Global Common Subexpression Elimination with Data-flow Analysis

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Review

So far, we have seen

- • Local Value Numbering
	- \rightarrow Finds redundancy, constants, & identities in a block
- Superlocal Value Numbering
	- \rightarrow Extends local value numbering to EBBs
	- \rightarrow Used SSA-like name space to simplify bookkeeping
- Dominator Value Numbering
	- \rightarrow Extends scope to "almost" global (no back edges)
	- \rightarrow Uses dominance information to handle join points in CFG

Today

- • Global Common Subexpression Elimination (GCSE)
	- \rightarrow Applying data-flow analysis to the problem

Using Available Expressions for GCSE

The goal

Find common subexpressions whose range spans basic blocks, and eliminate unnecessary re -evaluations

Safety

- •• Available expressions proves that the replacement value is current
- \bullet • Transformation must ensure right name \rightarrow value mapping

Profitability

- •Don't add an y evaluations
- Add some copy operations
- **• Copies are inexpensive**
- **• Many copies coalesce away**
- **• Co pies can shrink or stretch live ranges**

For each block *b*

- •• Let AVAIL(b) be the set of expressions available on entry to b
- Let *ExprKILL(b)* be the set of expression <u>not killed i</u>n *b*
- \bullet • Let *DEEXPR(b)* be the set of expressions defined in *b* and not subsequently killed in b

Now, A**VAIL**(b) can be defined as:

AVAIL(b) = $\cap_{x \in \mathit{pred}(b)}$ (DEEXPR(x) \cup (AVAIL(x) \cap EXPRKILL(x)))

 $\mathit{preds}(b)$ is the set of \it{b} 's predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problem \rightarrow Solve it with a data-flow algorithm

$$
A||paths' = ForwardFlow = Lattice\n\n
$$
\sum_{c\\all\neq s} \int_{0}^{1} + \epsilon \text{initial} \text{constant} = S
$$
$$

kbressions for GCSE **Expressions defined in b and ex posed downward p**

The Method

Expressions killed in b

- 1. block b, compute DEEXPR(b) and EXPRK**ILL**(b)
- 2. ∀ block *b,* compute *AVaIL(b)*
3. ∀ block *b,* value number the l
	- \forall block *b*, value number the block starting from AVAIL(b)
	- 4. Replace expressions in A**VAIL**(b) with references

Two key issues

- Computing A**VAIL**(b)
- • Managing the replacement process We'll look at the replacement issue first

Assume, w.l.og, that we can compute available expressions for a procedure. This annotates each basic block, *b*, with a set A v4/L(*b*) that contains all expressions that are available on entry to b.

Managing the name space

Need a unique name \forall $\emph{e} \in \emph{AVAIL}(b)$

- 1. Can generate them as replacements are done
- 2. Can compute a static mapping
- 3. Can encode value numbers into names

(Briggs 94)

(Fortran H)

Strategies

- 1. This works; it is the classic method
- 2. Fast, but limits replacement to textually identical expressions
- 3. Requires more analysis (VN), but yields more CSE s

Assume, w.l.o.g., solution 2

Global CSE (replacement step, strategy two)

Compute a static mapping from expression to name

- • After analysis & before transformation
	- $\;\rightarrow\;\;\forall\; b, \forall\; e \in \mathit{AVAIL}(b)$, assign e a global name by hashing on e
- • During transformation step
	- \rightarrow Evaluation of e \Rightarrow insert copy *name(e)* \leftarrow *e*
	- \rightarrow Reference to e \Rightarrow replace e with *name(e)*

The major problem with this approach Common strategy:

- Inserts extraneous copies
	- \rightarrow At all definitions and uses of any \mid \bullet \mid
	- \rightarrow Those extra copies are dead and $\overline{\mathsf{t_{asym}}\cdots\mathsf{t_{me}}}$
	- \rightarrow The useful ones often coalesce away

- **Insert copies that might be useful**
Inserts extraneous copies
	- **• Let DCE sort them out**

Simplifies design & implementation

An Aside on Dead Code Elimination

What does "dead" mean?

- •Useless code — result is never used
- Unreachable code code that cannot execute
- Both are lumped together as "dead"

To perform DCE

- •Must have a global mechanism to recognize usefulness
- • \bullet Must have a global mechanism to eliminate unneeded stores
- \bullet Must have a global mechanism to simplify control-flow predicates

All of these will come later in the course

Global CSE

Now a three step process

- •Compute $AVAIL(b)$, \forall block b
- •Assign unique global names to expressions in AVAIL(b)
- \bullet Perform replacement with local value numbering

Earlier in the lecture, we said

Assume, without loss of generality, that we can , g y, compute available expressions for a procedure.

This annotates each basic block, b, with a set AVAIL(b) that contains all expressions that are

Now, we n<mark>eavailable on entry to *b*. the assumption of θ .</mark>

The Big Picture

- 1. Build a control-flow graph
- 2. Gather the initial (local) data —DEEXPR(b) & EXPRKILL(b)
- 3. Propagate information around the graph, evaluating the equation
- 4. Post-process the information to make it useful \qquad ($(if needed)$

All data-flow problems are solved, essentially, this way

For each block *b*

- •• Let AVAIL(b) be the set of expressions available on entry to *b*
- •• Let *EXPRKILL(b)* be the set of expression <u>not killed i</u>n *b*
- \bullet • Let *DEExPR(b)* be the set of expressions defined in *b* and not subsequently killed in b

Now, A**VAIL**(b) can be defined as:

 $\mathcal{AVAIL}(b)$ = $\ \cap_{x \in \mathit{pred}(b)} \ (\mathit{DEEXPR}(x) \cup (\mathcal{AVAIL}(x) \cap$ AVAIL(b) = $\cap_{x \in pred(b)}$ (DEEXPR(x) \cup (AVAIL(x) \cap EXPRKILL(x)))
preds(b) is the set of b's predecessors in the control-flow graph preds(b) is the set of b's predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problem \rightarrow Solve it with a data-flow algorithm

Using Available Expressions for GCSE

The Big Picture

- 1.∀ block *b,* compute *DEExPR(b)* and *ExPRKILL(b)*
- 2. ∀ block *b,* compute *AVaIL(b)*
- 3.∀ block *b,* value number the block starting from *AVAIL(b)*
- 4. Replace expressions in A**VAIL**(b) with references

First step is to compute *DEExpr & ExprKILL*

The worklist iterative algorithm

```
Worklist \leftarrow \{ \text{ all blocks}, b_i \}while (Worklist 
Ø)
```
remove a block b from Worklist recompute Avail(b) as

AVAIL(b) = ^xpred(b) (DEEXPR(x) (AVAIL(x) EXPRKILL(x)))

if Avail(b) changed then $\textsf{Worklist} \leftarrow \textsf{Worklist} \cup successor(\bm{b})$

- **• Finds fixed point solution to equation for AVAIL**
- **• That solution is unique**
- **• Identical to "meet over all paths " solution meet**

How do we know these things?

Data-flow Analysis

Data-flow analysis is a collection of techniques for compile-time reasoning about the run-time flow of values

Almost always involves building a graph

Flow graph

- \rightarrow Problems are trivial on a basic block
- \rightarrow Global problems \Rightarrow control-flow graph (or derivative)
- $\rightarrow \,$ Whole program problems \Rightarrow call graph (or derivative)
- \bullet Usually formulated as a set of simultaneous equations
	- \rightarrow Sets attached to nodes and edges
	- \rightarrow Lattice (or semilattice) to describe values

 \bullet Desired result is usually meet over all paths solution **Data-flow problem**

- \rightarrow "What is true on every path from the entry?"
- \rightarrow "Can this happen on any path from the entry?"
- \rightarrow Related to the safety of optimization

Data-flow Analysis

Limitations

- 1. Precision "up to symbolic execution"
	- \rightarrow Assume all paths are taken
- 2. Solution cannot afford to compute M**OP** solution
	- Large class of problems where M**OP** = M**FP**= L**FP**
	- \rightarrow Not all problems of interest are in this class
- 3. Arrays treated naively in classical analysis
	- \rightarrow Represent whole array with a single fact
- 4. Pointers difficult (and expensive) to analyze
	- \rightarrow Imprecision rapidly adds up
	- \rightarrow Need to ask the right questions

Summary **Good news:**

For scalar values, we can quickly solve simple problems **problems** can For scalar values, we can quickly solve simple problems in

AVAIL(b) = $\cap_{x \in \mathit{pred}(b)}$ (DEEXPR(x) \cup (AVAIL(x) \cap EXPRKILL(x)))

where

- EXPRKILL(b) is the set of expression <u>not killed i</u>n *b*, and
- \bullet • DEEXPR(b) is the set of downward exposed expressions in b (defined and not subsequently killed in b)

Initial condition

AvaIL(n $_{\mathcal{O}}$)= Ø, because nothing is computed before $n_{\mathcal{O}}$

The other node's *AVaIL* sets will be computed over their *preds.* $n_{\scriptscriptstyle O}$ has no predecessor.

Making Theory Concrete

Computing AVAIL for the example

Redundancy Elimination Wrap-up

†We have not seen these ones (yet).

Making Theory Concrete

Comparing the techniques

The VN methods are ordered

- **• LVN ≤ SVN ≤ DVN (≤ SCCVN)**
- **• GRE is different**
	- **o Based on names, not value ,**
	- **o Two phase algorithm**
		- **Analysis**
		- \rightarrow Replacement

Redundancy Elimination Wrap-up

Comparisons

Better results in loops

Redundancy Elimination wrap-up **The partitioning method based on DFA minimization**

Generalizations

- •Hash-based methods are fastest
- •AWZ (& SCCVN) find the most cases
- •Expect better results with larger scope

Experimental data

- •Ran LVN, SVN, DVNT, AWZ
- Used global name space for DVNT •
	- \rightarrow Requires offline replacement
	- \rightarrow Exposes more opportunities

How did they do?

- \rightarrow **D**vnt beat Awz
- \rightarrow Improvements grew with **sco p e**
- **DVNT vs. SCCVN was** [±] 1%
- \rightarrow Dvnt 6x faster than SccV_N
- •• Code was compiled with lots of optimizati**sn**cVn 2.5x faster than Awz

Redundancy Elimination Wrap-up

Conclusions

- •Redundancy elimination has some depth & subtlety
- \bullet Variations on names, algorithms & analysis matter
- Compile-time speed does not have to sacrifice code quality

DVNT is probably the method of choice

- \bullet • Results quite close to the global methods $(\pm\ 1\%)$
- \bullet Much lower costs than SCCVN or AWZ

Example **|LIVE| = |variables|**

•

Transformation: Eliminating unneeded stores

- • $\bullet\quad$ e in a register, have seen last definition, never again used
- •The store is dead $(except for debugging)$
	- Compiler can eliminate the store

Form of f is same as in AVAIL

- *Data-flow problem*: Live variables
LIVE(b) = $\cup_{s \in succ(b)}$ USED(s) succ(b) ^U**SED**(s) (L**IVE**(s) ^N**OT**D**EF**(s))
- •L**IVE**(b) is the set of variables live on exit from b
- •• NOTDEF(b) is the set of variables that are not redefined in **b Compute as DEF(b)**
- •U**SED**(b) is the set of variables used before redefinition in b

Live analysis is a <u>backward</u> flow problem

LIVE plays an important role in both register allocation and the pruned-SSA construction.