
Class Hierarchy

Discussion D

Constructor

public class X {
private int capacity;
public X() { capacity = 16;}
public X(int i) {capacity = i;}
public int getCapacity() {return capacity;}

}

public class Y extends X {
private double loadFactor;
public Y(double d) { this.loadFactor = d;}
public getLoad() {return loadFactor;}

}

Usage

public static void main(String [] args) {
X x = new X(32); //1
Y y = new Y(); //2
Y y2 = new Y(0.25); //3
x = (X) y; //4
x.getCapacity(); //5
x.getLoad(); //6
y = (Y) x; //7

}

X x = new X(32); //1

● Allocate a new object of class X
● Invoke X(int capacity) constructor

– Invoke super()
● Object()

– capacity == 32
– return

Y y = new Y(); //2

● No Y() constructor defined
– Constructors are not inherited

● Uses compiler generated
– Y() { super(); }

● Invokes X()
– Invokes Object ()

● capacity == 16
● loadFactor == 0.0

Y y2 = new Y(0.25); //3

● Allocates a new object of class Y
● Invokes Y(double loadFactor)

– Invokes X()
● Invokes Object()
● capacity == 16

– loadFactor == 0.25

x = (X) y; //4

● Is unnecessary
● Improves readability

X

Y

y = (Y) x; //7

● Is correct
● will succeed check cast at run time

X

Y

x.getLoad(); //6

● Substitutability
– y extends x
– y can be substituted for x

● Variable declared of Type X
● cannot access methods of Class Y

Polymorphism

public class X {
private int [] data;
public X(int [] data) { this.data = data;}
public int [] sort() {...}
public void print() {}

}

public class Y extends X {
public Y(boolean direction) {}

public int [] sort(boolean descending) {...}
public void print() {}

}

Visibility

public class X {
public void u (p(););
private void p();

}

public class Y extends X {
private void p();

}

Y y = new Y();
y.u();

Hierarchy

public class X extends Y {}
public class Y extends X {}

public class X {}
public class Y extends X {
public class Z extends X { private Y;}

Hierarchy

public class X {}
public interface Y {}
public class Z extends X implements Y {}

public interface X {}
public interface Y extends X {}
public class Z implements Y {}

Travel Hierarchy

Travel

AirTravel CarTravel

public abstract class Travel {

public Travel (String source,
String Destination){}

public double cost() {} //cost of travel,fare
public int time() {} //travel time for meals
public int compensation() {} //dollar amount

}

public class AirTravel extends Travel {

public AirTravel(String source, String destination,
String airline)

{
super (source, destination);

}

public AirTravel(String source, String destination,
String airline, String class) {

super (source, destination);
}

public double cost();//verify cost from airline web
public int time();
public int compensation () {

// compute allowable parking, meals etc.
}

}

public class CarTravel extends Travel {

public CarTravel(String source, String destination,
String route) {

super (source, destination);
}

public double cost(){
// compute mileage
// maybe from yahoo maps directions
// based on a per mile cost, compute total cost

}
public int time();
public int compensation () {

// compute allowable parking based on
// num days spent at destination

}
}

Why Travel Interface?

● Clients of Travel can compute the necessary
information without knowing all the details

● Flexibility is limited to the generality of the
Travel interface for use by the clients

● If the interface needs modification then object
oriented programming benefits are lost

Merchandise

Merchandise Tax

Clothing ClothingTax

public abstract class Merchandise {

Tax tax;
public int getCost() {}

public int getTax(int zipCode) {
return tax.getTax(zipCode);

}
}

public class Clothing extends Merchandise {

public Clothing () {
tax = new ClothingTax(this);
}

public int getCost() {}
}

public abstract class Tax {
Merchandise article;
public Tax();
public int getTax(int zipCode);

}

public class ClothingTax extends Tax {
//imagine a static zipcode indexed table for looking up
//taxation
public int getTax(int zipCode);

}

public class PharmaTax extends Tax {
public int getTax(int zipCode);

}

We may want to model zip code explicitly using a Location
class.

Interfaces

Merchandise

Clothing

Tax

Extension

● Assumed that tax rate was flat for a type
● It may depend on cost of item

– Clothes > $250 may be taxed differently

Detailed

Merchandise Tax

Clothing ClothingTax

Location

01003

MA

	Class Hierarchy
	Constructor
	Usage
	X x = new X(32); //1
	Y y = new Y(); //2
	Y y2 = new Y(0.25); //3
	x = (X) y; //4
	y = (Y) x; //7
	x.getLoad(); //6
	Polymorphism
	Visibility
	Hierarchy
	Hierarchy
	Travel Hierarchy
	Why Travel Interface?
	Merchandise
	Interfaces
	Extension
	Detailed

