
Cmp Sci 187:
Midterm Review

Based on Lecture Notes

2

What Did We Cover ?

• Basic Java (review)
• Software Design (Phone Directory)
• Correctness and Efficiency:

Exceptions, Testing, Efficiency (Big-O)
• Inheritance and Class Hierarchies
• Lists and the Collection Interface

Building Block for Fundamental Data Structures
• Stacks: Perhaps the Simplest Data Structure
• Queues: The Second Simplest

3

Classes and Objects

• The class is the unit of programming
• A Java program is a collection of classes
• A class describes objects (instances)

• Describes their common characteristics: is a blueprint
• Thus all the instances have these same characteristics

• These characteristics are:
• Data fields for each object
• Methods (operations) that do work on the objects

4

Methods: Referencing and Creating Objects

• You can declare reference variables
• They reference objects of specified types

• Two reference variables can reference the same object
• The new operator creates an instance of a class
• A constructor executes when a new object is created
• Example: String greeting = ″Hello″;

valuegreetings H
e
l
l
oString char []

5

Abstract Data Types, Interfaces

• A major goal of software engineering: write reusable code
• Abstract data type (ADT): data + methods
• A Java interface is a way to specify an ADT

• Names, parameters, return types of methods
• No indication of how achieved (procedural abstraction)
• No representation (data abstraction)

• A class may implement an interface
• Must provide bodies for all methods of the interface

6

Java 5

• Generics
• ArrayList<String> = new ArrayList<String>();

• Inner Classes
• Block Scoping, can make use of fields of outer

class
• Static nested class

• Auto (Un)Boxing
• Primitive <-> wrapped object

7

Exceptions

• Categories of program errors
• Why you should catch exceptions
• The Exception hierarchy

• Checked and unchecked exceptions
• The try-catch-finally sequence
• Throwing an exception:

• What it means
• How to do it

8

The Class Throwable
• Throwable is the superclass of all exceptions
• All exception classes inherit its methods

Throwable

Error Exception

AssertionError
RuntimeExceptionOther Error

Classes
Checked
Exception
Classes

UnChecked
Exception
Classes

9

Efficiency

• Big-O notation
• What it is
• How to use it to analyze an algorithm’s efficiency

10

Efficiency Examples

for (int i = 1; i < n; i *= 2) {
do something with x[i]

}

Sequence is 1, 2, 4, 8, ..., ~n.
Number of iterations = log2n = log n.

11

Inheritance

• Inheritance and how it facilitates code reuse
• How does Java find the “right” method to execute?

• (When more than one has the same name ...)
• Defining and using abstract classes
• Class Object: its methods and how to override them

12

A Superclass and a Subclass

• Consider two classes: Computer and Laptop
• A laptop is a kind of computer: therefore a subclass

variables of Computer
and all subclasses

additional variables for
class Laptop

(and its subclasses)

methods of Computer
and all subclasses

additional Methods for
class Laptop

(and its subclasses)

String maker
String cpu
int ram
int disk

int getRam()
int getDisk()
String toString()

double lcd
double weight

double getlcd()

Computer

Laptop

13

Is-a Versus Has-a Relationships

• Confusing has-a and is-a leads to misusing inheritance
• Model a has-a relationship with an attribute (variable)

public class C { ... private B part; ...}

• Model an is-a relationship with inheritance
• If every C is-a B then model C as a subclass of B
• Show this: in C include extends B:

public class C extends B { ... }

14

Class Object

• Object is the root of the class hierarchy
• Every class has Object as a superclass

• All classes inherit the methods of Object
• But may override them

• boolean equals(Object o)
• String toString()
• int hashCode()
• Object clone()

15

Inheriting from Interfaces vs Classes

• A class can extend 0 or 1 superclass
• Called single inheritance

• An interface cannot extend a class at all
• (Because it is not a class)

• A class or interface can implement 0 or more
interfaces
• Called multiple inheritance

16

Inheritance

• Java does not implement multiple inheritance
• Get some of the advantages of multiple inheritance:

• Interfaces
• Delegation

• Sample class hierarchy: drawable shapes

17

Collection Hierarchy

Collection

Queue

List

AbstractList

AbstractCollection

Iterable

AbstractSequential
Collection Vector ArrayList

StackLinkedList

18

Lists (1)

• The List interface
• Writing an array-based implementation of List
• Linked list data structures:

• Singly-linked
• Doubly-linked
• Circular

• Implementing List with a linked list
• The Iterator interface

• hasNext(), next(), remove()
• Implementing Iterator for a linked list

19

Implementing an ArrayList Class

• KWArrayList: simple implementation of ArrayList
• Physical size of array indicated by data field capacity
• Number of data items indicated by the data field size

0 Size Cap -1

Occupied Available

20

Implementing ArrayList.add(E)

0 Size Cap -1

Occupied Available

0 Size Cap -1

Occupied Available

21

Implementing ArrayList.add(int,E)

0 Size

Occupied Available

index

22

Implementing ArrayList.remove(int)

0 Size

Occupied

23

Linked List

next =
= prev

data = null

Node<String>

next =
= prev

data =

Node<String>

next =
= prev

data =

Node<String>

Tom Sue

String String

DLList<String>

head
size=2

List Node

Element

24

Implementing DLList With a “Dummy” Node

DLList<String>

head =

next =
= prev

data = null

Node<String>

• The “dummy” node is always present
• Eliminates null pointer cases

• Even for an empty list
• Effect is to simplify the code
• Helps for singly-linked and non-circular too

25

Implementing DLList Circularly

DLList<String>

head = next =
= prev

data = null

Node<String>

next =
= prev

data = “Tom”

Node<String>

next =
= prev

data = “Sue”

Node<String>

Next

Prev

Next

Next

Prev

Prev

26

DLList Insertion

DLList<String>

head =
next =

= prev
data = null

Node<String>

next =
= prev

data = “Tom”

Node<String>

next =
= prev

data = “Sue”

Node<String>

Next

Prev

Next

Next Prev

Prev

next =
= prev

data = “Pat”

Node<String>

Prev

Next

27

DLList Removal

DLList<String>

head =
next =

= prev
data = null

Node<String>

next =
= prev

data = “Tom”

Node<String>

next =
= prev

data = “Sue”

Node<String>

Next

Prev

Next

Next Prev

Prev

next =
= prev

data = “Pat”

Node<String>

Prev

Next

28

Stacks

• The Stack<E> data type and its four methods:
• push(E), pop(), peek(), and empty()

• How the Java libraries implement Stack
• How to implement Stack using:

• An array
• A linked list

• Using Stack in applications
• Finding palindromes
• Testing for balanced (properly nested) parentheses
• Evaluating arithmetic expressions

29

PostFix Form

1 + 2 * 3 + 4

Input Stack Output
//1

1 1 //2
+ + //3
2 2 //4
* * //5
3 3 //6
+ === * + //7

+ //8
4 4 //9

+ //10

30

Evaluate Postfix

1 2 3 * + 4 +

Input Stack
//1

1 1 //2
2 2 1 //3
3 3 2 1 //4
* 6 1 //5
+ 7 //6
4 4 7 //7
+ 11 //8

11 //9

31

Queue (1)

• Representing a waiting line, i.e., queue
• FIFO
• The methods of the Queue interface:

offer, remove, poll, peek, and element
• Implement the Queue interface:

• Singly-linked list
• Circular array (a.k.a., circular buffer)
• Doubly-linked list

32

Queue (2)

• Applications of queues:
• Simulating physical systems with waiting lines ...
• Using Queues and random number generators

	Cmp Sci 187:�Midterm Review
	What Did We Cover ?
	Classes and Objects
	Methods: Referencing and Creating Objects
	Abstract Data Types, Interfaces
	Java 5
	Exceptions
	The Class Throwable
	Efficiency
	Efficiency Examples
	Inheritance
	A Superclass and a Subclass
	Is-a Versus Has-a Relationships
	Class Object
	Inheriting from Interfaces vs Classes
	Inheritance
	Collection Hierarchy
	Lists (1)
	Implementing an ArrayList Class
	Implementing ArrayList.add(E)
	Implementing ArrayList.add(int,E)
	Implementing ArrayList.remove(int)
	Linked List
	Implementing DLList With a “Dummy” Node
	Implementing DLList Circularly
	DLList Insertion
	DLList Removal
	Stacks
	PostFix Form
	Evaluate Postfix
	Queue (1)
	Queue (2)

