Class Hierarchy

Discussion D

Constructor

public class X {

private int capacity;

public X() { capacity = 16;}

public X(int i) {capacity = i;}

public int getCapacity() {return capacity;}

}

public class Y extends X {

private double loadFactor;

public Y(double d) { this.loadFactor = d;}
public getLoad() {return loadFactor;}

}

Usage

public static void main(String [] args) {

X x = new X(32); //1
Y v = new Y(); //2
Y y2 = new Y(0.25); //3
x = (X) y; //4
x.getCapacity () ; //5
x.getLoad () ; //6
y = (Y) x; /77

X x = new X(32); //1

. Allocate a new object of class X

. Invoke X(Int capacity) constructor
— Invoke super()
. Object()
— capacity == 32
— return

Y v = new Y();

. No Y () constructor defined

— Constructors are not inherited
. Uses compiler generated
-Y(O { super(); }

. Invokes X()

- Invokes Object ()

. capacity == 16

. loadFactor == 0.0

Y y2 = new Y(0.25);

. Allocates a new object of class Y
. Invokes Y(double loadFactor)

— Invokes X()

. Invokes Object()
. capacity == 16
— loadFactor == 0.25

x = (X) y;

. Is unnecessary
. Improves readability

(20

(Y) x;

Y

. Is correct
Will succeed check cast at run time

(20

x.getLoad() ;

. Substitutability

— Yy extends X
— Yy can be substituted for x

. Variable declared of Type X

. cannot access methods of Class Y

Polymorphism

public class X {

private int [] data;

public X(int [] data) { this.data = data;}
public int [] sort() {...}

public void print() {}

}

public class Y extends X {

public Y(boolean direction) {}

public int [] sort(boolean descending) {...}
public void print() {}

}

Visibility

public class X {
public void u (p(););
private void p();

}

public class Y extends X {
private void p():;

Y v = new Y();

public
public

public
public
public

class
class

class
class
class

KX

Hierarchy

extends
extends

{}

extends
extends

o Bl
A
- W

X
X

{
{

private Y;}

public
public
public

public
public
public

Hierarchy

class X {}
interface Y {}
class Z extends X implements Y {}

interface X {}
interface Y extends X {}
class Z implements Y {}

Travel Hierarchy

Travel

N

public abstract class Travel {

public Travel (String source,
String Destination) {}

public double cost() {} //cost of travel, fare
public int time() {} //travel time for meals
public int compensation() {} //dollar amount

public class AirTravel extends Travel {

public AirTravel (String source, String destination,
String airline)

super (source, destination);

}

public AirTravel (String source, String destination,
String airline, String class) {
super (source, destination);

}

public double cost();//verify cost from airline web
public int time() ;
public int compensation () {

// compute allowable parking, meals etc.

}

public class CarTravel extends Travel {

public CarTravel (String source, String destination,
String route) {
super (source, destination);

}

public double cost(){
// compute mileage
// maybe from yahoo maps directions
// based on a per mile cost, compute total cost
}
public int time() ;
public int compensation () {
// compute allowable parking based on
// num days spent at destination

}

Why Travel Interface?

. Clients of Travel can compute the necessary
Information without knowing all the details

. Flexibility is limited to the generality of the
Travel interface for use by the clients

. If the Interface needs modification then object
oriented programming benefits are lost

Merchandise

Merchandise Tax

Clothing

public abstract class Merchandise {

Tax tax;
public int getCost() {}

public int getTax(int zipCode) {
return tax.getTax(zipCode) ;
}

}

public class Clothing extends Merchandise {

public Clothing () {
tax = new ClothingTax(this) ;

}

public int getCost() {}

}

public abstract class Tax {
Merchandise article;

public Tax() ;

public int getTax(int zipCode) ;

}

public class ClothingTax extends Tax {
//imagine a static zipcode indexed table for looking up
//taxation
public int getTax(int zipCode) ;

}

public class PharmaTax extends Tax {
public int getTax(int zipCode) ;

}

We may want to model zip code explicitly using a Location
class.

Interfaces

A

Extension

. Assumed that tax rate was flat for a type

. It may depend on cost of item
— Clothes > $250 may be taxed differently

Detailed

	Class Hierarchy
	Constructor
	Usage
	X x = new X(32); //1
	Y y = new Y(); //2
	Y y2 = new Y(0.25); //3
	x = (X) y; //4
	y = (Y) x; //7
	x.getLoad(); //6
	Polymorphism
	Visibility
	Hierarchy
	Hierarchy
	Travel Hierarchy
	Why Travel Interface?
	Merchandise
	Interfaces
	Extension
	Detailed

