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Chapter Outline

The impact of balance on search tree performance
Balanced binary search trees:

 AVL trees

 Red-Black trees

Other balanced search trees:

e 2-3 trees

o 2-3-4 trees

e B-trees

Search and insertion for these trees

Introduction to removal for them
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Why Balance Is Important

e Searches in unbalanced tree can be O(n)

FIGURE 11.1
Very Linbalanced
Binary Search Tree
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Rotation

* For self-adjusting, need a binary tree operation that:
 Changes the relative height of left & right subtrees
 While preserving the binary search tree property

e Algorithm for rotation (toward the right):
Save value of root. left (temp = root.left)

Set root. leftto value of root.left.right
Set temp.rightto root
Set root to temp

> w e
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Rotation (2)
« Hint: Watch what happens to 10, 15, and 20, below:

FIGURE 11.3 FIGURE 11.4 FIGURE 11.5
Unbalanced Tree Before Rotation Right Rotation More Balanced Tree After Rotation
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e NOC
e NOC

 NOC

Rotation (3)

es v and w decrease in height
es y and z increase Iin height
e X remains at same height

A
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Adding Rotation To BST

FIGURE 11.8
LIML Diagram of BinarySearchTreeWithRotate
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+ delete(Comparaklel laft right
+ removelObject]
e EinarySearchTree
# addReturn
# deleteReturn
+ add{Object)
+ contains(Object)
+ find{Comparakle)
+ deleteilComparablel
+ remove(Object] .
Just add rotation
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BinarySearchTreeWi thRotate

# rotatelLeft()
# rotateRighti)
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Coding Rotation

public class BinarySearchTreeWithRotate<
E extends Comparable<E>>
extends BinarySearchTree<kE> {

protected Node<E> rotateRight
(Node<E> root) {
Node<E> temp = root.left;
root.left = temp.right;
temp.right = root;
return temp;

¥

// rotateLeft 1s an exercise

L
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AVL Tree

Add/remove: update balance of each subtree from
point of change to the root

Rotation brings unbalanced tree back into balance

The height of a tree is the number of nodes Iin the
longest path from the root to a leaf node

* Height of empty tree is O:

ht(empty) =0
* Height of others:

ht(n) = 1+max(ht(n.left), ht(n.right))
Balance(n) = ht(n.right) — ht(n.left)
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AVL Tree (2)

 The balance of node n = ht(n.right) — ht(n.left)
e In an AVL tree, restrict balance to -1, O, or +1
e That Is, keep nearly balanced at each node
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AVL Tree Insertion

We consider cases where new node Is inserted into
the left subtree of a node n

 |Insertion into right subtree is symmetrical

Case 1: The left subtree height does not increase
 NO action necessary at n

Case 2: Subtree height increases, balance(n) = +1, 0
 Decrement balance(n) to 0, -1

Case 3: Subtree height increases, balance(n) = -1
 Need more work to obtain balance (would be -2)
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AVL Tree Insertion: Rebalancing

These are the cases:

 Case 3a: Left subtree of left child grew:
Left-left heavy tree

 Case 3b: Right subtree of left child grew:
Left-right heavy tree

e Can be caused by height increase in either the left
or right subtree of the right child of the left child

* That Is, left-right-left heavy or left-right-right heavy
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Rebalancing a Left-Left Tree

« Actual heights of subtrees are unimportant

* Only difference in height matters when balancing
* |n left-left tree, root and left subtree are left-heavy
* One right rotation regains balance

FIGURE 1.9 FIGURE 11.10

Left-Heavy Tree Left-Heawvy Tree After Rotation Right
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Rebalancing a Left-Right Tree

 Root Is left-heavy, left subtree is right-heavy

* A simple right rotation cannot fix this

e Need:
o Left rotation around child, then
 Right rotation around root
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Rebalancing Left-Right Tree (2)

FIGURE 11.11
Left-Right Tree

Balance 50 = (& —{k + 2})

Balance 25 = (& + 1) — &)

h=k+1
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Rebalancing Left-Right Tree (3)

FIGURE 11.12 FIGURE 11.13 FIGURE 11.14
Insartion into b Left Subtree After Rotate Left Tree After Rotate Right

k+3
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Rebalancing Left-Right Tree (4)

FIGURE 11.15 FIGURE 11.16 FIGURE 11.7
Ireerticn into by Left Zubtree After Rotate Left Tree After Rotate Right

k+1 k+1 k+1
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4 Critically Unbalanced Trees

Left-Left (parent balance is -2, left child balance is -1)
e Rotate right around parent

Left-Right (parent balance -2, left child balance +1)

e Rotate left around child

e Rotate right around parent

Right-Right (parent balance +2, right child balance +1)
* Rotate left around parent

Right-Left (parent balance +2, right child balance -1)

» Rotate right around child

* Rotate left around parent
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Implementing an AVL Tree

FIGURE 11.18
LIML Class Diagram of

AyLTree
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Code for AVL Tree

public class AVLTree
<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {
private boolean Increase;

private boolean decrease; // for remove
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Code for AVL Tree (2)

public static class AVLNode<E>
extends Node<E> {

oublic static final Int LEFT HEAVY

oublic static final 1nt BALANCED

public static final Int RIGHT HEAVY =

_1;
O;
1;

private i1nt balance = BALANCED;

public AVLNode (E e) { super(e); }
public String toString () {

return balance+“: ““+super.toString();
ks

L
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Code for AVL Tree (3)

// AVLTree:

public boolean add (E e) {
Increase = fTalse;
root = add((AVLNode<E>)root, e);
return addReturn;

}
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Code for AVL Tree (4)

// AVLNode:
private AVLNode<E> add
(AVLNode<E> r, E e) {
iIT (r == null) { 7/ empty tree
addReturn = true;
INCrease = true;
return new AVLNode<E>(e);
ks
iIT (e.compareTo(r.data) == 0) {//present
Increase = false;
addReturn = false;
return r;

}
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Code for AVL Tree (5)

// AVLNode:
private AVLNode<E> add
(AVLNode<E> r, E e) { .
1T (e. compareTo(r data) < O) { 7/ left
r.left = add((AVLNode<E>)r.left, e);
IT (iIncrease) {
decrementBalance(r);
iIT (r.balance < AVLNode.LEFT HEAVY){
increase = fTalse;
return rebalancelLeft(r);
}
}
return r;
} ... //symmetrical for right subtree
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Code for AVL Tree (6)
// AVLTree:
private voild decrementBalance
(AVLNode<E> n) {
n.balance--;
IT (n.balance = AVLNode.BALANCED) {
Increase = false;
}

}
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Code for AVL Tree (7)
// AVLTree:
private AVLNode<E> rebalancelLeft
(AVLNode<E> r) {
AVLNode<E> Ic = (AVLNode<E>)r.left;
iIT (Ic.balance > AVLNode.BALANCED) {
... // left-right heavy
} else { /7/ left-left heavy
Ic.balance = AVLNode.BALANCED;
r.balance = AVLNode.BALANCED;

}
return (AVLNode<E>)rotateRight(r);

L
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Code for AVL Tree (7)

// AVLTree.rebalancelLeft
// left-right heavy case
AVLNode<E> Irc = (AVLN

Irc_balance = AV
Ic.balance = AV
r.balance = AV

} else {
Irc_balance = AV
Ic.balance = AV
r.balance = AV

¥

r.left =

\
\

\

\
\

\

OC
OC

OC

OC
OC

OC

ode<E>)Ilc.right;
iIT (Irc.balance < AVLNode.BALANCED) {
BALANCED;
BALANCED;
RIGHT HEAVY,

e.
e.
e.

e.

e.
e.

rotatelLeft(lc);

BA
LE
BA

_ANCED;
T _HEAVY;

_ANCED;
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Removal from AVL Trees

Add a field called decrease to note height change
Adjust the local node’s balance
 Rebalance as necessary

The balance changed and balancing methods must
set decrease appropriately

Actual removal Is as for binary search tree
 |Involves moving values, and
e Deleting a suitable leaf node
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Performance of AVL Trees

« Worst case height: 1.44 [ log n |
* Thus, lookup, insert, remove all O(log n)

 Empirical costis 0.25 + log n comparisons to insert
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Red-Black Trees

Rudolf Bayer: red-black is special case of his B-tree

A node is either red or black

The root is always black

A red node always has black children

# black nodes in any path from root to leaf is the same

FIGURE 11.21
Red-Black Tres
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Red-Black Trees

* A red node always has black children

* This rule means length of longest root-to-leaf path is at
most 2 X length of shortest one

o Still a binary search tree
 Different kind of balance from AVL tree
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Insertion INto a Red-Black Tree

« Binary search tree algorithm finds insertion point
A new leaf starts with color red

o |f parent is black, we are done

* Otherwise, must do some rearranging

e |f parent has a red sibling:
—flip parent and sibling to black
—flip grandparent to red
— maintains # black on path to root
—may require further work: repeat on higher level
—if grandparent is root, leave it black
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Insertion into Red-Black Tree (2)

 |f parent has no sibling: swap parent-grandparent
colors, and then rotate right around grandparent

FIGURE 11.12 28

Insertion into a Red-

Black Tree, Case 1
16 38

35

fal | b (<)

FIGURE 11.13 =

Insertion into a Red-
Black Tree, Case 2

la) (b kel
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Insertion into Red-Black Tree (3)

* Rotation doesn’t work in right-left case, so
* Rotate right at parent, then proceed as before:

FIGURE 11.2%4
Inserticn into a Red-
Black Tree, Case 3

: 38 28
|Single Rotation
Doesm't Work)

25 25

() il
FIGURE 11.25 20 -
Inserticn into a Red-
F.I.a-:L Tree, Cas..e 1- 75 28 38
(Double Rotaticn)

38
fa) ) =} (<) ()
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Insertion into Red-Black Tree (4)

FIGURE 11.26 FIGURE 11.17
Red-Black Tres After Insertion of 4 rcwing Black Down and Red Up
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Insertion into Red-Black Tree (5)

FIGURE 11.18 FIGURE 11.2%
Rotating Red Mode to Outside Changing Colors of Parent and Grandparent MHodes

FIGURE 11.30
Final R=d-Black Tree After Insert

Chapter 11: Self-Balancing Search Trees 36



Implementing Red-Black Trees

FIGURE 11.31
LML Class Diagram of RedBlackTraa
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Red-Black Tree Insert Algorithm

public class RedBlackTree
<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {
private static class RBNode<E>
extends Node<E> {
orivate boolean 1sRed = true;
oublic RBNode (E e) { super(e); }
oublic String toString () {
return (1sRed ? “R: “ - “B: ) +
super.toString();
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Red-Black Tree Code

public class RedBlackTree
<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {
private static class RBNode<E>
extends Node<E> {
orivate boolean 1sRed = true;
oublic RBNode (E e) { super(e); }
oublic String toString () {
return (1sRed ? “R: “ - “B: ) +
super.toString();

Chapter 11: Self-Balancing Search Trees
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Red-Black Tree Code (2)

public boolean add (E e) {

i1IT (root == null) {
root = new RBNode<E>(e);
((RBNode<E>)root).i1sRed = false;
return true;

} else {
root = add((RBNode<E>)root, e);
((RBNode<E>)root).i1sRed = false;
return addReturn;
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Red-Black Tree Code (3)

private Node<E> add (RBNode<E> r, E e) {
IT (e.compareTo(r.data) == 0) {
addReturn = false;
return r;
} else 1T (e.compareTo(r.data) < 0) {
It (r.left == null) {
r.left = new RBNode<E>(e);
addReturn = true;
return r;
} else {
// continued on next slide
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Red-Black Tree Code (4)

moveBlackDown(r) ;
r.left = add((RBNode<E>)r.left, e);
IT (((RBNode<E>)r.left).i1sRed) {
1T (r.left._left = null &&
((RBNode<E>)r.left.left).i1sRed) {
// left-left grandchild also red
// swap colors and rotate right
((RBNode<E>)r.left).i1sRed = false;
r.i1sRed = true;
return rotateRight(r);
} else 1f (r.left.right = null &&
((RBNode<E>)r.left.right).i1sRed) {
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Red-Black Tree Code (5)

// both grandchildren red:
r.left = rotatelLeft(r.left);
((RBNode<E>)r.left).i1sRed = false;
r.i1sRed = true;
return rotateRight(r);
}
// other case:
// 1T left child black after recursion:
// done, nothing more needed
// likewise 1T neither grandchild 1s red

// going right 1s a whole symmetric case
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Red-Black Tree Performance

Maximum heightis 2 + 2 log n

So lookup, insertion, removal are all O(log n)
Average performance on random values:
1.002 log n (empirical measurement)

Java API TreeMap and TreeSet use red-black trees
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2-3, 2-3-4, and B- Trees

 These are not binary search trees ....
e Because they are not necessarily binary
 They maintain all leaves at same depth
* But number of children can vary
e 2-3 tree: 2 or 3 children
e 2-3-4 tree: 2, 3, or 4 children
« B-tree: B/2 to B children (roughly)
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2-3 Trees

2-3 tree named for # of possible children of each nod
Each node designhated as either 2-node or 3-node
A 2-node is the same as a binary search tree node
A 3-node contains two data fields, first < second,
and references to three children:
 First holds values < first data field
e Second holds values between the two data fields
e Third holds values > second data field
All of the leaves are at the (same) lowest level
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Searching a 2-3 Tree

If r is null, return null (not in tree)

If ris a 2-node
If item equals datal, return datal
If item < datal, search left subtree
else search right subtree

else // ris a 3-node
If item < datal, search left subtree
If tem = datal, return datal
If item < data2, search middle subtree
If tem = data2, return data 2
else search right subtree

RBEOOONSOOAWNE

=0
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Inserting into a 2-3 Tree

* Inserting into a 2-node just converts it to a 3-node

FI-::=|._IF=:}_Z 11 Z'-TE- o' o
Ins=rting ints a Tree
with .—‘-:I-lig.'-_'-ldu:n:les o m o m
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Inserting into a 2-3 Tree (2)

* |nsertion into a 3-node with a 2-node parent
e Convert parent to 3-node:

FIGURE 11.36
A Wirtial Imssrtion

FIGURE 11.37 m

Result of Propagating

15t Z-HNode Parenit a @
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Inserting Into a 2-3 Tree (3)

FIGURE 11.35
Inserting intc a Tree
with all 2-Haodes

FIGURE 11.3&
A virtual Inssrticn

() ) 15

FIGURE 11.37
Result of Propagating
15 i Z-Mode Farent

FIGURE 11.38 @
Inserting &, 10, and 20
G : @. B

@ 23

FIGURE 11.39
WirtLally Inserting 13

GO B

FIGURE 11.40
wirtally irserting 11 GE)/ AN \.

FIGURE 11.41
Result of Making 11
the Mew Root

(1)
G W B B
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Inserting into a 2-3 Tree (4)

* Inserting into 3-node with 3-node parent:
e “Overload” parent, and repeat process higher up:

FIGURE 11.38 m
Insertimg 5, 10, and 20
G. : <

FISURE 11.39 m
wirtually Insertimg 12

FIGURE 11.40

FIGGLURE 11.41 @

Feesuilt of paking 11

the New Root (7Y (153
G W O
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Insert Algorithm for 2-3 Tree

If r is null, return new 2-node with item as data
If item matches r.datal or r.dataz2, return false
If ris aleaf

If ris a 2-node, expand to 3-node and return it

split into two 2-nodes and pass them back up
else

recursively insert into appropriate child tree

If new parent passed back up

If will be tree root, create and use new 2-node

10. else recursively insert parentin r
11.return true

©O0NOOAEWDNE
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2-3 Tree Performance

If height is h, number of nodes in range 2"-1 to 3h-1
height in terms of # nodes n in range log, n to log; n

This is O(log n), since log base affects by constant
factor

So all operations are O(log n)
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Removal from a 2-3 Tree

Removing from a 2-3 tree Is the reverse of insertion
f the item in a leaf, simply delete it
f not in a leaf

e Swap it with its inorder predecessor in a leaf
 Then delete it from the leaf node

* Redistribute nodes between siblings and parent
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Removal from a 2-3 Tree (2)

FIGURE 11.42
Rermoving 1 from a
2-3 Tree

FIGURE 11.43

2-3 Traa After Radistri-
buticn of Hodas
Resulting from Removal
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Removal from a 2-3 Tree (3)

FIGURE 11.44
Remawing 11 from the
2-3 Trea (Step 1)

FIGURE 11.45
2-3 Tree After
Femcwing 11
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Removal from a 2-3 Tree (4)

FIGURE 11.46
After Removing |

(Intermediate Step)

FIGURE 11.47 m
After Removing |
(Final Formm] m m @

Chapter 11: Self-Balancing Search Trees 57




e 2-Nn0C
e 4-N0OC

e 3-N0C

e =
e =
e =

2-3-4 and B-Trees

2-3 tree was inspiration for more general B-tree

e |t allows up to n children per node

B-tree designed for indexes to very large databases
e Stored on disk

2-3-4 tree Is specialization of B-tree:n =4

A Red-Black tree is a 2-3-4 tree In a binary-tree format

D
D
D

acC
acC
acC

K NOC
K NOC

K NOC

e
e with two red children
e with one red child
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2-3-4 Trees

 Expand on the idea of 2-3 trees by adding the 4-node
« Addition of this third item simplifies the insertion logic

FIGURE 11.48 (=) (%, %) (%3, &)
2= - and 4-klodas
A < =¥ A =¥ =x <y <> -

Fnode 4-node

2-node

FIGURE 11.49 (62
Example of a 2-3-4 Tres @

& ©» @ ¢ ®» &D W

59
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2-3-4 Trees (2)
e Addition of this third item simplifies the insertion logic
FIGURE 11.49 @
Example of a 2-3-4 Tres
14, 21, 38 79

J © B &E®» & W
FIGURE 11.50 m

Result of Splitting a

4-Mode @ @ @

O 28 ¢ @ 7D @
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2-3-4 Trees (3)

* Insert new item after splitting:

FIGURE 11.51
2-3-4 Trea After
Inserting 25
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Algorithm for 2-3-4 Tree Insert

If root Is null, create new 2-node for item, return true
If root Is 4-node

split into two 2-node, with middle value new root
set index to O
while item < data[index], increment index
If tems equals data[index], return false
If child[index] is null

Insert into node at index, moving existing right
else if child[index] does not reference a 4-node
10. recurse on child[index]
11.// continued on next slide

OO0 NO AWM
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Algorithm for 2-3-4 Tree Insert

11.else // child[index] is a 4-node
12.  split child[index]

13. Insert new parent into node at index
14. If new parent equals item, return false
15. If tem < new parent, search child[index]

16. else search child[index+1]
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B-Trees

o B-tree extends idea behind 2-3 and 2-3-4 trees:

o Allowa a maximum of CAP data items in each node
o QOrder of a B-tree is maximum # of children for a node
« B-trees developed for indexes to databases on disk

FIGURE 11.57 16|22 |30 |40
Example of a B-Tres A ] \
f }
12|15(15 (28 32|25|38
517 | 8 26|27 42|46
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FIGURE 11.57
Example of a B-Tres

FIGURE 11.58
Inserting intz a B-Tres

new value = 17

B-Tree Insertion

1@ (22|36 |40
A ) b,
i ¥
1315|158 (2@ 3235|388
517 26 |27 42 | 46
22
L
_ 1
16117 A0 46
F i r._,_ {._,_.J
12115 26|27 323538
7|8 15|20 42| 46
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