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Outline

• Categories of program errors
• Why you should catch exceptions
• The Exception hierarchy

• Checked and unchecked exceptions
• The try-catch-finally sequence
• Throwing an exception:

• What it means
• How to do it
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Outline (continued)

• A variety of testing strategies
• How to write testing methods
• Debugging techniques and debugger 

programs
• Program verification: assertions and loop 

invariants
• Big-O notation

• What it is
• How to use it to analyze an algorithm’s efficiency
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Program Defects and “Bugs”

• An efficient program is worthless if it breaks or 
produces a wrong answer

• Defects often appear in software after it is 
delivered

• Testing cannot prove the absence of defects
• It can be difficult to test a software product 

completely in the environment in which it is used
• Debugging: removing defects
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Major Categories of Defects

• Syntax and other in-advance errors

• Run-time errors and exceptions

• Logic Errors
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Syntax Errors

• Syntax errors: grammatical mistakes in a program
• The compiler detects syntax errors

• You must correct them to compile successfully
• Some common syntax errors include: 

• Omitting or misplacing braces, parentheses, etc.
• Misplaced end-of-comment
• Typographical errors (in names, etc.)
• Misplaced keywords
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Semantic Errors
• Semantic errors: may obey grammar, but violate 

other rules of the language
• The compiler detects semantic errors

• You must correct them to compile successfully
• Some common semantic errors include: 

• Performing an incorrect operation on a primitive type value
• Invoking an instance method not defined 
• Not declaring a variable before using it
• Providing multiple declarations of a variable
• Failure to provide an exception handler
• Failure to import a library routine
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Run-time Errors or Exceptions

• Run-time errors
• Occur during program execution (run-time!)
• Occur when the JVM detects an operation that it 

knows to be incorrect
• Cause the JVM to throw an exception

• Examples of run-time errors include
• Division by zero
• Array index out of bounds
• Number format error
• Null pointer exceptions
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Run-time Errors or Exceptions (continued)
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Logic Errors

• A logic error is programmer mistake in
• the design of a class or method, or
• the implementation of an algorithm

• Most logic errors
• Are not syntax or semantic errors: get by the compiler
• Do not cause run-time errors
• Thus they are difficult to find

• Sometimes found through testing
• Sometimes found by users
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Avoiding Logic Errors

• Work from a precise specification
• Strive for clarity and simplicity
• Consider “corner” / extreme cases
• Have reviews / walk-throughs: other eyes
• Use library/published algorithms where possible
• Think through pre/post conditions, invariants
• Be organized and careful in general
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The Exception Class Hierarchy

• When an exception occurs, the first thing that 
happens is a new of a Java exception object

• Different exception classes have different rules
• Throwable is the root superclass of the exception 

class hierarchy
• Error is a subclass of Throwable
• Exception is a subclass of Throwable

•RuntimeException is a subclass of Exception
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The Class Throwable
• Throwable is the superclass of all exceptions
• All exception classes inherit its methods
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The Class Throwable (continued)
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The Exception Class Hierarchy (2)
Throwable is the superclass of all exception classes
• Error is for things a program should not catch

• Example: OutOfMemoryError
• Exception is for things a program might catch

• RuntimeException is for things the VM might throw
• It can happen anywhere: e.g., any object access can 

throw NullPointerException
• So not required to catch it

• All others must be either:
• Explicitly caught or
• Explicitly mentioned as thrown by the method
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Exception Hierarchy Summary

• Error: don’t catch, unchecked
• Exception:

• RuntimeException:
• (Usually) don’t catch, unchecked

• All others: checked, so must
• Catch, or
• Mention they may be thrown
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Checked and Unchecked Exceptions

• Checked exceptions
• Normally not due to programmer error
• Generally beyond the control of the programmer
• Examples: IOException, FileNotFoundException

• Unchecked exception may result from
• Programmer error
• Serious external condition that is unrecoverable
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Checked and Unchecked Exceptions (2)

unchecked

unchecked
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Some Common Unchecked Exceptions

• ArithmeticException
• Division by zero, etc.

• ArrayIndexOutOfBoundsException
• NumberFormatException

• Converting a “bad” string to a number
• NullPointerException
• NoSuchElementException

• No more tokens available
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Catching and Handling Exceptions

• When an exception is thrown, the normal 
sequence of execution is interrupted

• Default behavior,i.e., no handler
• Program stops
• JVM displays an error message

• The programmer may provide a handler
• Enclose statements in a try block
• Process the exception in a catch block
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Example Handler
InputStream in = null;
try {
in = new FileInputStream(args[0]);
...

} catch (FileNotFoundException e) {
System.out.printf(

“File not found: %s%n”, name);
} catch (Throwable e) {
System.err.println("Exception!");
e.printStackTrace(System.err);

} finally {
if (in != null) in.close();

}
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Uncaught Exceptions

• Uncaught exception exits VM with a stack trace
• The stack trace shows

• The sequence of method calls
• Starts with throwing method
• Ends at main
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The try-catch Sequence

• Avoiding uncaught exceptions
• Write a try-catch to handle the exception
• Point: prevent ugly program termination!

• Unpleasant for user
• Worse, may leave things messed up / “broken”

• catch block is skipped if no exception thrown 
within the try block
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Handling Exceptions to Recover from Errors

• Exceptions provide the opportunity to
• Report errors
• Recover from errors

• User errors common, and should be recoverable
• Most closely enclosing handler that matches is 

the one that executes
• A handler matches if its class includes what’s thrown

• Compiler displays an error message if it 
encounters an unreachable catch clause
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The finally block

• On exception, a try is abandoned
• Sometimes more actions must be taken

• Example: Close an output file
• Code in a finally block is always executed

• After the try finishes normally, or
• After a catch clause completes

• finally is optional
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Example of finally block
try {
InputStream ins = ...;
... ins.read(); ...

} catch (EOFException e) {
System.err.println(“Unexpected EOF”);
e.printStackTrace();
System.exit(17);

} finally {
if (ins != null) ins.close();

}
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Throwing Exceptions

• Lower-level method can pass exception through
• Can be caught and handled by a higher-level method
• Mark lower-level method

• Say it may throw a checked exception
• Mark by throws clause in the header

• May throw the exception in the lower-level method
• Use a throw statement

• Particularly useful if calling module already has 
a handler for this exception type
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Throwing Exceptions (2)

• Use a throw statement when you detect an error
• Further execution stops immediately:

• Goes to closest suitable handler
• May be a number of level of calls earlier
• Does execute any finally blocks in the middle
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Example of Throwing an Exception
/** adds a new entry or changes an old one
* @param name the name to create/update
* @param number the (new) number
* @return the previous number, a String
* @throws IllegalArgumentException if the number
* is not in phone number format
*/

public String addOrChangeEntry(
String name, String number) {

if (!isPhoneNumberFormat(number)) {
throw new IllegalArgumentException(
“Invalid phone number: “ + number);

}
...

}
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Another Example of Throwing an Exception

public void accessLocalFile (String askingUser)
throws CertificateException {

...
if (user’s secure socket certificate bad) {
throw new CertificateException(reason);

}
...

}
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Programming Style

• You can always avoid handling exceptions:
• Declare that they are thrown, or
• Throw them and let them be handled farther back

• But: usually best to handle instead of passing
• Guidelines:

1. If recoverable here, handle here
2. If checked exception likely to be caught higher up

Declare that it can occur using a throws clause
3. Don’t use throws with unchecked exceptions

Use an @throws javadoc comment when helpful



Chapter 2: Program Correctness and Efficiency 32

Programming Style (2)

Don’t do this!
try {...} catch (Throwable e) { }

• Omits arbitrary patches of code
Can leave things in “broken” state

• No warning to user
• Leads to hidden, difficult to detect, defects
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Handling Exceptions in Phone Dir Example

In loadData:
FileNotFoundException from FileReader

constructor
IOException from readLine

In PDConsoleUI:
InputMismatchException from nextInt

In addOrChangeEntry:
IllegalArgumentException for empty String
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Testing Programs
• A program with

• No syntax/semantic errors, and
• No run-time errors,
• May still contain logic errors

• “Best” case is logic error that always executes
• Otherwise, hard to find!

• Worst case is logic error in code rarely run

Goal of testing: Test every part of the code, on 
“good” and “bad”/”hard” cases
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Structured Walkthroughs
• Most logic errors:

• Come from the design phase
• Result from an incorrect algorithm

• Logic errors sometimes come from typos that  do 
not cause syntax, semantic, or run-time errors
• Famous FORTRAN:  DO 10 I = 1.100
• Common C:  if (i = 3) ...

• One way to test: hand-trace algorithm
before implementing!

• Thus: Structured Walkthroughs
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Structured Walkthroughs (2)
The Designer:
• Explains the algorithm to other team members
• Simulate its execution with them looking on

The Team:
• Verifies that it works
• Verifies that it handles all cases

Walkthroughs are helpful, but do not replace testing!
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Testing Defined

• Testing:
• Exercising a program under controlled conditions
• Verifying the results

• Purpose: detect program defects after
• All syntax/semantic errors removed
• Program compiles

• No amount of testing can guarantee the absence of 
defects in sufficiently complex programs
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Levels of Testing

• Unit testing: checking the smallest testable piece
• A method or class

• Integration testing:
• The interactions among units

• System testing: testing the program in context
• Acceptance testing: system testing intended to 

show that the program meets its functional 
requirements
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Some Types of Testing

• Black-box testing:
• Tests item based only on its interfaces and 

functional requirements
• Assumes no knowledge of internals

• White-box testing:
• Tests with knowledge of internal structure
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Preparing to Test

• Develop test plan early, in the design phase
• How to test the software
• When to do the tests
• Who will do the testing
• What test data to use

• Early test plan allows testing during design & coding
• Good programmer practices defensive programming

• Includes code to detect unexpected or invalid data
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Testing Tips for Program Systems

• Program systems contain collections of classes, 
each with several methods

• A method specification should document
• Input parameters
• Expected results

• Carefully document (with javadoc, etc.):
• Each method parameter
• Each class attribute (instance and static variable)
• As you write the code!
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Testing Tips for Program Systems (2)

Trace execution by displaying method name as 
you enter a method:

public static final boolean TRACING = true;
...
public int computeWeight (...) {
if (TRACING) {
trace.printf(“Entering computeWeight“);

}
...

}
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Testing Tips for Program Systems (3)

Display values of all input parameters on entry:
public int computeWeight (float volume,

float density) {
if (TRACING) {
trace.printf(“Entering computeWeight“);
trace.printf(“volume = %f, “, volume);
trace.printf(“density = %f%n“, density);

}
...

}
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Testing Tips for Program Systems (4)

• Display values of any class attributes (instance 
and static variables) accessed by the method

• Display values of all method outputs at point of 
return from a method

• Plan for testing as you write each module,
• Not after the fact!
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Developing Test Data

• Specify test data during analysis and design
• For each level of testing: unit, integration, and system

• Black-box testing: unit inputs ⇒ outputs
• Check all expected inputs
• Check unanticipated data

• White-box testing: exercise all code paths
• Different tests to make each if test (etc.) true and false
• Called coverage
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Developing Test Data (2)

• Helpful to do both black- and white-box testing

• Black-box tests can be developed early since 
they have to do with the unit specification

• White-box tests are developed with detailed 
design or implementation: need code structure
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Testing Boundary Conditions

• Exercise all paths for
• Hand-tracing in a structured walkthrough
• Performing white-box testing

• Must check special cases:
boundary conditions

• Examples:
• Loop executes 0 times, 1 time, all the way to the end
• Item not found



Chapter 2: Program Correctness and Efficiency 48

Who does the testing?

• Normally testing is done by
• The programmer
• Team members who did not code the module
• Final users of the product

• Programmers often blind to their own oversights
• Companies may have quality assurance groups
• Extreme programming: programmers paired

• One writes the code
• The other writes the tests
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Stubs for Testing

• Hard to test a method or class that interacts with 
other methods or classes

• A stub stands in for a method not yet available
• The stub:

• Has the same header as the method it replaces
• Body only displays a message that it was called

• Sometimes you need to synthesize a reasonable 
facsimile of a result, for the caller to continue
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Drivers

A driver program:
• Declares necessary instances and variables
• Provides values for method inputs
• Calls the method
• Displays values of method outputs

• A main method in a class can serve as a driver 
to test the class’s methods
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Regression Testing

• Once code has passed all initial tests, it is 
important to continue to test regularly

• Environment and other changes ⇒ “software rot”
• A regression test is designed to:

• Catch any “regression” or decay in the software
• Insure old functionality works in face of enhancement
• Alert earlier to any issues arising from other changes

• Regression testing eased by a testing framework
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Using a Testing Framework

Testing framework: software that facilitates:
• Writing test cases
• Organizing the test cases into test suites
• Running the test suites
• Reporting the results
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JUnit

• A Java testing framework
• Open-source product
• Can be used stand-alone or with an IDE
• Available from junit.org
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JUnit Example

import junit.framework.*;
public class TestDirectoryEntry

extends TestCase {
private DirectoryEntry tom;
private DirectoryEntry dick;
private DirectoryEntry tom2;

public void setUp () {
tom  = new DirectoryEntry(“Tom” , “...”);
dick = new DirectoryEntry(“Dick”, “...”);
tom2 = new DirectoryEntry(“Tom” , “...”);

}
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JUnit Example (2)

public void testTomCreate () {
assertEquals(tom.getName()  , “Tom”);
assertEquals(tom.getNumber(), “...”);

}

public void testTomEqualsDick () {
assertFalse(tom.equals(dick));
assertFalse(dick.equals(tom));

}
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JUnit Example (3)

public void testTomEqualsTom () {
assertTrue(tom.equals(tom));
assertTrue(tom.equals(tom2));
assertTrue(tom2.equals(tom));

}

public void testSetNumber () {
dick.setNumber(tom.getNumber());
assertEquals(tom.getNumber(),dick.getNumber());

}
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Integration Testing

• Larger components: collection of classes
• Done with smaller collection, then larger ones
• Drive with use cases: scenarios with

• Sample user inputs
• Expected outputs
• Can be challenging to automate
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Debugging a Program

Debugging: the major activity during the testing phase
• Testing determines that there is an error
• Debugging determines the cause
• Debugging is like detective work: logical deduction

• Inspect all program output carefully
• Insert additional output statements to find out more
• Use breakpoints to examine world ...

at carefully selected points
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Using a Debugger

• Debuggers often are included with IDEs
• Debugger supports incremental program execution
• Single-step execution provides increments as small as 

one program statement (or even one instruction)
• Breakpoints traverse larger portions of code at once
• Details depend on the specfic IDE
Key to debugging: Think first! Think a lot!
• Also: try to split possible error sources in half with 

each investigation
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Reasoning about Programs:
Assertions and Loop Invariants

• Assertions:
• Logical statements about program state
• Claimed to be true
• At a particular point in the program
• Written as a comment, OR use assert statement

• Preconditions and postconditions are assertions
• Loop invariants are also assertions
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Reasoning about Programs:
Loop Invariants

A loop invariant:
• Helps prove that a loop meets it specification
• Is true before loop begins
• Is true at the beginning of each iteration
• Is true just after loop exit

Example: Sorting an array of n elements
Sorted(i): Array elements j, for 0 ≤ j < i, are sorted
Beginning: Sorted(0) is (trivially) true
Middle: We insure initial portion sorted as we increase i
End: Sorted(n): All elements 0 ≤ j < n are sorted
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Efficiency of Algorithms

Question: How can we characterize the 
performance of an algorithm ...

• Without regard to a specific computer?
• Without regard to a specific language?
• Over a wide range of inputs?
Desire: Function that describes execution time in 

terms of input size
• Other measures might be memory needed, etc.
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The “Order” of Performance: (Big) O

• Basic idea:
1. Ignore constant factor: computer and language 

implementation details affect that: go for 
fundamental rate of increase with problem size.

2. Consider fastest growing term: Eventually, for large 
problems, it will dominate.

• Value: Compares fundamental performance 
difference of algorithms

• Caveat: For smaller problems, big-O worse 
performer may actually do better
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T(n) = O(f(n))

• T(n) = time for algorithm on input size n
• f(n) = a simpler function that grows at about the 

same rate

• Example: T(n) = 3n2+5n-17 = O(n2)
• f(n) has faster growing term
• no extra leading constant in f(n)
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T(n) = O(f(n)) Defined

1. ∃n0 and
2. ∃c    such that

If n > n0 then c·f(n) ≥ T(n)

Example: T(n) = 3n2+5n-17
Pick c = 4, say; need 4n0

2 > 3n0
2+5n0-17

n0
2 > 5n0-17, for which n0 = 5 will do.
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Efficiency of Algorithms (continued)
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Efficiency of Algorithms (continued)
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Efficiency of Algorithms (continued)
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Efficiency of Algorithms (continued)
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Efficiency of Algorithms (continued)
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Efficiency Examples

public static int find (int[]x, int val) {
for (int i = 0; i < x.length; i++) {
if (x[i] == val)
return i;

}
return -1;  // not found

}
Letting n be x.length:
Average iterations if found = (1+...+n)/n = (n+1)/2 = O(n)
Iterations if not found = n = O(n)
Hence this is called linear search.
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Efficiency Examples (2)

public static boolean allDifferent (
int[] x, int[] y) {

for (int i = 0; i < x.length; i++) {
if (find(y, x[i]) != -1)
return false;

}
return true;  // no x element found in y

}
Letting m be x.length and n be y.length:
Time if all different = O(m·n) = m · cost of search(n)
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Efficiency Examples (3)

public static boolean unique (int[] x) {
for (int i = 0; i < x.length; i++) {
for (int j = 0; j < x.length; j++ {
if (i != j && x[i] == x[j])
return false;

}
}
return true;  // no duplicates in x

}
Letting n be x.length:
Time if unique = n2 iterations = O(n2)
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Efficiency Examples (4)
public static boolean unique (int[] x) {
for (int i = 0; i < x.length; i++) {
for (int j = i+1; j < x.length; j++ {
if (i != j && x[i] == x[j])
return false;

}
}
return true;  // no duplicates in x

}
Letting n be x.length:
Time if unique = (n-1)+(n-2)+...+2+1 iterations =

n(n-1)/2 iterations = O(n2) still ... only factor of 2 better
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Efficiency Examples (5)
for (int i = 1; i < n; i *= 2) {
do something with x[i]

}

Sequence is 1, 2, 4, 8, ..., ~n.
Number of iterations = log2n = log n.
Computer scientists generally use base 2 for log, since 

that matches with number of bits, etc.
Also O(logbn) = O(log2n) since chane of base just 

multiples by a constant: log2n = logbn/logb2
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Chessboard Puzzle

Payment scheme #1: $1 on first square, $2 on second, 
$3 on third, ..., $64 on 64th.

Payment scheme #2: 1¢ on first square, 2¢ on second, 
4¢ on third, 8¢ on fourth, etc.

Which is best?
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Chessboard Puzzle Analyzed

Payment scheme #1: Total = $1+$2+$3+...+$64 = 
$64×65/2 = $1755

Payment scheme #2: 1¢+2¢+4¢+...+263¢ = 264-1¢ =
$184.467440737 trillion

Many cryptographic schemes require O(2n) work to 
break a key of length n bits. A key of length n=40 is 
perhaps breakable, but one with n=100 is not.
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