the example

	Α	В	С	D	E	F	G
DEExpr	a+b	c+d	a+b,c+d	b+18,a+b,e+f	a+17,c+d,e+f	a+b,c+d,e+f	a+b,c+d
Expr K ILL	{}	{}	{}	e+f	e+f	{}	{}

AVAIL(A) =
$$\emptyset$$

AVAIL(B) = $\{a+b\} \cup (\emptyset \cap al1)$
= $\{a+b\}$
AVAIL(C) = $\{a+b\}$
AVAIL(D) = $\{a+b, c+d\} \cup (\{a+b\} \cap al1)$
= $\{a+b, c+d\}$
AVAIL(E) = $\{a+b, c+d\}$
AVAIL(F) = $\{\{b+18, a+b, e+f\} \cup (\{a+b, c+d\} \cap \{al1 - e+f\})\}$
 $\cap [\{a+17, c+d, e+f\} \cup (\{a+b, c+d\} \cap \{al1 - e+f\})]$
= $\{a+b, c+d, e+f\}$
AVAIL(G) = $[\{c+d\} \cup (\{a+b\} \cap al1)]$
 $\cap [\{a+b, c+d, e+f\} \cap al1)]$
= $\{a+b, c+d, e+f\} \cap al1)]$
= $\{a+b, c+d, e+f\}$

Redundancy Elimination Wrap-up

Algorithm	Acronym	Credits
Local Value Numbering	LVN	Balke, 1967
Superlocal Value Numbering	SVN	Many
Dominator-based Value Num'g	DVNT	Simpson, 1996
Global CSE (with AVAIL)	GCSE	Cocke, 1970
SCC-based Value Numbering [†]	SCCVN/VDCM	Simpson, 1996
Partitioning Algorithm [†]	AWZ	Alpern et al, 1988
and there are many others		

Three general approaches

- Hash-based, bottom-up techniques
- Data-flow techniques
- Partitioning

Each has strengths & weaknesses

†We have not seen these ones (yet).

Making Theory Concrete

Comparing the techniques

The VN methods are ordered

- LVN \leq SVN \leq DVN (\leq SCCVN)
- GRE is different
 - Based on names, not value
 - Two phase algorithm
 - → Analysis
 - → Replacement

Redundancy Elimination Wrap-up

Comparisons

		On/Off	Operates	Basis of
Name	Scope	Line	On	Identity
LVN	local	online	blocks	value
SVN	superlocal	online	EBBs	value
DVNT	regional	online	dom. Tree	value
GCSE	global	offline	CFG	lexical

Better results in loops

	Visits		Algebraic		*
Name	per Node	Commutes	Identities	Constants	Optimistic
LVN	1	yes	yes	yes	n/a
SVN	1	yes	yes	yes	n/a
DVNT	1	yes	yes	yes	n/a
GCSE	D(CFG) + 3	no	no	no	no

The partitioning method based on DFA minimization

Redundancy Elimination wrap-up

Generalizations

- Hash-based methods are fastest
- AWZ (& SCCVN) find the most cases
- Expect better results with larger scope

Experimental data

- Ran LVN, SVN, DVNT, AWZ
- Used global name space for DVNT
 - → Requires offline replacement
 - → Exposes more opportunities
- Code was compiled with lots of optimization 2.5x faster than Awz

How did they do?

- → DVNT beat Awz
- → Improvements grew with scope
- \rightarrow DVNT vs. SccVN was $\pm 1\%$
- → DVNT 6x faster than SccVN

Redundancy Elimination Wrap-up

Conclusions

- Redundancy elimination has some depth & subtlety
- Variations on names, algorithms & analysis matter
- Compile-time speed does not have to sacrifice code quality

DVNT is probably the method of choice

- Results quite close to the global methods (± 1%)
- Much lower costs than SCCVN or AWZ

|LIVE| = |variables|

Transformation: Eliminating unneeded stores

- e in a register, have seen last definition, never again used
- The store is <u>dead</u>

(except for debugging)

Compiler can eliminate the store

Data-flow problem: Live variables

Form of f is same as in AVAIL

LIVE(b) = $\bigcup_{s \in succ(b)} Used(s) \checkmark (LIVE(s) \cap NoTDeF(s))$

- LIVE(b) is the set of <u>variables</u> live on exit from b
- NOTDEF(b) is the set of variables that are not redefined in b
- USED(b) is the set of variables used before redefinition in b

Live analysis is a backward flow problem

LIVE plays an important role in both register allocation and the pruned-SSA construction.