Self-Balancing Search Trees

Based on Chapter 11 of
Koffmann and Wolfgang

Chapter Outline

The impact of balance on search tree performance
Balanced binary search trees:

 AVL trees

 Red-Black trees

Other balanced search trees:

e 2-3 trees

o 2-3-4 trees

e B-trees

Search and insertion for these trees

Introduction to removal for them

Chapter 11: Self-Balancing Search Trees

Why Balance Is Important

e Searches in unbalanced tree can be O(n)

FIGURE 11.1
Very Linbalanced
Binary Search Tree

Chapter 11: Self-Balancing Search Trees 3

Rotation

* For self-adjusting, need a binary tree operation that:
 Changes the relative height of left & right subtrees
 While preserving the binary search tree property

e Algorithm for rotation (toward the right):
Save value of root. left (temp = root.left)

Set root. leftto value of root.left.right
Set temp.rightto root
Set root to temp

> w e

Chapter 11: Self-Balancing Search Trees 4

Rotation (2)
« Hint: Watch what happens to 10, 15, and 20, below:

FIGURE 11.3 FIGURE 11.4 FIGURE 11.5
Unbalanced Tree Before Rotation Right Rotation More Balanced Tree After Rotation

Chapter 11: Self-Balancing Search Trees 5

e NOC
e NOC

 NOC

Rotation (3)

es v and w decrease in height
es y and z increase Iin height
e X remains at same height

A

Chapter 11: Self-Balancing Search Trees

Adding Rotation To BST

FIGURE 11.8
LIML Diagram of BinarySearchTreeWithRotate

PP BinaryTree e reet BinaryTres. Node
, + getLeftSubtreal — - # data G- S
+ add{Db]EE;i_) + getRightSubtrea)
+ contains ject tDat
+ find(Comparakle) oAbl
+ delete(Comparaklel laft right
+ removelObject]
e EinarySearchTree
addReturn
deleteReturn
+ add{Object)
+ contains(Object)
+ find{Comparakle)
+ deleteilComparablel
+ remove(Object] .
Just add rotation

A‘l‘_‘\

BinarySearchTreeWi thRotate

rotatelLeft()
rotateRighti)

Chapter 11: Self-Balancing Search Trees

methods in this
subclass

Coding Rotation

public class BinarySearchTreeWithRotate<
E extends Comparable<E>>
extends BinarySearchTree<kE> {

protected Node<E> rotateRight
(Node<E> root) {
Node<E> temp = root.left;
root.left = temp.right;
temp.right = root;
return temp;

¥

// rotateLeft 1s an exercise

L

Chapter 11: Self-Balancing Search Trees 8

AVL Tree

Add/remove: update balance of each subtree from
point of change to the root

Rotation brings unbalanced tree back into balance

The height of a tree is the number of nodes Iin the
longest path from the root to a leaf node

* Height of empty tree is O:

ht(empty) =0
* Height of others:

ht(n) = 1+max(ht(n.left), ht(n.right))
Balance(n) = ht(n.right) — ht(n.left)

Chapter 11: Self-Balancing Search Trees

AVL Tree (2)

 The balance of node n = ht(n.right) — ht(n.left)
e In an AVL tree, restrict balance to -1, O, or +1
e That Is, keep nearly balanced at each node

Chapter 11: Self-Balancing Search Trees

10

AVL Tree Insertion

We consider cases where new node Is inserted into
the left subtree of a node n

 |Insertion into right subtree is symmetrical

Case 1: The left subtree height does not increase
 NO action necessary at n

Case 2: Subtree height increases, balance(n) = +1, 0
 Decrement balance(n) to 0, -1

Case 3: Subtree height increases, balance(n) = -1
 Need more work to obtain balance (would be -2)

Chapter 11: Self-Balancing Search Trees 11

AVL Tree Insertion: Rebalancing

These are the cases:

 Case 3a: Left subtree of left child grew:
Left-left heavy tree

 Case 3b: Right subtree of left child grew:
Left-right heavy tree

e Can be caused by height increase in either the left
or right subtree of the right child of the left child

* That Is, left-right-left heavy or left-right-right heavy

Chapter 11: Self-Balancing Search Trees 12

Rebalancing a Left-Left Tree

« Actual heights of subtrees are unimportant

* Only difference in height matters when balancing
* |n left-left tree, root and left subtree are left-heavy
* One right rotation regains balance

FIGURE 1.9 FIGURE 11.10

Left-Heavy Tree Left-Heawvy Tree After Rotation Right

Chapter 11: Self-Balancing Search Trees 13

Rebalancing a Left-Right Tree

 Root Is left-heavy, left subtree is right-heavy

* A simple right rotation cannot fix this

e Need:
o Left rotation around child, then
 Right rotation around root

Chapter 11: Self-Balancing Search Trees 14

Rebalancing Left-Right Tree (2)

FIGURE 11.11
Left-Right Tree

Balance 50 = (& —{k + 2})

Balance 25 = (& + 1) — &)

h=k+1

Chapter 11: Self-Balancing Search Trees 15

Rebalancing Left-Right Tree (3)

FIGURE 11.12 FIGURE 11.13 FIGURE 11.14
Insartion into b Left Subtree After Rotate Left Tree After Rotate Right

k+3

Chapter 11: Self-Balancing Search Trees 16

Rebalancing Left-Right Tree (4)

FIGURE 11.15 FIGURE 11.16 FIGURE 11.7
Ireerticn into by Left Zubtree After Rotate Left Tree After Rotate Right

k+1 k+1 k+1

Chapter 11: Self-Balancing Search Trees 17

4 Critically Unbalanced Trees

Left-Left (parent balance is -2, left child balance is -1)
e Rotate right around parent

Left-Right (parent balance -2, left child balance +1)

e Rotate left around child

e Rotate right around parent

Right-Right (parent balance +2, right child balance +1)
* Rotate left around parent

Right-Left (parent balance +2, right child balance -1)

» Rotate right around child

* Rotate left around parent

Chapter 11: Self-Balancing Search Trees 18

Implementing an AVL Tree

FIGURE 11.18
LIML Class Diagram of

AyLTree

+ add{Oh et

+ comeainsiob]sce)
+ FindiCamparable
+] e 0 e s s
+ ramoeioh]aced

Fi

e e e e e e e e e

BinaryTrae

- I a3

+ e L& S b s
+ patlightSaberssai)
+ Qe

E1nary Treas . ok

_{}

daka

i

Tafe

BimaryssarchTres

& kEzcurn
& il eeefatar

+ sl ect)

+ Dofreains Ob] a3
+ FirdiComnparab1al
+ il s (T o rab 1
+ Ml ioh] et

Fa?

balance

.ﬂl‘.'.

indicator

E1 wairy Saarc hiTrasss] chil ot ata

Add +1/0/-

1

Add boolean
flag to indicate
height increase

& o eela O
& roeaeefightl]

RN

£

AVLTraa

- 1

+ acdiOb]esctl

+ el e Corparablal

B—

ANVLH o

- balanca

Chapter 11: Self-Balancing Search Trees

Mght

Code for AVL Tree

public class AVLTree
<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {
private boolean Increase;

private boolean decrease; // for remove

Chapter 11: Self-Balancing Search Trees 20

Code for AVL Tree (2)

public static class AVLNode<E>
extends Node<E> {

oublic static final Int LEFT HEAVY

oublic static final 1nt BALANCED

public static final Int RIGHT HEAVY =

_1;
O;
1;

private i1nt balance = BALANCED;

public AVLNode (E e) { super(e); }
public String toString () {

return balance+“: ““+super.toString();
ks

L

Chapter 11: Self-Balancing Search Trees 21

Code for AVL Tree (3)

// AVLTree:

public boolean add (E e) {
Increase = fTalse;
root = add((AVLNode<E>)root, e);
return addReturn;

}

Chapter 11: Self-Balancing Search Trees

22

Code for AVL Tree (4)

// AVLNode:
private AVLNode<E> add
(AVLNode<E> r, E e) {
iIT (r == null) { 7/ empty tree
addReturn = true;
INCrease = true;
return new AVLNode<E>(e);
ks
iIT (e.compareTo(r.data) == 0) {//present
Increase = false;
addReturn = false;
return r;

}

Chapter 11: Self-Balancing Search Trees 23

Code for AVL Tree (5)

// AVLNode:
private AVLNode<E> add
(AVLNode<E> r, E e) { .
1T (e. compareTo(r data) < O) { 7/ left
r.left = add((AVLNode<E>)r.left, e);
IT (iIncrease) {
decrementBalance(r);
iIT (r.balance < AVLNode.LEFT HEAVY){
increase = fTalse;
return rebalancelLeft(r);
}
}
return r;
} ... //symmetrical for right subtree

Chapter 11: Self-Balancing Search Trees 24

Code for AVL Tree (6)
// AVLTree:
private voild decrementBalance
(AVLNode<E> n) {
n.balance--;
IT (n.balance = AVLNode.BALANCED) {
Increase = false;
}

}

Chapter 11: Self-Balancing Search Trees

25

Code for AVL Tree (7)
// AVLTree:
private AVLNode<E> rebalancelLeft
(AVLNode<E> r) {
AVLNode<E> Ic = (AVLNode<E>)r.left;
iIT (Ic.balance > AVLNode.BALANCED) {
... // left-right heavy
} else { /7/ left-left heavy
Ic.balance = AVLNode.BALANCED;
r.balance = AVLNode.BALANCED;

}
return (AVLNode<E>)rotateRight(r);

L

Chapter 11: Self-Balancing Search Trees

26

Code for AVL Tree (7)

// AVLTree.rebalancelLeft
// left-right heavy case
AVLNode<E> Irc = (AVLN

Irc_balance = AV
Ic.balance = AV
r.balance = AV

} else {
Irc_balance = AV
Ic.balance = AV
r.balance = AV

¥

r.left =

\
\

\

\
\

\

OC
OC

OC

OC
OC

OC

ode<E>)Ilc.right;
iIT (Irc.balance < AVLNode.BALANCED) {
BALANCED;
BALANCED;
RIGHT HEAVY,

e.
e.
e.

e.

e.
e.

rotatelLeft(lc);

BA
LE
BA

_ANCED;
T _HEAVY;

_ANCED;

Chapter 11: Self-Balancing Search Trees 27

Removal from AVL Trees

Add a field called decrease to note height change
Adjust the local node’s balance
 Rebalance as necessary

The balance changed and balancing methods must
set decrease appropriately

Actual removal Is as for binary search tree
 |Involves moving values, and
e Deleting a suitable leaf node

Chapter 11: Self-Balancing Search Trees 28

Performance of AVL Trees

« Worst case height: 1.44 [log n |
* Thus, lookup, insert, remove all O(log n)

 Empirical costis 0.25 + log n comparisons to insert

Chapter 11: Self-Balancing Search Trees 29

Red-Black Trees

Rudolf Bayer: red-black is special case of his B-tree

A node is either red or black

The root is always black

A red node always has black children

black nodes in any path from root to leaf is the same

FIGURE 11.21
Red-Black Tres

Chapter 11: Self-Balancing Search Trees 30

Red-Black Trees

* A red node always has black children

* This rule means length of longest root-to-leaf path is at
most 2 X length of shortest one

o Still a binary search tree
 Different kind of balance from AVL tree

Chapter 11: Self-Balancing Search Trees 31

Insertion INto a Red-Black Tree

« Binary search tree algorithm finds insertion point
A new leaf starts with color red

o |f parent is black, we are done

* Otherwise, must do some rearranging

e |f parent has a red sibling:
—flip parent and sibling to black
—flip grandparent to red
— maintains # black on path to root
—may require further work: repeat on higher level
—if grandparent is root, leave it black

Chapter 11: Self-Balancing Search Trees 32

Insertion into Red-Black Tree (2)

 |f parent has no sibling: swap parent-grandparent
colors, and then rotate right around grandparent

FIGURE 11.12 28

Insertion into a Red-

Black Tree, Case 1
16 38

35

fal | b (<)

FIGURE 11.13 =

Insertion into a Red-
Black Tree, Case 2

la) (b kel

Chapter 11: Self-Balancing Search Trees 33

Insertion into Red-Black Tree (3)

* Rotation doesn’t work in right-left case, so
* Rotate right at parent, then proceed as before:

FIGURE 11.2%4
Inserticn into a Red-
Black Tree, Case 3

: 38 28
|Single Rotation
Doesm't Work)

25 25

() il
FIGURE 11.25 20 -
Inserticn into a Red-
F.I.a-:L Tree, Cas..e 1- 75 28 38
(Double Rotaticn)

38
fa)) =} (<) ()

Chapter 11: Self-Balancing Search Trees 34

Insertion into Red-Black Tree (4)

FIGURE 11.26 FIGURE 11.17
Red-Black Tres After Insertion of 4 rcwing Black Down and Red Up

Chapter 11: Self-Balancing Search Trees 35

Insertion into Red-Black Tree (5)

FIGURE 11.18 FIGURE 11.2%
Rotating Red Mode to Outside Changing Colors of Parent and Grandparent MHodes

FIGURE 11.30
Final R=d-Black Tree After Insert

Chapter 11: Self-Balancing Search Trees 36

Implementing Red-Black Trees

FIGURE 11.31
LML Class Diagram of RedBlackTraa

- Binary Tres *—I-l:":lt BinaryTrees.Hods
) + getleftSubtres() — o # data b
+ add(Object) + gethightSubtras()
+ contains{Object) + getDatal) iy
+ find{Comparable) 4
+ dalateiComparahle))
+ remove(lbject) ? left right
£h
- __ BinarySaarchTree
addl=turn
deleteReturn
+ add{Object) Add
+ contains{0bject) .
+ Find{Comparahla) |SR€d
+ delete(Conparablal
+ remove ((bject) ﬂag

T

BinarvSearchTreaWi thRotate

rotatelefti)
rotateRight()

RedBlackTres EB—[} RadBElackHode

+ add{Object) - isRed
+ delete(Comparablal

Chapter 11: Self-Balancing Search Trees 37

Red-Black Tree Insert Algorithm

public class RedBlackTree
<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {
private static class RBNode<E>
extends Node<E> {
orivate boolean 1sRed = true;
oublic RBNode (E e) { super(e); }
oublic String toString () {
return (1sRed ? “R: “ - “B:) +
super.toString();

Chapter 11: Self-Balancing Search Trees 38

Red-Black Tree Code

public class RedBlackTree
<E extends Comparable<E>>
extends BinSrchTreeWithRotate<E> {
private static class RBNode<E>
extends Node<E> {
orivate boolean 1sRed = true;
oublic RBNode (E e) { super(e); }
oublic String toString () {
return (1sRed ? “R: “ - “B:) +
super.toString();

Chapter 11: Self-Balancing Search Trees

39

Red-Black Tree Code (2)

public boolean add (E e) {

i1IT (root == null) {
root = new RBNode<E>(e);
((RBNode<E>)root).i1sRed = false;
return true;

} else {
root = add((RBNode<E>)root, e);
((RBNode<E>)root).i1sRed = false;
return addReturn;

Chapter 11: Self-Balancing Search Trees

40

Red-Black Tree Code (3)

private Node<E> add (RBNode<E> r, E e) {
IT (e.compareTo(r.data) == 0) {
addReturn = false;
return r;
} else 1T (e.compareTo(r.data) < 0) {
It (r.left == null) {
r.left = new RBNode<E>(e);
addReturn = true;
return r;
} else {
// continued on next slide

Chapter 11: Self-Balancing Search Trees 41

Red-Black Tree Code (4)

moveBlackDown(r) ;
r.left = add((RBNode<E>)r.left, e);
IT (((RBNode<E>)r.left).i1sRed) {
1T (r.left._left = null &&
((RBNode<E>)r.left.left).i1sRed) {
// left-left grandchild also red
// swap colors and rotate right
((RBNode<E>)r.left).i1sRed = false;
r.i1sRed = true;
return rotateRight(r);
} else 1f (r.left.right = null &&
((RBNode<E>)r.left.right).i1sRed) {

Chapter 11: Self-Balancing Search Trees 42

Red-Black Tree Code (5)

// both grandchildren red:
r.left = rotatelLeft(r.left);
((RBNode<E>)r.left).i1sRed = false;
r.i1sRed = true;
return rotateRight(r);
}
// other case:
// 1T left child black after recursion:
// done, nothing more needed
// likewise 1T neither grandchild 1s red

// going right 1s a whole symmetric case

Chapter 11: Self-Balancing Search Trees 43

Red-Black Tree Performance

Maximum heightis 2 + 2 log n

So lookup, insertion, removal are all O(log n)
Average performance on random values:
1.002 log n (empirical measurement)

Java API TreeMap and TreeSet use red-black trees

Chapter 11: Self-Balancing Search Trees 44

2-3, 2-3-4, and B- Trees

 These are not binary search trees
e Because they are not necessarily binary
 They maintain all leaves at same depth
* But number of children can vary
e 2-3 tree: 2 or 3 children
e 2-3-4 tree: 2, 3, or 4 children
« B-tree: B/2 to B children (roughly)

Chapter 11: Self-Balancing Search Trees

45

2-3 Trees

2-3 tree named for # of possible children of each nod
Each node designhated as either 2-node or 3-node
A 2-node is the same as a binary search tree node
A 3-node contains two data fields, first < second,
and references to three children:
 First holds values < first data field
e Second holds values between the two data fields
e Third holds values > second data field
All of the leaves are at the (same) lowest level

Chapter 11: Self-Balancing Search Trees 46

Searching a 2-3 Tree

If r is null, return null (not in tree)

If ris a 2-node
If item equals datal, return datal
If item < datal, search left subtree
else search right subtree

else // ris a 3-node
If item < datal, search left subtree
If tem = datal, return datal
If item < data2, search middle subtree
If tem = data2, return data 2
else search right subtree

RBEOOONSOOAWNE

=0

Chapter 11: Self-Balancing Search Trees 47

Inserting into a 2-3 Tree

* Inserting into a 2-node just converts it to a 3-node

FI-::=|._IF=:}_Z 11 Z'-TE- o' o
Ins=rting ints a Tree
with .—‘-:I-lig.'-_'-ldu:n:les o m o m

Chapter 11: Self-Balancing Search Trees 48

Inserting into a 2-3 Tree (2)

* |nsertion into a 3-node with a 2-node parent
e Convert parent to 3-node:

FIGURE 11.36
A Wirtial Imssrtion

FIGURE 11.37 m

Result of Propagating

15t Z-HNode Parenit a @

Chapter 11: Self-Balancing Search Trees 49

Inserting Into a 2-3 Tree (3)

FIGURE 11.35
Inserting intc a Tree
with all 2-Haodes

FIGURE 11.3&
A virtual Inssrticn

()) 15

FIGURE 11.37
Result of Propagating
15 i Z-Mode Farent

FIGURE 11.38 @
Inserting &, 10, and 20
G : @. B

@ 23

FIGURE 11.39
WirtLally Inserting 13

GO B

FIGURE 11.40
wirtally irserting 11 GE)/ AN \.

FIGURE 11.41
Result of Making 11
the Mew Root

(1)
G W B B
Chapter 11: Self-Balancing Search Trees

Inserting into a 2-3 Tree (4)

* Inserting into 3-node with 3-node parent:
e “Overload” parent, and repeat process higher up:

FIGURE 11.38 m
Insertimg 5, 10, and 20
G. : <

FISURE 11.39 m
wirtually Insertimg 12

FIGURE 11.40

FIGGLURE 11.41 @

Feesuilt of paking 11

the New Root (7Y (153
G W O

Chapter 11: Self-Balancing Search Trees

51

Insert Algorithm for 2-3 Tree

If r is null, return new 2-node with item as data
If item matches r.datal or r.dataz2, return false
If ris aleaf

If ris a 2-node, expand to 3-node and return it

split into two 2-nodes and pass them back up
else

recursively insert into appropriate child tree

If new parent passed back up

If will be tree root, create and use new 2-node

10. else recursively insert parentin r
11.return true

©O0NOOAEWDNE

Chapter 11: Self-Balancing Search Trees 52

2-3 Tree Performance

If height is h, number of nodes in range 2"-1 to 3h-1
height in terms of # nodes n in range log, n to log; n

This is O(log n), since log base affects by constant
factor

So all operations are O(log n)

Chapter 11: Self-Balancing Search Trees 53

Removal from a 2-3 Tree

Removing from a 2-3 tree Is the reverse of insertion
f the item in a leaf, simply delete it
f not in a leaf

e Swap it with its inorder predecessor in a leaf
 Then delete it from the leaf node

* Redistribute nodes between siblings and parent

Chapter 11: Self-Balancing Search Trees 54

Removal from a 2-3 Tree (2)

FIGURE 11.42
Rermoving 1 from a
2-3 Tree

FIGURE 11.43

2-3 Traa After Radistri-
buticn of Hodas
Resulting from Removal

Chapter 11: Self-Balancing Search Trees 55

Removal from a 2-3 Tree (3)

FIGURE 11.44
Remawing 11 from the
2-3 Trea (Step 1)

FIGURE 11.45
2-3 Tree After
Femcwing 11

Chapter 11: Self-Balancing Search Trees

56

Removal from a 2-3 Tree (4)

FIGURE 11.46
After Removing |

(Intermediate Step)

FIGURE 11.47 m
After Removing |
(Final Formm] m m @

Chapter 11: Self-Balancing Search Trees 57

e 2-Nn0C
e 4-N0OC

e 3-N0C

e =
e =
e =

2-3-4 and B-Trees

2-3 tree was inspiration for more general B-tree

e |t allows up to n children per node

B-tree designed for indexes to very large databases
e Stored on disk

2-3-4 tree Is specialization of B-tree:n =4

A Red-Black tree is a 2-3-4 tree In a binary-tree format

D
D
D

acC
acC
acC

K NOC
K NOC

K NOC

e
e with two red children
e with one red child

Chapter 11: Self-Balancing Search Trees 58

2-3-4 Trees

 Expand on the idea of 2-3 trees by adding the 4-node
« Addition of this third item simplifies the insertion logic

FIGURE 11.48 (=) (%, %) (%3, &)
2= - and 4-klodas
A < =¥ A =¥ =x <y <> -

Fnode 4-node

2-node

FIGURE 11.49 (62
Example of a 2-3-4 Tres @

& ©» @ ¢ ®» &D W

59

Chapter 11: Self-Balancing Search Trees

2-3-4 Trees (2)
e Addition of this third item simplifies the insertion logic
FIGURE 11.49 @
Example of a 2-3-4 Tres
14, 21, 38 79

J © B &E®» & W
FIGURE 11.50 m

Result of Splitting a

4-Mode @ @ @

O 28 ¢ @ 7D @

Chapter 11: Self-Balancing Search Trees 60

2-3-4 Trees (3)

* Insert new item after splitting:

FIGURE 11.51
2-3-4 Trea After
Inserting 25

Chapter 11: Self-Balancing Search Trees 61

Algorithm for 2-3-4 Tree Insert

If root Is null, create new 2-node for item, return true
If root Is 4-node

split into two 2-node, with middle value new root
set index to O
while item < data[index], increment index
If tems equals data[index], return false
If child[index] is null

Insert into node at index, moving existing right
else if child[index] does not reference a 4-node
10. recurse on child[index]
11.// continued on next slide

OO0 NO AWM

Chapter 11: Self-Balancing Search Trees 62

Algorithm for 2-3-4 Tree Insert

11.else // child[index] is a 4-node
12. split child[index]

13. Insert new parent into node at index
14. If new parent equals item, return false
15. If tem < new parent, search child[index]

16. else search child[index+1]

Chapter 11: Self-Balancing Search Trees 63

B-Trees

o B-tree extends idea behind 2-3 and 2-3-4 trees:

o Allowa a maximum of CAP data items in each node
o QOrder of a B-tree is maximum # of children for a node
« B-trees developed for indexes to databases on disk

FIGURE 11.57 16|22 |30 |40
Example of a B-Tres A] \
f }
12|15(15 (28 32|25|38
517 | 8 26|27 42|46

Chapter 11: Self-Balancing Search Trees 64

FIGURE 11.57
Example of a B-Tres

FIGURE 11.58
Inserting intz a B-Tres

new value = 17

B-Tree Insertion

1@ (22|36 |40
A) b,
i ¥
1315|158 (2@ 3235|388
517 26 |27 42 | 46
22
L
_ 1
16117 A0 46
F i r._,_ {._,_.J
12115 26|27 323538
7|8 15|20 42| 46

Chapter 11: Self-Balancing Search Trees

65

	Self-Balancing Search Trees
	Chapter Outline
	Why Balance is Important
	Rotation
	Rotation (2)
	Rotation (3)
	Adding Rotation To BST
	Coding Rotation
	AVL Tree
	AVL Tree (2)
	AVL Tree Insertion
	AVL Tree Insertion: Rebalancing
	Rebalancing a Left-Left Tree
	Rebalancing a Left-Right Tree
	Rebalancing Left-Right Tree (2)
	Rebalancing Left-Right Tree (3)
	Rebalancing Left-Right Tree (4)
	4 Critically Unbalanced Trees
	Implementing an AVL Tree
	Code for AVL Tree
	Code for AVL Tree (2)
	Code for AVL Tree (3)
	Code for AVL Tree (4)
	Code for AVL Tree (5)
	Code for AVL Tree (6)
	Code for AVL Tree (7)
	Code for AVL Tree (7)
	Removal from AVL Trees
	Performance of AVL Trees
	Red-Black Trees
	Red-Black Trees
	Insertion into a Red-Black Tree
	Insertion into Red-Black Tree (2)
	Insertion into Red-Black Tree (3)
	Insertion into Red-Black Tree (4)
	Insertion into Red-Black Tree (5)
	Implementing Red-Black Trees
	Red-Black Tree Insert Algorithm
	Red-Black Tree Code
	Red-Black Tree Code (2)
	Red-Black Tree Code (3)
	Red-Black Tree Code (4)
	Red-Black Tree Code (5)
	Red-Black Tree Performance
	2-3, 2-3-4, and B- Trees
	2-3 Trees
	Searching a 2-3 Tree
	Inserting into a 2-3 Tree
	Inserting into a 2-3 Tree (2)
	Inserting into a 2-3 Tree (3)
	Inserting into a 2-3 Tree (4)
	Insert Algorithm for 2-3 Tree
	2-3 Tree Performance
	Removal from a 2-3 Tree
	Removal from a 2-3 Tree (2)
	Removal from a 2-3 Tree (3)
	Removal from a 2-3 Tree (4)
	2-3-4 and B-Trees
	2-3-4 Trees
	2-3-4 Trees (2)
	2-3-4 Trees (3)
	Algorithm for 2-3-4 Tree Insert
	Algorithm for 2-3-4 Tree Insert
	B-Trees
	B-Tree Insertion

