
Self-Balancing Search Trees

Based on Chapter 11 of
Koffmann and Wolfgang

Chapter 11: Self-Balancing Search Trees 2

Chapter Outline
• The impact of balance on search tree performance
• Balanced binary search trees:

• AVL trees
• Red-Black trees

• Other balanced search trees:
• 2-3 trees
• 2-3-4 trees
• B-trees

• Search and insertion for these trees
• Introduction to removal for them

Chapter 11: Self-Balancing Search Trees 3

Why Balance is Important
• Searches in unbalanced tree can be O(n)

Chapter 11: Self-Balancing Search Trees 4

Rotation
• For self-adjusting, need a binary tree operation that:

• Changes the relative height of left & right subtrees
• While preserving the binary search tree property

• Algorithm for rotation (toward the right):
1. Save value of root.left (temp = root.left)
2. Set root.left to value of root.left.right
3. Set temp.right to root
4. Set root to temp

Chapter 11: Self-Balancing Search Trees 5

Rotation (2)
• Hint: Watch what happens to 10, 15, and 20, below:

Chapter 11: Self-Balancing Search Trees 6

Rotation (3)
• Nodes v and w decrease in height
• Nodes y and z increase in height
• Node x remains at same height

y

v

w

x

z

w

v y

x z

Chapter 11: Self-Balancing Search Trees 7

Adding Rotation To BST

Just add rotation
methods in this

subclass

Chapter 11: Self-Balancing Search Trees 8

Coding Rotation
public class BinarySearchTreeWithRotate<

E extends Comparable<E>>
extends BinarySearchTree<E> {

protected Node<E> rotateRight
(Node<E> root) {

Node<E> temp = root.left;
root.left = temp.right;
temp.right = root;
return temp;

}
// rotateLeft is an exercise

}

Chapter 11: Self-Balancing Search Trees 9

AVL Tree
• Add/remove: update balance of each subtree from

point of change to the root
• Rotation brings unbalanced tree back into balance
• The height of a tree is the number of nodes in the

longest path from the root to a leaf node
• Height of empty tree is 0:

ht(empty) = 0
• Height of others:

ht(n) = 1+max(ht(n.left), ht(n.right))
• Balance(n) = ht(n.right) – ht(n.left)

Chapter 11: Self-Balancing Search Trees 10

AVL Tree (2)
• The balance of node n = ht(n.right) – ht(n.left)
• In an AVL tree, restrict balance to -1, 0, or +1

• That is, keep nearly balanced at each node

Chapter 11: Self-Balancing Search Trees 11

AVL Tree Insertion
• We consider cases where new node is inserted into

the left subtree of a node n
• Insertion into right subtree is symmetrical

• Case 1: The left subtree height does not increase
• No action necessary at n

• Case 2: Subtree height increases, balance(n) = +1, 0
• Decrement balance(n) to 0, -1

• Case 3: Subtree height increases, balance(n) = -1
• Need more work to obtain balance (would be -2)

Chapter 11: Self-Balancing Search Trees 12

AVL Tree Insertion: Rebalancing
These are the cases:
• Case 3a: Left subtree of left child grew:

Left-left heavy tree
• Case 3b: Right subtree of left child grew:

Left-right heavy tree
• Can be caused by height increase in either the left

or right subtree of the right child of the left child
• That is, left-right-left heavy or left-right-right heavy

Chapter 11: Self-Balancing Search Trees 13

Rebalancing a Left-Left Tree
• Actual heights of subtrees are unimportant

• Only difference in height matters when balancing
• In left-left tree, root and left subtree are left-heavy
• One right rotation regains balance

h = k+1

h = k+2

h = k

h = k h = kh = kh = k+1

h = k+1

Chapter 11: Self-Balancing Search Trees 14

Rebalancing a Left-Right Tree
• Root is left-heavy, left subtree is right-heavy

• A simple right rotation cannot fix this

• Need:
• Left rotation around child, then
• Right rotation around root

Chapter 11: Self-Balancing Search Trees 15

Rebalancing Left-Right Tree (2)

h = k

h = k

h = k+1

h = k+2

Chapter 11: Self-Balancing Search Trees 16

Rebalancing Left-Right Tree (3)

k

k+1

k+1

k+1

k+2

k+3

k+1k+1 k+1 k+1

k
k

k+1

k+1

k+2

k+3
k+2

k+2

Chapter 11: Self-Balancing Search Trees 17

Rebalancing Left-Right Tree (4)

k k
k

k+1

k+1

k+1

k+1

k+1

k+1

k+1 k+1 k+1

k+2k+2

k+2
k+2

k+3 k+3

Chapter 11: Self-Balancing Search Trees 18

4 Critically Unbalanced Trees
• Left-Left (parent balance is -2, left child balance is -1)

• Rotate right around parent
• Left-Right (parent balance -2, left child balance +1)

• Rotate left around child
• Rotate right around parent

• Right-Right (parent balance +2, right child balance +1)
• Rotate left around parent

• Right-Left (parent balance +2, right child balance -1)
• Rotate right around child
• Rotate left around parent

Chapter 11: Self-Balancing Search Trees 19

Implementing an AVL Tree

Add boolean
flag to indicate
height increase

Add +1/0/-1
balance
indicator

Chapter 11: Self-Balancing Search Trees 20

Code for AVL Tree
public class AVLTree

<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {

private boolean increase;

private boolean decrease; // for remove

...
}

Chapter 11: Self-Balancing Search Trees 21

Code for AVL Tree (2)
public static class AVLNode<E>

extends Node<E> {
public static final int LEFT_HEAVY = -1;
public static final int BALANCED = 0;
public static final int RIGHT_HEAVY = 1;

private int balance = BALANCED;

public AVLNode (E e) { super(e); }
public String toString () {
return balance+“: “+super.toString();

}
}

Chapter 11: Self-Balancing Search Trees 22

Code for AVL Tree (3)
// AVLTree:
public boolean add (E e) {
increase = false;
root = add((AVLNode<E>)root, e);
return addReturn;

}

Chapter 11: Self-Balancing Search Trees 23

Code for AVL Tree (4)
// AVLNode:
private AVLNode<E> add

(AVLNode<E> r, E e) {
if (r == null) { // empty tree
addReturn = true;
increase = true;
return new AVLNode<E>(e);

}
if (e.compareTo(r.data) == 0) {//present
increase = false;
addReturn = false;
return r;

}
...

Chapter 11: Self-Balancing Search Trees 24

Code for AVL Tree (5)
// AVLNode:
private AVLNode<E> add

(AVLNode<E> r, E e) { ...
if (e.compareTo(r.data) < 0) { // left
r.left = add((AVLNode<E>)r.left, e);
if (increase) {
decrementBalance(r);
if (r.balance < AVLNode.LEFT_HEAVY){
increase = false;
return rebalanceLeft(r);

}
}
return r;

} ... //symmetrical for right subtree

Chapter 11: Self-Balancing Search Trees 25

Code for AVL Tree (6)
// AVLTree:
private void decrementBalance

(AVLNode<E> n) {
n.balance--;
if (n.balance = AVLNode.BALANCED) {
increase = false;

}
}

Chapter 11: Self-Balancing Search Trees 26

Code for AVL Tree (7)
// AVLTree:
private AVLNode<E> rebalanceLeft

(AVLNode<E> r) {
AVLNode<E> lc = (AVLNode<E>)r.left;
if (lc.balance > AVLNode.BALANCED) {
... // left-right heavy

} else { // left-left heavy
lc.balance = AVLNode.BALANCED;
r.balance = AVLNode.BALANCED;

}
return (AVLNode<E>)rotateRight(r);

}

Chapter 11: Self-Balancing Search Trees 27

Code for AVL Tree (7)
// AVLTree.rebalanceLeft
// left-right heavy case
AVLNode<E> lrc = (AVLNode<E>)lc.right;
if (lrc.balance < AVLNode.BALANCED) {
lrc.balance = AVLNode.BALANCED;
lc.balance = AVLNode.BALANCED;
r.balance = AVLNode.RIGHT_HEAVY;

} else {
lrc.balance = AVLNode.BALANCED;
lc.balance = AVLNode.LEFT_HEAVY;
r.balance = AVLNode.BALANCED;

}
r.left = rotateLeft(lc);

Chapter 11: Self-Balancing Search Trees 28

Removal from AVL Trees
• Add a field called decrease to note height change
• Adjust the local node’s balance

• Rebalance as necessary
• The balance changed and balancing methods must

set decrease appropriately
• Actual removal is as for binary search tree

• Involves moving values, and
• Deleting a suitable leaf node

Chapter 11: Self-Balancing Search Trees 29

Performance of AVL Trees

• Worst case height: 1.44 ⎡log n⎤

• Thus, lookup, insert, remove all O(log n)

• Empirical cost is 0.25 + log n comparisons to insert

Chapter 11: Self-Balancing Search Trees 30

Red-Black Trees
• Rudolf Bayer: red-black is special case of his B-tree
• A node is either red or black
• The root is always black
• A red node always has black children
• # black nodes in any path from root to leaf is the same

Chapter 11: Self-Balancing Search Trees 31

Red-Black Trees
• A red node always has black children
• This rule means length of longest root-to-leaf path is at

most 2 x length of shortest one
• Still a binary search tree

• Different kind of balance from AVL tree

Chapter 11: Self-Balancing Search Trees 32

Insertion into a Red-Black Tree
• Binary search tree algorithm finds insertion point
• A new leaf starts with color red

• If parent is black, we are done
• Otherwise, must do some rearranging

• If parent has a red sibling:
– flip parent and sibling to black
– flip grandparent to red
– maintains # black on path to root
– may require further work: repeat on higher level
– if grandparent is root, leave it black

Chapter 11: Self-Balancing Search Trees 33

Insertion into Red-Black Tree (2)
• If parent has no sibling: swap parent-grandparent

colors, and then rotate right around grandparent

Chapter 11: Self-Balancing Search Trees 34

Insertion into Red-Black Tree (3)
• Rotation doesn’t work in right-left case, so

• Rotate right at parent, then proceed as before:

Chapter 11: Self-Balancing Search Trees 35

Insertion into Red-Black Tree (4)

Chapter 11: Self-Balancing Search Trees 36

Insertion into Red-Black Tree (5)

Chapter 11: Self-Balancing Search Trees 37

Implementing Red-Black Trees

Add
isRed
flag

Chapter 11: Self-Balancing Search Trees 38

Red-Black Tree Insert Algorithm
public class RedBlackTree

<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {

private static class RBNode<E>
extends Node<E> {

private boolean isRed = true;
public RBNode (E e) { super(e); }
public String toString () {
return (isRed ? “R: “ : “B: “) +
super.toString();

}
} ...

Chapter 11: Self-Balancing Search Trees 39

Red-Black Tree Code
public class RedBlackTree

<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {

private static class RBNode<E>
extends Node<E> {

private boolean isRed = true;
public RBNode (E e) { super(e); }
public String toString () {
return (isRed ? “R: “ : “B: “) +
super.toString();

}
} ...

Chapter 11: Self-Balancing Search Trees 40

Red-Black Tree Code (2)
public boolean add (E e) {
if (root == null) {
root = new RBNode<E>(e);
((RBNode<E>)root).isRed = false;
return true;

} else {
root = add((RBNode<E>)root, e);
((RBNode<E>)root).isRed = false;
return addReturn;

}
}

Chapter 11: Self-Balancing Search Trees 41

Red-Black Tree Code (3)
private Node<E> add (RBNode<E> r, E e) {
if (e.compareTo(r.data) == 0) {
addReturn = false;
return r;

} else if (e.compareTo(r.data) < 0) {
if (r.left == null) {
r.left = new RBNode<E>(e);
addReturn = true;
return r;

} else {
// continued on next slide

Chapter 11: Self-Balancing Search Trees 42

Red-Black Tree Code (4)
moveBlackDown(r);
r.left = add((RBNode<E>)r.left, e);
if (((RBNode<E>)r.left).isRed) {
if (r.left.left != null &&

((RBNode<E>)r.left.left).isRed) {
// left-left grandchild also red
// swap colors and rotate right
((RBNode<E>)r.left).isRed = false;
r.isRed = true;
return rotateRight(r);

} else if (r.left.right != null &&
((RBNode<E>)r.left.right).isRed) {

Chapter 11: Self-Balancing Search Trees 43

Red-Black Tree Code (5)
// both grandchildren red:
r.left = rotateLeft(r.left);
((RBNode<E>)r.left).isRed = false;
r.isRed = true;
return rotateRight(r);

}
// other case:
// if left child black after recursion:
// done, nothing more needed
// likewise if neither grandchild is red

// going right is a whole symmetric case

Chapter 11: Self-Balancing Search Trees 44

Red-Black Tree Performance
• Maximum height is 2 + 2 log n
• So lookup, insertion, removal are all O(log n)
• Average performance on random values:

1.002 log n (empirical measurement)

• Java API TreeMap and TreeSet use red-black trees

Chapter 11: Self-Balancing Search Trees 45

2-3, 2-3-4, and B- Trees
• These are not binary search trees
• Because they are not necessarily binary
• They maintain all leaves at same depth

• But number of children can vary
• 2-3 tree: 2 or 3 children
• 2-3-4 tree: 2, 3, or 4 children
• B-tree: B/2 to B children (roughly)

Chapter 11: Self-Balancing Search Trees 46

2-3 Trees
• 2-3 tree named for # of possible children of each nod
• Each node designated as either 2-node or 3-node
• A 2-node is the same as a binary search tree node
• A 3-node contains two data fields, first < second,
• and references to three children:

• First holds values < first data field
• Second holds values between the two data fields
• Third holds values > second data field

• All of the leaves are at the (same) lowest level

Chapter 11: Self-Balancing Search Trees 47

Searching a 2-3 Tree
1. if r is null, return null (not in tree)
2. if r is a 2-node
3. if item equals data1, return data1
4. if item < data1, search left subtree
5. else search right subtree
6. else // r is a 3-node
7. if item < data1, search left subtree
8. if item = data1, return data1
9. if item < data2, search middle subtree
10. if item = data2, return data 2
11. else search right subtree

Chapter 11: Self-Balancing Search Trees 48

Inserting into a 2-3 Tree
• Inserting into a 2-node just converts it to a 3-node

Chapter 11: Self-Balancing Search Trees 49

Inserting into a 2-3 Tree (2)
• Insertion into a 3-node with a 2-node parent

• Convert parent to 3-node:

Chapter 11: Self-Balancing Search Trees 50

Inserting into a 2-3 Tree (3)

Chapter 11: Self-Balancing Search Trees 51

Inserting into a 2-3 Tree (4)
• Inserting into 3-node with 3-node parent:

• “Overload” parent, and repeat process higher up:

Chapter 11: Self-Balancing Search Trees 52

Insert Algorithm for 2-3 Tree
1. if r is null, return new 2-node with item as data
2. if item matches r.data1 or r.data2, return false
3. if r is a leaf
4. if r is a 2-node, expand to 3-node and return it
5. split into two 2-nodes and pass them back up
6. else
7. recursively insert into appropriate child tree
8. if new parent passed back up
9. if will be tree root, create and use new 2-node
10. else recursively insert parent in r
11.return true

Chapter 11: Self-Balancing Search Trees 53

2-3 Tree Performance
• If height is h, number of nodes in range 2h-1 to 3h-1
• height in terms of # nodes n in range log2 n to log3 n
• This is O(log n), since log base affects by constant

factor
• So all operations are O(log n)

Chapter 11: Self-Balancing Search Trees 54

Removal from a 2-3 Tree
• Removing from a 2-3 tree is the reverse of insertion
• If the item in a leaf, simply delete it
• If not in a leaf

• Swap it with its inorder predecessor in a leaf
• Then delete it from the leaf node
• Redistribute nodes between siblings and parent

Chapter 11: Self-Balancing Search Trees 55

Removal from a 2-3 Tree (2)

Chapter 11: Self-Balancing Search Trees 56

Removal from a 2-3 Tree (3)

Chapter 11: Self-Balancing Search Trees 57

Removal from a 2-3 Tree (4)

Chapter 11: Self-Balancing Search Trees 58

2-3-4 and B-Trees
• 2-3 tree was inspiration for more general B-tree

• It allows up to n children per node
• B-tree designed for indexes to very large databases

• Stored on disk
• 2-3-4 tree is specialization of B-tree: n = 4
• A Red-Black tree is a 2-3-4 tree in a binary-tree format

• 2-node = black node
• 4-node = black node with two red children
• 3-node = black node with one red child

Chapter 11: Self-Balancing Search Trees 59

2-3-4 Trees
• Expand on the idea of 2-3 trees by adding the 4-node
• Addition of this third item simplifies the insertion logic

Chapter 11: Self-Balancing Search Trees 60

2-3-4 Trees (2)
• Addition of this third item simplifies the insertion logic

Chapter 11: Self-Balancing Search Trees 61

2-3-4 Trees (3)
• Insert new item after splitting:

Chapter 11: Self-Balancing Search Trees 62

Algorithm for 2-3-4 Tree Insert
1. if root is null, create new 2-node for item, return true
2. if root is 4-node
3. split into two 2-node, with middle value new root
4. set index to 0
5. while item < data[index], increment index
6. if items equals data[index], return false
7. if child[index] is null
8. insert into node at index, moving existing right
9. else if child[index] does not reference a 4-node
10. recurse on child[index]
11. // continued on next slide

Chapter 11: Self-Balancing Search Trees 63

Algorithm for 2-3-4 Tree Insert
11.else // child[index] is a 4-node
12. split child[index]
13. insert new parent into node at index
14. if new parent equals item, return false
15. if item < new parent, search child[index]
16. else search child[index+1]

Chapter 11: Self-Balancing Search Trees 64

B-Trees
• B-tree extends idea behind 2-3 and 2-3-4 trees:

• Allowa a maximum of CAP data items in each node
• Order of a B-tree is maximum # of children for a node
• B-trees developed for indexes to databases on disk

Chapter 11: Self-Balancing Search Trees 65

B-Tree Insertion

new value = 17

	Self-Balancing Search Trees
	Chapter Outline
	Why Balance is Important
	Rotation
	Rotation (2)
	Rotation (3)
	Adding Rotation To BST
	Coding Rotation
	AVL Tree
	AVL Tree (2)
	AVL Tree Insertion
	AVL Tree Insertion: Rebalancing
	Rebalancing a Left-Left Tree
	Rebalancing a Left-Right Tree
	Rebalancing Left-Right Tree (2)
	Rebalancing Left-Right Tree (3)
	Rebalancing Left-Right Tree (4)
	4 Critically Unbalanced Trees
	Implementing an AVL Tree
	Code for AVL Tree
	Code for AVL Tree (2)
	Code for AVL Tree (3)
	Code for AVL Tree (4)
	Code for AVL Tree (5)
	Code for AVL Tree (6)
	Code for AVL Tree (7)
	Code for AVL Tree (7)
	Removal from AVL Trees
	Performance of AVL Trees
	Red-Black Trees
	Red-Black Trees
	Insertion into a Red-Black Tree
	Insertion into Red-Black Tree (2)
	Insertion into Red-Black Tree (3)
	Insertion into Red-Black Tree (4)
	Insertion into Red-Black Tree (5)
	Implementing Red-Black Trees
	Red-Black Tree Insert Algorithm
	Red-Black Tree Code
	Red-Black Tree Code (2)
	Red-Black Tree Code (3)
	Red-Black Tree Code (4)
	Red-Black Tree Code (5)
	Red-Black Tree Performance
	2-3, 2-3-4, and B- Trees
	2-3 Trees
	Searching a 2-3 Tree
	Inserting into a 2-3 Tree
	Inserting into a 2-3 Tree (2)
	Inserting into a 2-3 Tree (3)
	Inserting into a 2-3 Tree (4)
	Insert Algorithm for 2-3 Tree
	2-3 Tree Performance
	Removal from a 2-3 Tree
	Removal from a 2-3 Tree (2)
	Removal from a 2-3 Tree (3)
	Removal from a 2-3 Tree (4)
	2-3-4 and B-Trees
	2-3-4 Trees
	2-3-4 Trees (2)
	2-3-4 Trees (3)
	Algorithm for 2-3-4 Tree Insert
	Algorithm for 2-3-4 Tree Insert
	B-Trees
	B-Tree Insertion

