
Program Correctness
and Efficiency

Following Koffmann and
Wolfgang Chapter 2

Chapter 2: Program Correctness and Efficiency 2

Outline

• Categories of program errors
• Why you should catch exceptions
• The Exception hierarchy

• Checked and unchecked exceptions
• The try-catch-finally sequence
• Throwing an exception:

• What it means
• How to do it

Chapter 2: Program Correctness and Efficiency 3

Outline (continued)

• A variety of testing strategies
• How to write testing methods
• Debugging techniques and debugger

programs
• Program verification: assertions and loop

invariants
• Big-O notation

• What it is
• How to use it to analyze an algorithm’s efficiency

Chapter 2: Program Correctness and Efficiency 4

Program Defects and “Bugs”

• An efficient program is worthless if it breaks or
produces a wrong answer

• Defects often appear in software after it is
delivered

• Testing cannot prove the absence of defects
• It can be difficult to test a software product

completely in the environment in which it is used
• Debugging: removing defects

Chapter 2: Program Correctness and Efficiency 5

Major Categories of Defects

• Syntax and other in-advance errors

• Run-time errors and exceptions

• Logic Errors

Chapter 2: Program Correctness and Efficiency 6

Syntax Errors

• Syntax errors: grammatical mistakes in a program
• The compiler detects syntax errors

• You must correct them to compile successfully
• Some common syntax errors include:

• Omitting or misplacing braces, parentheses, etc.
• Misplaced end-of-comment
• Typographical errors (in names, etc.)
• Misplaced keywords

Chapter 2: Program Correctness and Efficiency 7

Semantic Errors
• Semantic errors: may obey grammar, but violate

other rules of the language
• The compiler detects semantic errors

• You must correct them to compile successfully
• Some common semantic errors include:

• Performing an incorrect operation on a primitive type value
• Invoking an instance method not defined
• Not declaring a variable before using it
• Providing multiple declarations of a variable
• Failure to provide an exception handler
• Failure to import a library routine

Chapter 2: Program Correctness and Efficiency 8

Run-time Errors or Exceptions

• Run-time errors
• Occur during program execution (run-time!)
• Occur when the JVM detects an operation that it

knows to be incorrect
• Cause the JVM to throw an exception

• Examples of run-time errors include
• Division by zero
• Array index out of bounds
• Number format error
• Null pointer exceptions

Chapter 2: Program Correctness and Efficiency 9

Run-time Errors or Exceptions (continued)

Chapter 2: Program Correctness and Efficiency 10

Logic Errors

• A logic error is programmer mistake in
• the design of a class or method, or
• the implementation of an algorithm

• Most logic errors
• Are not syntax or semantic errors: get by the compiler
• Do not cause run-time errors
• Thus they are difficult to find

• Sometimes found through testing
• Sometimes found by users

Chapter 2: Program Correctness and Efficiency 11

Avoiding Logic Errors

• Work from a precise specification
• Strive for clarity and simplicity
• Consider “corner” / extreme cases
• Have reviews / walk-throughs: other eyes
• Use library/published algorithms where possible
• Think through pre/post conditions, invariants
• Be organized and careful in general

Chapter 2: Program Correctness and Efficiency 12

The Exception Class Hierarchy

• When an exception occurs, the first thing that
happens is a new of a Java exception object

• Different exception classes have different rules
• Throwable is the root superclass of the exception

class hierarchy
• Error is a subclass of Throwable
• Exception is a subclass of Throwable

•RuntimeException is a subclass of Exception

Chapter 2: Program Correctness and Efficiency 13

The Class Throwable
• Throwable is the superclass of all exceptions
• All exception classes inherit its methods

Chapter 2: Program Correctness and Efficiency 14

The Class Throwable (continued)

Chapter 2: Program Correctness and Efficiency 15

The Exception Class Hierarchy (2)
Throwable is the superclass of all exception classes
• Error is for things a program should not catch

• Example: OutOfMemoryError
• Exception is for things a program might catch

• RuntimeException is for things the VM might throw
• It can happen anywhere: e.g., any object access can

throw NullPointerException
• So not required to catch it

• All others must be either:
• Explicitly caught or
• Explicitly mentioned as thrown by the method

Chapter 2: Program Correctness and Efficiency 16

Exception Hierarchy Summary

• Error: don’t catch, unchecked
• Exception:

• RuntimeException:
• (Usually) don’t catch, unchecked

• All others: checked, so must
• Catch, or
• Mention they may be thrown

Chapter 2: Program Correctness and Efficiency 17

Checked and Unchecked Exceptions

• Checked exceptions
• Normally not due to programmer error
• Generally beyond the control of the programmer
• Examples: IOException, FileNotFoundException

• Unchecked exception may result from
• Programmer error
• Serious external condition that is unrecoverable

Chapter 2: Program Correctness and Efficiency 18

Checked and Unchecked Exceptions (2)

unchecked

unchecked

Chapter 2: Program Correctness and Efficiency 19

Some Common Unchecked Exceptions

• ArithmeticException
• Division by zero, etc.

• ArrayIndexOutOfBoundsException
• NumberFormatException

• Converting a “bad” string to a number
• NullPointerException
• NoSuchElementException

• No more tokens available

Chapter 2: Program Correctness and Efficiency 20

Catching and Handling Exceptions

• When an exception is thrown, the normal
sequence of execution is interrupted

• Default behavior,i.e., no handler
• Program stops
• JVM displays an error message

• The programmer may provide a handler
• Enclose statements in a try block
• Process the exception in a catch block

Chapter 2: Program Correctness and Efficiency 21

Example Handler
InputStream in = null;
try {
in = new FileInputStream(args[0]);
...

} catch (FileNotFoundException e) {
System.out.printf(

“File not found: %s%n”, name);
} catch (Throwable e) {
System.err.println("Exception!");
e.printStackTrace(System.err);

} finally {
if (in != null) in.close();

}

Chapter 2: Program Correctness and Efficiency 22

Uncaught Exceptions

• Uncaught exception exits VM with a stack trace
• The stack trace shows

• The sequence of method calls
• Starts with throwing method
• Ends at main

Chapter 2: Program Correctness and Efficiency 23

The try-catch Sequence

• Avoiding uncaught exceptions
• Write a try-catch to handle the exception
• Point: prevent ugly program termination!

• Unpleasant for user
• Worse, may leave things messed up / “broken”

• catch block is skipped if no exception thrown
within the try block

Chapter 2: Program Correctness and Efficiency 24

Handling Exceptions to Recover from Errors

• Exceptions provide the opportunity to
• Report errors
• Recover from errors

• User errors common, and should be recoverable
• Most closely enclosing handler that matches is

the one that executes
• A handler matches if its class includes what’s thrown

• Compiler displays an error message if it
encounters an unreachable catch clause

Chapter 2: Program Correctness and Efficiency 25

The finally block

• On exception, a try is abandoned
• Sometimes more actions must be taken

• Example: Close an output file
• Code in a finally block is always executed

• After the try finishes normally, or
• After a catch clause completes

• finally is optional

Chapter 2: Program Correctness and Efficiency 26

Example of finally block
try {
InputStream ins = ...;
... ins.read(); ...

} catch (EOFException e) {
System.err.println(“Unexpected EOF”);
e.printStackTrace();
System.exit(17);

} finally {
if (ins != null) ins.close();

}

Chapter 2: Program Correctness and Efficiency 27

Throwing Exceptions

• Lower-level method can pass exception through
• Can be caught and handled by a higher-level method
• Mark lower-level method

• Say it may throw a checked exception
• Mark by throws clause in the header

• May throw the exception in the lower-level method
• Use a throw statement

• Particularly useful if calling module already has
a handler for this exception type

Chapter 2: Program Correctness and Efficiency 28

Throwing Exceptions (2)

• Use a throw statement when you detect an error
• Further execution stops immediately:

• Goes to closest suitable handler
• May be a number of level of calls earlier
• Does execute any finally blocks in the middle

Chapter 2: Program Correctness and Efficiency 29

Example of Throwing an Exception
/** adds a new entry or changes an old one
* @param name the name to create/update
* @param number the (new) number
* @return the previous number, a String
* @throws IllegalArgumentException if the number
* is not in phone number format
*/

public String addOrChangeEntry(
String name, String number) {

if (!isPhoneNumberFormat(number)) {
throw new IllegalArgumentException(
“Invalid phone number: “ + number);

}
...

}

Chapter 2: Program Correctness and Efficiency 30

Another Example of Throwing an Exception

public void accessLocalFile (String askingUser)
throws CertificateException {

...
if (user’s secure socket certificate bad) {
throw new CertificateException(reason);

}
...

}

Chapter 2: Program Correctness and Efficiency 31

Programming Style

• You can always avoid handling exceptions:
• Declare that they are thrown, or
• Throw them and let them be handled farther back

• But: usually best to handle instead of passing
• Guidelines:

1. If recoverable here, handle here
2. If checked exception likely to be caught higher up

Declare that it can occur using a throws clause
3. Don’t use throws with unchecked exceptions

Use an @throws javadoc comment when helpful

Chapter 2: Program Correctness and Efficiency 32

Programming Style (2)

Don’t do this!
try {...} catch (Throwable e) { }

• Omits arbitrary patches of code
Can leave things in “broken” state

• No warning to user
• Leads to hidden, difficult to detect, defects

Chapter 2: Program Correctness and Efficiency 33

Handling Exceptions in Phone Dir Example

In loadData:
FileNotFoundException from FileReader

constructor
IOException from readLine

In PDConsoleUI:
InputMismatchException from nextInt

In addOrChangeEntry:
IllegalArgumentException for empty String

Chapter 2: Program Correctness and Efficiency 34

Testing Programs
• A program with

• No syntax/semantic errors, and
• No run-time errors,
• May still contain logic errors

• “Best” case is logic error that always executes
• Otherwise, hard to find!

• Worst case is logic error in code rarely run

Goal of testing: Test every part of the code, on
“good” and “bad”/”hard” cases

Chapter 2: Program Correctness and Efficiency 35

Structured Walkthroughs
• Most logic errors:

• Come from the design phase
• Result from an incorrect algorithm

• Logic errors sometimes come from typos that do
not cause syntax, semantic, or run-time errors
• Famous FORTRAN: DO 10 I = 1.100
• Common C: if (i = 3) ...

• One way to test: hand-trace algorithm
before implementing!

• Thus: Structured Walkthroughs

Chapter 2: Program Correctness and Efficiency 36

Structured Walkthroughs (2)
The Designer:
• Explains the algorithm to other team members
• Simulate its execution with them looking on

The Team:
• Verifies that it works
• Verifies that it handles all cases

Walkthroughs are helpful, but do not replace testing!

Chapter 2: Program Correctness and Efficiency 37

Testing Defined

• Testing:
• Exercising a program under controlled conditions
• Verifying the results

• Purpose: detect program defects after
• All syntax/semantic errors removed
• Program compiles

• No amount of testing can guarantee the absence of
defects in sufficiently complex programs

Chapter 2: Program Correctness and Efficiency 38

Levels of Testing

• Unit testing: checking the smallest testable piece
• A method or class

• Integration testing:
• The interactions among units

• System testing: testing the program in context
• Acceptance testing: system testing intended to

show that the program meets its functional
requirements

Chapter 2: Program Correctness and Efficiency 39

Some Types of Testing

• Black-box testing:
• Tests item based only on its interfaces and

functional requirements
• Assumes no knowledge of internals

• White-box testing:
• Tests with knowledge of internal structure

Chapter 2: Program Correctness and Efficiency 40

Preparing to Test

• Develop test plan early, in the design phase
• How to test the software
• When to do the tests
• Who will do the testing
• What test data to use

• Early test plan allows testing during design & coding
• Good programmer practices defensive programming

• Includes code to detect unexpected or invalid data

Chapter 2: Program Correctness and Efficiency 41

Testing Tips for Program Systems

• Program systems contain collections of classes,
each with several methods

• A method specification should document
• Input parameters
• Expected results

• Carefully document (with javadoc, etc.):
• Each method parameter
• Each class attribute (instance and static variable)
• As you write the code!

Chapter 2: Program Correctness and Efficiency 42

Testing Tips for Program Systems (2)

Trace execution by displaying method name as
you enter a method:

public static final boolean TRACING = true;
...
public int computeWeight (...) {
if (TRACING) {
trace.printf(“Entering computeWeight“);

}
...

}

Chapter 2: Program Correctness and Efficiency 43

Testing Tips for Program Systems (3)

Display values of all input parameters on entry:
public int computeWeight (float volume,

float density) {
if (TRACING) {
trace.printf(“Entering computeWeight“);
trace.printf(“volume = %f, “, volume);
trace.printf(“density = %f%n“, density);

}
...

}

Chapter 2: Program Correctness and Efficiency 44

Testing Tips for Program Systems (4)

• Display values of any class attributes (instance
and static variables) accessed by the method

• Display values of all method outputs at point of
return from a method

• Plan for testing as you write each module,
• Not after the fact!

Chapter 2: Program Correctness and Efficiency 45

Developing Test Data

• Specify test data during analysis and design
• For each level of testing: unit, integration, and system

• Black-box testing: unit inputs ⇒ outputs
• Check all expected inputs
• Check unanticipated data

• White-box testing: exercise all code paths
• Different tests to make each if test (etc.) true and false
• Called coverage

Chapter 2: Program Correctness and Efficiency 46

Developing Test Data (2)

• Helpful to do both black- and white-box testing

• Black-box tests can be developed early since
they have to do with the unit specification

• White-box tests are developed with detailed
design or implementation: need code structure

Chapter 2: Program Correctness and Efficiency 47

Testing Boundary Conditions

• Exercise all paths for
• Hand-tracing in a structured walkthrough
• Performing white-box testing

• Must check special cases:
boundary conditions

• Examples:
• Loop executes 0 times, 1 time, all the way to the end
• Item not found

Chapter 2: Program Correctness and Efficiency 48

Who does the testing?

• Normally testing is done by
• The programmer
• Team members who did not code the module
• Final users of the product

• Programmers often blind to their own oversights
• Companies may have quality assurance groups
• Extreme programming: programmers paired

• One writes the code
• The other writes the tests

Chapter 2: Program Correctness and Efficiency 49

Stubs for Testing

• Hard to test a method or class that interacts with
other methods or classes

• A stub stands in for a method not yet available
• The stub:

• Has the same header as the method it replaces
• Body only displays a message that it was called

• Sometimes you need to synthesize a reasonable
facsimile of a result, for the caller to continue

Chapter 2: Program Correctness and Efficiency 50

Drivers

A driver program:
• Declares necessary instances and variables
• Provides values for method inputs
• Calls the method
• Displays values of method outputs

• A main method in a class can serve as a driver
to test the class’s methods

Chapter 2: Program Correctness and Efficiency 51

Regression Testing

• Once code has passed all initial tests, it is
important to continue to test regularly

• Environment and other changes ⇒ “software rot”
• A regression test is designed to:

• Catch any “regression” or decay in the software
• Insure old functionality works in face of enhancement
• Alert earlier to any issues arising from other changes

• Regression testing eased by a testing framework

Chapter 2: Program Correctness and Efficiency 52

Using a Testing Framework

Testing framework: software that facilitates:
• Writing test cases
• Organizing the test cases into test suites
• Running the test suites
• Reporting the results

Chapter 2: Program Correctness and Efficiency 53

JUnit

• A Java testing framework
• Open-source product
• Can be used stand-alone or with an IDE
• Available from junit.org

Chapter 2: Program Correctness and Efficiency 54

JUnit Example

import junit.framework.*;
public class TestDirectoryEntry

extends TestCase {
private DirectoryEntry tom;
private DirectoryEntry dick;
private DirectoryEntry tom2;

public void setUp () {
tom = new DirectoryEntry(“Tom” , “...”);
dick = new DirectoryEntry(“Dick”, “...”);
tom2 = new DirectoryEntry(“Tom” , “...”);

}

Chapter 2: Program Correctness and Efficiency 55

JUnit Example (2)

public void testTomCreate () {
assertEquals(tom.getName() , “Tom”);
assertEquals(tom.getNumber(), “...”);

}

public void testTomEqualsDick () {
assertFalse(tom.equals(dick));
assertFalse(dick.equals(tom));

}

Chapter 2: Program Correctness and Efficiency 56

JUnit Example (3)

public void testTomEqualsTom () {
assertTrue(tom.equals(tom));
assertTrue(tom.equals(tom2));
assertTrue(tom2.equals(tom));

}

public void testSetNumber () {
dick.setNumber(tom.getNumber());
assertEquals(tom.getNumber(),dick.getNumber());

}

Chapter 2: Program Correctness and Efficiency 57

Integration Testing

• Larger components: collection of classes
• Done with smaller collection, then larger ones
• Drive with use cases: scenarios with

• Sample user inputs
• Expected outputs
• Can be challenging to automate

Chapter 2: Program Correctness and Efficiency 58

Debugging a Program

Debugging: the major activity during the testing phase
• Testing determines that there is an error
• Debugging determines the cause
• Debugging is like detective work: logical deduction

• Inspect all program output carefully
• Insert additional output statements to find out more
• Use breakpoints to examine world ...

at carefully selected points

Chapter 2: Program Correctness and Efficiency 59

Using a Debugger

• Debuggers often are included with IDEs
• Debugger supports incremental program execution
• Single-step execution provides increments as small as

one program statement (or even one instruction)
• Breakpoints traverse larger portions of code at once
• Details depend on the specfic IDE
Key to debugging: Think first! Think a lot!
• Also: try to split possible error sources in half with

each investigation

Chapter 2: Program Correctness and Efficiency 60

Reasoning about Programs:
Assertions and Loop Invariants

• Assertions:
• Logical statements about program state
• Claimed to be true
• At a particular point in the program
• Written as a comment, OR use assert statement

• Preconditions and postconditions are assertions
• Loop invariants are also assertions

Chapter 2: Program Correctness and Efficiency 61

Reasoning about Programs:
Loop Invariants

A loop invariant:
• Helps prove that a loop meets it specification
• Is true before loop begins
• Is true at the beginning of each iteration
• Is true just after loop exit

Example: Sorting an array of n elements
Sorted(i): Array elements j, for 0 ≤ j < i, are sorted
Beginning: Sorted(0) is (trivially) true
Middle: We insure initial portion sorted as we increase i
End: Sorted(n): All elements 0 ≤ j < n are sorted

Chapter 2: Program Correctness and Efficiency 62

Efficiency of Algorithms

Question: How can we characterize the
performance of an algorithm ...

• Without regard to a specific computer?
• Without regard to a specific language?
• Over a wide range of inputs?
Desire: Function that describes execution time in

terms of input size
• Other measures might be memory needed, etc.

Chapter 2: Program Correctness and Efficiency 63

The “Order” of Performance: (Big) O

• Basic idea:
1. Ignore constant factor: computer and language

implementation details affect that: go for
fundamental rate of increase with problem size.

2. Consider fastest growing term: Eventually, for large
problems, it will dominate.

• Value: Compares fundamental performance
difference of algorithms

• Caveat: For smaller problems, big-O worse
performer may actually do better

Chapter 2: Program Correctness and Efficiency 64

T(n) = O(f(n))

• T(n) = time for algorithm on input size n
• f(n) = a simpler function that grows at about the

same rate

• Example: T(n) = 3n2+5n-17 = O(n2)
• f(n) has faster growing term
• no extra leading constant in f(n)

Chapter 2: Program Correctness and Efficiency 65

T(n) = O(f(n)) Defined

1. ∃n0 and
2. ∃c such that

If n > n0 then c·f(n) ≥ T(n)

Example: T(n) = 3n2+5n-17
Pick c = 4, say; need 4n0

2 > 3n0
2+5n0-17

n0
2 > 5n0-17, for which n0 = 5 will do.

Chapter 2: Program Correctness and Efficiency 66

Efficiency of Algorithms (continued)

Chapter 2: Program Correctness and Efficiency 67

Efficiency of Algorithms (continued)

Chapter 2: Program Correctness and Efficiency 68

Efficiency of Algorithms (continued)

Chapter 2: Program Correctness and Efficiency 69

Efficiency of Algorithms (continued)

Chapter 2: Program Correctness and Efficiency 70

Efficiency of Algorithms (continued)

Chapter 2: Program Correctness and Efficiency 71

Efficiency Examples

public static int find (int[]x, int val) {
for (int i = 0; i < x.length; i++) {
if (x[i] == val)
return i;

}
return -1; // not found

}
Letting n be x.length:
Average iterations if found = (1+...+n)/n = (n+1)/2 = O(n)
Iterations if not found = n = O(n)
Hence this is called linear search.

Chapter 2: Program Correctness and Efficiency 72

Efficiency Examples (2)

public static boolean allDifferent (
int[] x, int[] y) {

for (int i = 0; i < x.length; i++) {
if (find(y, x[i]) != -1)
return false;

}
return true; // no x element found in y

}
Letting m be x.length and n be y.length:
Time if all different = O(m·n) = m · cost of search(n)

Chapter 2: Program Correctness and Efficiency 73

Efficiency Examples (3)

public static boolean unique (int[] x) {
for (int i = 0; i < x.length; i++) {
for (int j = 0; j < x.length; j++ {
if (i != j && x[i] == x[j])
return false;

}
}
return true; // no duplicates in x

}
Letting n be x.length:
Time if unique = n2 iterations = O(n2)

Chapter 2: Program Correctness and Efficiency 74

Efficiency Examples (4)
public static boolean unique (int[] x) {
for (int i = 0; i < x.length; i++) {
for (int j = i+1; j < x.length; j++ {
if (i != j && x[i] == x[j])
return false;

}
}
return true; // no duplicates in x

}
Letting n be x.length:
Time if unique = (n-1)+(n-2)+...+2+1 iterations =

n(n-1)/2 iterations = O(n2) still ... only factor of 2 better

Chapter 2: Program Correctness and Efficiency 75

Efficiency Examples (5)
for (int i = 1; i < n; i *= 2) {
do something with x[i]

}

Sequence is 1, 2, 4, 8, ..., ~n.
Number of iterations = log2n = log n.
Computer scientists generally use base 2 for log, since

that matches with number of bits, etc.
Also O(logbn) = O(log2n) since chane of base just

multiples by a constant: log2n = logbn/logb2

Chapter 2: Program Correctness and Efficiency 76

Chessboard Puzzle

Payment scheme #1: $1 on first square, $2 on second,
$3 on third, ..., $64 on 64th.

Payment scheme #2: 1¢ on first square, 2¢ on second,
4¢ on third, 8¢ on fourth, etc.

Which is best?

Chapter 2: Program Correctness and Efficiency 77

Chessboard Puzzle Analyzed

Payment scheme #1: Total = $1+$2+$3+...+$64 =
$64×65/2 = $1755

Payment scheme #2: 1¢+2¢+4¢+...+263¢ = 264-1¢ =
$184.467440737 trillion

Many cryptographic schemes require O(2n) work to
break a key of length n bits. A key of length n=40 is
perhaps breakable, but one with n=100 is not.

	Program Correctness�and Efficiency
	Outline
	Outline (continued)
	Program Defects and “Bugs”
	Major Categories of Defects
	Syntax Errors
	Semantic Errors
	Run-time Errors or Exceptions
	Run-time Errors or Exceptions (continued)
	Logic Errors
	Avoiding Logic Errors
	The Exception Class Hierarchy
	The Class Throwable
	The Class Throwable (continued)
	The Exception Class Hierarchy (2)
	Exception Hierarchy Summary
	Checked and Unchecked Exceptions
	Checked and Unchecked Exceptions (2)
	Some Common Unchecked Exceptions
	Catching and Handling Exceptions
	Example Handler
	Uncaught Exceptions
	The try-catch Sequence
	Handling Exceptions to Recover from Errors
	The finally block
	Example of finally block
	Throwing Exceptions
	Throwing Exceptions (2)
	Example of Throwing an Exception
	Another Example of Throwing an Exception
	Programming Style
	Programming Style (2)
	Handling Exceptions in Phone Dir Example
	Testing Programs
	Structured Walkthroughs
	Structured Walkthroughs (2)
	Testing Defined
	Levels of Testing
	Some Types of Testing
	Preparing to Test
	Testing Tips for Program Systems
	Testing Tips for Program Systems (2)
	Testing Tips for Program Systems (3)
	Testing Tips for Program Systems (4)
	Developing Test Data
	Developing Test Data (2)
	Testing Boundary Conditions
	Who does the testing?
	Stubs for Testing
	Drivers
	Regression Testing
	Using a Testing Framework
	JUnit
	JUnit Example
	JUnit Example (2)
	JUnit Example (3)
	Integration Testing
	Debugging a Program
	Using a Debugger
	Reasoning about Programs:�Assertions and Loop Invariants
	Reasoning about Programs:�Loop Invariants
	Efficiency of Algorithms
	The “Order” of Performance: (Big) O
	T(n) = O(f(n))
	T(n) = O(f(n)) Defined
	Efficiency of Algorithms (continued)
	Efficiency of Algorithms (continued)
	Efficiency of Algorithms (continued)
	Efficiency of Algorithms (continued)
	Efficiency of Algorithms (continued)
	Efficiency Examples
	Efficiency Examples (2)
	Efficiency Examples (3)
	Efficiency Examples (4)
	Efficiency Examples (5)
	Chessboard Puzzle
	Chessboard Puzzle Analyzed

