
Unit Testing

Discussion C



Unit Test

● public Method is smallest unit of code

● Input/output transformation
● Test if the method does what it claims 
● Not exactly black box testing



Test

➔ if (actual result != expected result)

– throw Exception 

➔ Compare different types
➔ String, int, boolean..., Object

?method

Expected

ComputedInput



Functionality

● Computation
– Easy to test

● Time based
● Asynchronous interaction

– GUI, I/O, Web Application



Power Of 2
public class PowerOf2 {

public PowerOf2() {}

public int power2(int n) {
return 1 << n;

}
public static void main(String [] args) {
PowerOf2 p = new PowerOf2(); 
for (int i=1; i<=29; i+=2) {
System.out.println(i, p.power2(i));

}
}

}



Test PowerOf2

public class TestPowerOf2 {
PowerOf2 pow2;

public TestPowerOf2() {
pow2 = new PowerOf2();
}

public void test() {
assert (pow2.power2(5) != 32);
assert (pow2.power2(9) != 512);
}

}



Other tests

public String row (int n) {

}

public int oddPower(int limit) {

}



Multiple Tests

● We may have a convention that every 
TestClass has a test() method

● We can automate by running through a single 
driver test methods of all the test classes

● Tests that fail throw an exception
● We note which tests passed and which failed 
● ... and aggregate results



JUnit test

● JUnit framework provides
– setup / assert / teardown sequence

● junit.framework.assert
Assert.assertEquals("Message", 
obtainedResults,expectedResults);

● Group tests with same setup in a test methods
● Group tests into suites



Junit Test

class TestPowerOf2 extends TestCase {

public TestPowerOf2(String testMethodname) {
super(testMethodName);

}
setUp() { pow2 = new PowerOf2();}
tearDown() {}
public void method() {
assertEquals (pow2.power2(5) != 32);
assertEquals(recvd, expect);

}
public static main(String [] args) {
new TestPowerOf2(method).run();

}
}

Assert

setUp
method
tearDown



TestSuite

TestSuite suite = new TestSuite();
suite.addTest(new TestPowerOf2(method1));
suite.addTest(new TestPowerOf2(method2));
suite.run(new TestResult());



TestRunner
public class MyTestSuite extends TestCase {

public static TestSuit e suite {
TestSuit s = new TestSuit();
s.addTest(new TestPowerOf2(method));
return s;

}

public static void main(String[] args) {
junit.textui.TestRunner.run(MyTestSuite.class);

}
}

java -classpath junit.jar junit.swingui.TestRunner
MyTestsuite



JUnit Eclipse Integration

● The sooner a bug is caught, the easier it is to fix it
● Continuous testing, ProjectWithJUnit
● Add junit.jar to external jars

● Create new JUnit test (expanding Java)
– TestCase, TestSuite

● Run as JUnit



DocumentStatistics

● Different inputs
● JUnit setup/tear down to build test files/streams



DocumentStatistics

● Application Testing
● Invoke main with args

● Compare output with expected results



Prioritizer Software

● You are the software designer 
● How do you write tests for it? 



Mock Objects

● Time Interface
● Real Time implementation

– System.currentTimeMillis()

● Simulated Time
– Allows time to be set arbitrarily

● Use simulated time in testing


	Unit Testing
	Unit Test
	Test
	Functionality
	Power Of 2
	Test PowerOf2
	Other tests
	Multiple Tests
	JUnit test
	Junit Test
	TestSuite
	TestRunner
	JUnit Eclipse Integration
	DocumentStatistics
	DocumentStatistics
	Prioritizer Software
	Mock Objects

