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Chapter Outline
• The impact of balance on search tree performance
• Balanced binary search trees:

• AVL trees
• Red-Black trees

• Other balanced search trees:
• 2-3 trees
• 2-3-4 trees
• B-trees

• Search and insertion for these trees
• Introduction to removal for them
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Why Balance is Important
• Searches in unbalanced tree can be O(n)
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Rotation
• For self-adjusting, need a binary tree operation that:

• Changes the relative height of left & right subtrees
• While preserving the binary search tree property

• Algorithm for rotation (toward the right):
1. Save value of root.left (temp = root.left)
2. Set root.left to value of root.left.right
3. Set temp.right to root
4. Set root to temp
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Rotation (2)
• Hint: Watch what happens to 10, 15, and 20, below:
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Rotation (3)
• Nodes v and w decrease in height
• Nodes y and z increase in height
• Node x remains at same height
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Adding Rotation To BST

Just add rotation 
methods in this 

subclass
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Coding Rotation
public class BinarySearchTreeWithRotate<

E extends Comparable<E>>
extends BinarySearchTree<E> {

protected Node<E> rotateRight
(Node<E> root) {

Node<E> temp = root.left;
root.left = temp.right;
temp.right = root;
return temp;

}
// rotateLeft is an exercise

}
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AVL Tree
• Add/remove: update balance of each subtree from 

point of change to the root
• Rotation brings unbalanced tree back into balance
• The height of a tree is the number of nodes in the 

longest path from the root to a leaf node
• Height of empty tree is 0:

ht(empty) = 0
• Height of others:

ht(n) = 1+max(ht(n.left), ht(n.right))
• Balance(n) = ht(n.right) – ht(n.left)
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AVL Tree (2)
• The balance of node n = ht(n.right) – ht(n.left)
• In an AVL tree, restrict balance to -1, 0, or +1

• That is, keep nearly balanced at each node
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AVL Tree Insertion
• We consider cases where new node is inserted into 

the left subtree of a node n
• Insertion into right subtree is symmetrical

• Case 1: The left subtree height does not increase
• No action necessary at n

• Case 2: Subtree height increases, balance(n) = +1, 0
• Decrement balance(n) to 0, -1

• Case 3: Subtree height increases, balance(n) = -1
• Need more work to obtain balance (would be -2)
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AVL Tree Insertion: Rebalancing
These are the cases:
• Case 3a: Left subtree of left child grew:

Left-left heavy tree
• Case 3b: Right subtree of left child grew:

Left-right heavy tree
• Can be caused by height increase in either the left 

or right subtree of the right child of the left child
• That is, left-right-left heavy or left-right-right heavy
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Rebalancing a Left-Left Tree
• Actual heights of subtrees are unimportant

• Only difference in height matters when balancing
• In left-left tree, root and left subtree are left-heavy
• One right rotation regains balance
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h = k

h = k h = kh = kh = k+1

h = k+1



Chapter 11: Self-Balancing Search Trees 14

Rebalancing a Left-Right Tree
• Root is left-heavy, left subtree is right-heavy

• A simple right rotation cannot fix this

• Need:
• Left rotation around child, then
• Right rotation around root
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Rebalancing Left-Right Tree (2)
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Rebalancing Left-Right Tree (3)
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Rebalancing Left-Right Tree (4)
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4 Critically Unbalanced Trees
• Left-Left (parent balance is -2, left child balance is -1)

• Rotate right around parent
• Left-Right (parent balance -2, left child balance +1)

• Rotate left around child
• Rotate right around parent

• Right-Right (parent balance +2, right child balance +1)
• Rotate left around parent

• Right-Left (parent balance +2, right child balance -1)
• Rotate right around child
• Rotate left around parent
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Implementing an AVL Tree

Add boolean 
flag to indicate 
height increase

Add +1/0/-1 
balance 
indicator
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Code for AVL Tree
public class AVLTree

<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {

private boolean increase;

private boolean decrease; // for remove

...
}
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Code for AVL Tree (2)
public static class AVLNode<E>

extends Node<E> {
public static final int LEFT_HEAVY = -1;
public static final int BALANCED   =  0;
public static final int RIGHT_HEAVY = 1;

private int balance = BALANCED;

public AVLNode (E e) { super(e); }
public String toString () {
return balance+“: “+super.toString();

}
}
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Code for AVL Tree (3)
// AVLTree:
public boolean add (E e) {
increase = false;
root = add((AVLNode<E>)root, e);
return addReturn;

}
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Code for AVL Tree (4)
// AVLNode:
private AVLNode<E> add

(AVLNode<E> r, E e) {
if (r == null) { // empty tree
addReturn = true;
increase = true;
return new AVLNode<E>(e);

}
if (e.compareTo(r.data) == 0) {//present
increase = false;
addReturn = false;
return r;

}
...
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Code for AVL Tree (5)
// AVLNode:
private AVLNode<E> add

(AVLNode<E> r, E e) {  ...
if (e.compareTo(r.data) < 0) { // left
r.left = add((AVLNode<E>)r.left, e);
if (increase) {
decrementBalance(r);
if (r.balance < AVLNode.LEFT_HEAVY){
increase = false;
return rebalanceLeft(r);

}
}
return r;

} ... //symmetrical for right subtree
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Code for AVL Tree (6)
// AVLTree:
private void decrementBalance

(AVLNode<E> n) {
n.balance--;
if (n.balance = AVLNode.BALANCED) {
increase = false;

}
}
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Code for AVL Tree (7)
// AVLTree:
private AVLNode<E> rebalanceLeft

(AVLNode<E> r) {
AVLNode<E> lc = (AVLNode<E>)r.left;
if (lc.balance > AVLNode.BALANCED) {
... // left-right heavy

} else { // left-left heavy
lc.balance = AVLNode.BALANCED;
r.balance  = AVLNode.BALANCED;

}
return (AVLNode<E>)rotateRight(r);

}
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Code for AVL Tree (7)
// AVLTree.rebalanceLeft
// left-right heavy case
AVLNode<E> lrc = (AVLNode<E>)lc.right; 
if (lrc.balance < AVLNode.BALANCED) {
lrc.balance = AVLNode.BALANCED;
lc.balance  = AVLNode.BALANCED;
r.balance   = AVLNode.RIGHT_HEAVY;

} else {
lrc.balance = AVLNode.BALANCED;
lc.balance  = AVLNode.LEFT_HEAVY;
r.balance   = AVLNode.BALANCED;

}
r.left = rotateLeft(lc);
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Removal from AVL Trees
• Add a field called decrease to note height change
• Adjust the local node’s balance

• Rebalance as necessary
• The balance changed and balancing methods must 

set decrease appropriately
• Actual removal is as for binary search tree

• Involves moving values, and
• Deleting a suitable leaf node
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Performance of AVL Trees

• Worst case height: 1.44 ⎡log n⎤

• Thus, lookup, insert, remove all O(log n)

• Empirical cost is 0.25 + log n comparisons to insert
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Red-Black Trees
• Rudolf Bayer: red-black is special case of his B-tree
• A node is either red or black
• The root is always black
• A red node always has black children
• # black nodes in any path from root to leaf is the same
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Red-Black Trees
• A red node always has black children
• This rule means length of longest root-to-leaf path is at 

most 2 x length of shortest one
• Still a binary search tree

• Different kind of balance from AVL tree
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Insertion into a Red-Black Tree
• Binary search tree algorithm finds insertion point
• A new leaf starts with color red

• If parent is black, we are done
• Otherwise, must do some rearranging

• If parent has a red sibling:
– flip parent and sibling to black
– flip grandparent to red
– maintains # black on path to root
– may require further work: repeat on higher level
– if grandparent is root, leave it black
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Insertion into Red-Black Tree (2)
• If parent has no sibling: swap parent-grandparent 

colors, and then rotate right around grandparent
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Insertion into Red-Black Tree (3)
• Rotation doesn’t work in right-left case, so

• Rotate right at parent, then proceed as before:
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Insertion into Red-Black Tree (4)
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Insertion into Red-Black Tree (5)
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Implementing Red-Black Trees

Add 
isRed 
flag
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Red-Black Tree Insert Algorithm
public class RedBlackTree

<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {

private static class RBNode<E>
extends Node<E> {

private boolean isRed = true;
public RBNode (E e) { super(e); }
public String toString () {
return (isRed ? “R: “ : “B: “) +
super.toString();

}
}  ...
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Red-Black Tree Code
public class RedBlackTree

<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {

private static class RBNode<E>
extends Node<E> {

private boolean isRed = true;
public RBNode (E e) { super(e); }
public String toString () {
return (isRed ? “R: “ : “B: “) +
super.toString();

}
}  ...
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Red-Black Tree Code (2)
public boolean add (E e) {
if (root == null) {
root = new RBNode<E>(e);
((RBNode<E>)root).isRed = false;
return true;

} else {
root = add((RBNode<E>)root, e);
((RBNode<E>)root).isRed = false;
return addReturn;

}
}
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Red-Black Tree Code (3)
private Node<E> add (RBNode<E> r, E e) {
if (e.compareTo(r.data) == 0) {
addReturn = false;
return r;

} else if (e.compareTo(r.data) < 0) {
if (r.left == null) {
r.left = new RBNode<E>(e);
addReturn = true;
return r;

} else {
// continued on next slide
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Red-Black Tree Code (4)
moveBlackDown(r);
r.left = add((RBNode<E>)r.left, e);
if (((RBNode<E>)r.left).isRed) {
if (r.left.left != null &&

((RBNode<E>)r.left.left).isRed) {
// left-left grandchild also red
// swap colors and rotate right
((RBNode<E>)r.left).isRed = false;
r.isRed = true;
return rotateRight(r);

} else if (r.left.right != null &&
((RBNode<E>)r.left.right).isRed) {
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Red-Black Tree Code (5)
// both grandchildren red:
r.left = rotateLeft(r.left);
((RBNode<E>)r.left).isRed = false;
r.isRed = true;
return rotateRight(r);

}
// other case:
//   if left child black after recursion:
//     done, nothing more needed
//   likewise if neither grandchild is red

// going right is a whole symmetric case 
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Red-Black Tree Performance
• Maximum height is 2 + 2 log n
• So lookup, insertion, removal are all O(log n)
• Average performance on random values:

1.002 log n        (empirical measurement)

• Java API TreeMap and TreeSet use red-black trees
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2-3, 2-3-4, and B- Trees
• These are not binary search trees ....
• Because they are not necessarily binary
• They maintain all leaves at same depth

• But number of children can vary
• 2-3 tree: 2 or 3 children
• 2-3-4 tree: 2, 3, or 4 children
• B-tree: B/2 to B children (roughly)
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2-3 Trees
• 2-3 tree named for # of possible children of each nod
• Each node designated as either 2-node or 3-node
• A 2-node is the same as a binary search tree node
• A 3-node contains two data fields, first < second,
• and references to three children:

• First holds values < first data field
• Second holds values between the two data fields
• Third holds values > second data field

• All of the leaves are at the (same) lowest level
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Searching a 2-3 Tree
1. if r is null, return null (not in tree)
2. if r is a 2-node
3. if item equals data1, return data1
4. if item < data1, search left subtree
5. else search right subtree
6. else // r is a 3-node
7. if item < data1, search left subtree
8. if item = data1, return data1
9. if item < data2, search middle subtree
10. if item = data2, return data 2
11. else search right subtree
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Inserting into a 2-3 Tree
• Inserting into a 2-node just converts it to a 3-node
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Inserting into a 2-3 Tree (2)
• Insertion into a 3-node with a 2-node parent

• Convert parent to 3-node:
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Inserting into a 2-3 Tree (3)



Chapter 11: Self-Balancing Search Trees 51

Inserting into a 2-3 Tree (4)
• Inserting into 3-node with 3-node parent:

• “Overload” parent, and repeat process higher up:
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Insert Algorithm for 2-3 Tree
1. if r is null, return new 2-node with item as data
2. if item matches r.data1 or r.data2, return false
3. if r is a leaf
4. if r is a 2-node, expand to 3-node and return it
5. split into two 2-nodes and pass them back up
6. else
7. recursively insert into appropriate child tree
8. if new parent passed back up
9. if will be tree root, create and use new 2-node
10. else recursively insert parent in r
11.return true
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2-3 Tree Performance
• If height is h, number of nodes in range 2h-1 to 3h-1
• height in terms of # nodes n in range log2 n to log3 n
• This is O(log n), since log base affects by constant 

factor
• So all operations are O(log n)
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Removal from a 2-3 Tree
• Removing from a 2-3 tree is the reverse of insertion
• If the item in a leaf, simply delete it
• If not in a leaf

• Swap it with its inorder predecessor in a leaf
• Then delete it from the leaf node
• Redistribute nodes between siblings and parent
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Removal from a 2-3 Tree (2)
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Removal from a 2-3 Tree (3)
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Removal from a 2-3 Tree (4)
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2-3-4 and B-Trees
• 2-3 tree was inspiration for more general B-tree

• It allows up to n children per node
• B-tree designed for indexes to very large databases

• Stored on disk
• 2-3-4 tree is specialization of B-tree: n = 4
• A Red-Black tree is a 2-3-4 tree in a binary-tree format

• 2-node = black node
• 4-node = black node with two red children
• 3-node = black node with one red child
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2-3-4 Trees
• Expand on the idea of 2-3 trees by adding the 4-node
• Addition of this third item simplifies the insertion logic
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2-3-4 Trees (2)
• Addition of this third item simplifies the insertion logic
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2-3-4 Trees (3)
• Insert new item after splitting:



Chapter 11: Self-Balancing Search Trees 62

Algorithm for 2-3-4 Tree Insert
1. if root is null, create new 2-node for item, return true
2. if root is 4-node
3. split into two 2-node, with middle value new root
4. set index to 0
5. while item < data[index], increment index
6. if items equals data[index], return false
7. if child[index] is null
8. insert into node at index, moving existing right
9. else if child[index] does not reference a 4-node
10. recurse on child[index]
11. // continued on next slide
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Algorithm for 2-3-4 Tree Insert
11.else // child[index] is a 4-node
12. split child[index]
13. insert new parent into node at index
14. if new parent equals item, return false
15. if item < new parent, search child[index]
16. else search child[index+1]
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B-Trees
• B-tree extends idea behind 2-3 and 2-3-4 trees:

• Allowa a maximum of CAP data items in each node
• Order of a B-tree is maximum # of children for a node
• B-trees developed for indexes to databases on disk
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B-Tree Insertion

new value = 17
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