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Review
So far, we have seen
• Local Value Numbering

 Finds redundancy  constants  & identities in a block Finds redundancy, constants, & identities in a block
• Superlocal Value Numbering

 Extends local value numbering to EBBs
 Used SSA-like name space to simplify bookkeeping Used SSA-like name space to simplify bookkeeping

• Dominator Value Numbering
 Extends scope to “almost” global (no back edges)
 Uses dominance information to handle join points in CFG Uses dominance information to handle join points in CFG

Today
• Global Common Subexpression Elimination (GCSE)

Applying data flow analysis to the problem Applying data-flow analysis to the problem

Today’s lecture: computing AVAIL



Using Available Expressions for GCSE
The goal

Find common subexpressions whose range spans basic blocks, and
eliminate unnecessary re-evaluations eliminate unnecessary re evaluations 

Safety
A il bl  i   th t th  l t l  i  • Available expressions proves that the replacement value is 
current

• Transformation must ensure right namevalue mapping

Profitability
• Don’t add any evaluationsy
• Add some copy operations • Copies are inexpensive

• Many copies coalesce away

• Copies can shrink or p
stretch live ranges

*



Computing Available Expressions
For each block b
• Let AVAIL(b) be the set of expressions available on entry to b
• Let EXPRKILL(b) be the set of expression not killed in bLet EXPRKILL(b) be the set of expression not killed in b
• Let DEEXPR(b) be the set of expressions defined in b and not 

subsequently killed in b 

Now, AVAIL(b) can be defined as:
AVAIL(b)  =  xpred(b) (DEEXPR(x)  (AVAIL(x)  EXPRKILL(x) ))

d (b) i  h   f b’  d  i  h  l fl  hpreds(b) is the set of b’s predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problem
 Solve it with a data flow algorithm Solve it with a data-flow algorithm



Using Available Expressions for GCSEExpressions defined in b
and exposed downward

The Method
1.   block b, compute DEEXPR(b) and EXPRKILL(b)
2    bl ck b  c mpute AVAIL(b)

Expressions killed in b

p

2.   block b, compute AVAIL(b)
3.   block b, value number the block starting from AVAIL(b)
4.  Replace expressions in AVAIL(b) with references

Two key issues
• Computing AVAIL(b)
• Managing the replacement process
We’ll look at the replacement issue first 

Assume, w.l.og, that we can compute available expressions for a procedure.

This annotates each basic block, b, with a set AVAIL(b) that contains all , , ( )
expressions that are available on entry to b.
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Global CSE (replacement step)
Managing the name space

Need a unique name  e  AVAIL(b)
1. Can generate them as replacements are done        (Fortran H)
2. Can compute a static mapping
3 Can encode value numbers into names (Briggs 94)3. Can encode value numbers into names (Briggs 94)

Strategies
1. This works; it is the classic method
2. Fast, but limits replacement to textually identical expressions
3. Requires more analysis (VN), but yields more CSEs

A  l  l ti  2Assume, w.l.o.g., solution 2



Global CSE (replacement step, strategy two)
Compute a static mapping from expression to name
• After analysis & before transformation

 b  e AVAIL(b)  assign e a global name by hashing on e  b, e  AVAIL(b), assign e a global name by hashing on e
• During transformation step

 Evaluation of e  insert copy name(e)  e
R f  t  l   ith ( ) Reference to e  replace e with name(e)

The major problem with this approachCommon strategy:

• Insert copies that might be useful
• Inserts extraneous copies

 At all definitions and uses of any e  AVAIL(b),  b
 Those extra copies are dead and easy to remove

• Insert copies that might be useful

• Let DCE sort them out

Simplifies design & implementation
p y

 The useful ones often coalesce away 
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An Aside on Dead Code Elimination
What does “dead” mean?
• Useless code — result is never used
• Unreachable code code that cannot execute• Unreachable code — code that cannot execute
• Both are lumped together as “dead”

To perform DCE
• Must have a global mechanism to recognize usefulness

M  h   l b l h i   li i  d d • Must have a global mechanism to eliminate unneeded stores
• Must have a global mechanism to simplify control-flow 

predicates
All of these will come later in the course 



Global CSE
Now a three step process
• Compute AVAIL(b),  block b
• Assign unique global names to expressions in AVAIL(b)• Assign unique global names to expressions in AVAIL(b)
• Perform replacement with local value numbering

Earlier in the lecture  we saidEarlier in the lecture, we said

Assume, without loss of  generality, that we can 

N   d t  k  d  th  ti

, g y,
compute available expressions for a procedure.

This annotates each basic block, b, with a set 
AVAIL(b) that contains all expressions that are 
available on entry to bNow, we need to make good on the assumptionavailable on entry to b.



Computing Available Expressions
The Big Picture
1. Build a control-flow graph
2 Gather the initial (local) data DEEXPR(b) & EXPRKILL(b)2. Gather the initial (local) data — DEEXPR(b) & EXPRKILL(b)
3. Propagate information around the graph, evaluating the 

equation
4 P  h  i f i   k  i  f l      ( )4. Post-process the information to make it useful      (if needed)

All data-flow problems are solved, essentially, this way



Computing Available Expressions
For each block b
• Let AVAIL(b) be the set of expressions available on entry to b
• Let EXPRKILL(b) be the set of expression not killed in b• Let EXPRKILL(b) be the set of expression not killed in b
• Let DEEXPR(b) be the set of expressions defined in b and not 

subsequently killed in b 

Now, AVAIL(b) can be defined as:

AVAIL(b)  =  xpred(b) (DEEXPR(x)  (AVAIL(x)  EXPRKILL(x) ))p ( )

preds(b) is the set of b’s predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problemy q p
 Solve it with a data-flow algorithm



Using Available Expressions for GCSE
The Big Picture
1.   block b, compute DEEXPR(b) and EXPRKILL(b)
2    bl ck b  c mpute AVAIL(b)2.   block b, compute AVAIL(b)
3.   block b, value number the block starting from AVAIL(b)
4.  Replace expressions in AVAIL(b) with references



Computing Available Expressions
First step is to compute DEEXPR & EXPRKILL

assume a block b with operations o  o   o
Many data-flow 

bl  h  assume a block b with operations o1, o2, …, ok

VARKILL  Ø
DEEXPR(b)  Ø

problems have 
initial information 
that costs less to 
computeBackward through block

for i = k to 1
assume oi is “x  y + z”
add x to VARKILL

if  (y  VARKILL) and (z  VARKILL) then
O(k) steps

if  (y  VARKILL) and (z  VARKILL) then
add “y + z” to DEEXPR(b)

EXPRKILL(b)  Ø 

For each expression e
for each variable v  e

if  v  VARKILL(b) then
EXPRKILL(b) EXPRKILL(b) { }

O(N) steps
N is # operations

EXPRKILL(b)  EXPRKILL(b)  {e }

*



Computing Available Expressions
The worklist iterative algorithm

Worklist  { all blocks  b }Worklist  { all blocks, bi }

while (Worklist  Ø)
remove a block b from Worklist 
recompute AVAIL(b ) asrecompute AVAIL(b ) as

AVAIL(b)  =  xpred(b) (DEEXPR(x)  (AVAIL(x)  EXPRKILL(x) ))

if  AVAIL(b ) changed then
W kli  W kli  (b )Worklist  Worklist  successors(b )

• Finds fixed point solution to equation for AVAIL

• That solution is unique

• Identical to “meet over all paths” solution

How do we know 
these things?

Identical to meet over all paths  solution

*



Data-flow Analysis
Data-flow analysis is a collection of techniques for 
compile-time reasoning about the run-time flow of values

Al t l  i l  b ildi   h Flow graph• Almost always involves building a graph
 Problems are trivial on a basic block
 Global problems  control-flow graph (or derivative)

Wh l   bl  ll h (  d i ti )

Flow graph

 Whole program problems  call graph (or derivative)
• Usually formulated as a set of simultaneous equations

 Sets attached to nodes and edges
L tti  (  il tti ) t  d ib  l Lattice (or semilattice) to describe values

• Desired result is usually meet over all paths solution
 “What is true on every path from the entry?”

“C  thi  h    th f  th  t ?”

Data-flow problem

 “Can this happen on any path from the entry?”
 Related to the safety of optimization



Data-flow Analysis
Limitations
1.  Precision – “up to symbolic execution”

 Assume all paths are taken Assume all paths are taken
2. Solution – cannot afford to compute MOP solution

 Large class of problems where MOP = MFP= LFP

 Not all problems  of interest are in this class Not all problems  of interest are in this class
3. Arrays – treated naively in classical analysis

 Represent whole array with a single fact
4 Pointers difficult (and expensive) to analyze4. Pointers – difficult (and expensive) to analyze

 Imprecision rapidly adds up
 Need to ask the right questions

Summary Good news:Summary
For scalar values, we can quickly solve simple problemsSimple problems can 

carry us pretty far

*



Computing Available Expressions

AVAIL(b)  =  xpred(b) (DEEXPR(x)  (AVAIL(x)  EXPRKILL(x) ))
h  where 

• EXPRKILL(b) is the set of expression not killed in b, and 
• DEEXPR(b) is the set of downward exposed expressions in b

(defined and not subsequently killed in b) 

Initial conditionIn t al cond t on
AVAIL(n0) = Ø, because nothing is computed before n0

The other node’s AVAIL sets will be computed over their preds.p p
n0 has no predecessor.



Making Theory Concrete

Computing AVAIL for the example
AVAIL(A) = Ø
AVAIL(B) = {a+b}  (Ø  all)m  a + bA
AVAIL(B) = {a+b}  (Ø  all)

= {a+b}
AVAIL(C) = {a+b}
AVAIL(D) = {a+b,c+d}  ({a+b}  all)

n  a + b

p  c + d
r  c + d

B q  a + b
r  c + d

C

= {a+b,c+d} 
AVAIL(E) = {a+b,c+d}
AVAIL(F) = [{b+18,a+b,e+f} 

({a+b,c+d}  {all - e+f})]

e  b + 18
s  a + b
u  e + f

D e  a + 17
t  c + d
u  e + f

E

v  a + b
w  c + d

F
({ , } { })]

 [{a+17,c+d,e+f} 
({a+b,c+d}  {all - e+f})]

= {a+b,c+d,e+f}
AVAIL(G) = [ {c+d}  ({a+b}  all)]

y  a + b
z  c + d

G

w  c + d
x  e + f

AVAIL(G) = [ {c+d}  ({a+b}  all)]
 [{a+b,c+d,e+f} 

({a+b,c+d,e+f}  all)]
= {a+b,c+d}

A B C D E F G
DEEXPR a+b c+d a+b,c+d b+18,a+b,e+f a+17,c+d,e+f a+b,c+d,e+f a+b,c+d
EXPRKILL { } { } { } e+f e+f { } { }

*



Redundancy Elimination Wrap-up
Algorithm Acronym Credits
Local Value Numbering LVN Balke, 1967
Superlocal Value Numbering SVN ManySuperlocal Value Numbering SVN Many
Dominator-based Value Num’g DVNT Simpson, 1996
Global CSE (with AVAIL) GCSE Cocke, 1970
SCC-based Value Numbering† SCCVN/VDCM Simpson, 1996
Partitioning Algorithm† AWZ Alpern et al, 1988

… and there are many others …
Three general approaches

• Hash-based  bottom-up techniquesHash based, bottom up techniques

• Data-flow techniques

• Partitioning

Each has strengths & weaknesses

†We have not seen these ones (yet).

Each has strengths & weaknesses



Making Theory Concrete

Comparing the techniques

A
The VN methods are ordered

m  a + b
n  a + b

A

p  c + d
r  c + d

B q  a + b
r  c + d

C

LVN

LVN

SVN

• LVN ≤ SVN ≤ DVN (≤ SCCVN)

• GRE is different

o Based on names, not value

e  b + 18
s  a + b
u  e + f

D e  a + 17
t  c + d
u  e + f

E

v  a + bF

SVNSVN

DVN

,

o Two phase algorithm

 Analysis

 Replacement

y  a + b
z  c + d

G

v  a + b
w  c + d
x  e + f

F DVN
DVN
GRE

DVN
GRE

p



Redundancy Elimination Wrap-up
Comparisons

On/Off Operates Basis ofp
Name Scope Line On Identity
LVN local online blocks value
SVN superlocal online EBBs value

DVNT regional online dom. Tree value 
GCSE global offline CFG lexicalGCSE global offline CFG lexical

Better results 
in loops

Visits Algebraic
Name per Node Commutes Identities Constants Optimistic
LVN 1 yes yes yes n/a
SVN 1 yes yes yes n/a

DVNT 1 /DVNT 1 yes yes yes n/a
GCSE D(CFG) + 3 no no no no



Redundancy Elimination Wrap-up
The partitioning method based 
on DFA minimization

Generalizations
• Hash-based methods are fastest
• AWZ (& SCCVN) find the most cases• AWZ (& SCCVN) find the most cases
• Expect better results with larger scope

H  did th  d ?

Experimental data
• Ran LVN, SVN, DVNT, AWZ

U d l b l   f  DVNT

How did they do?

 DVNT beat AWZ

 Improvements grew with 

• Used global name space for DVNT
 Requires offline replacement
 Exposes more opportunities

scope

 DVNT vs. SCCVN was ± 1%

 DVNT 6x faster than SCCVN

• Code was compiled with lots of optimization SCCVN 2.5x faster than AWZ

*



Redundancy Elimination Wrap-up
Conclusions
• Redundancy elimination has some depth & subtlety
• Variations on names  algorithms & analysis matter• Variations on names, algorithms & analysis matter
• Compile-time speed does not have to sacrifice code quality

DVNT is probably the method of choiceDVNT is probably the method of choice
• Results quite close to the global methods (± 1%)
• Much lower costs than SCCVN or AWZ



Example |LIVE| = |variables|

Transformation: Eliminating unneeded stores
• e in a register, have seen last definition, never again used
• The store is dead ( t f  d b i )• The store is dead (except for debugging)
• Compiler can eliminate the store

Data-flow problem: Live variables
Form of  f is same as in AVAIL

Data flow problem: Live variables
LIVE(b) = s  succ(b) USED(s)  (LIVE(s)  NOTDEF(s))

• LIVE(b) is the set of variables live on exit from b
• NOTDEF(b) is the set of variables that are not redefined in b
• USED(b) is the set of variables used before redefinition in b

Li  l i  i   b k d fl  bl

Compute as DEF(b) 

Live analysis is a backward flow problem

LIVE plays an important role in 
both register allocation and 
the pruned-SSA construction.

*


