Unit Testing

Discussion C



Unit Test

. publ1c Method Is smallest unit of code

. Input/output transformation

. Test If the method does what It claims

. Not exactly black box testing



Test

> 1T (actual result != expected result)

— throw Exception

> Compare different types
> String, Int, boolean..., ObjTCt
Expected

Computed "
Input > method (B D>




Functionality

. Computation
— Easy to test

. Time based

. Asynchronous interaction
- GUI, 1/0, Web Application



Power Of 2

public class PowerOf2 {
public PowerOf2 () {}

public int power2 (int n) {
return 1 << n;
}

public static void main(String [] args) {
PowerOf2 p = new PowerOf2();
for (int i=1; i<=29; i+=2) {
System.out.println(i, p.power2(i));
}

}
}



Test PowerOf2

public class TestPowerOf2 {
PowerOf2 pow2;

public TestPowerOf2() {

pow2 = new PowerOf2() ;

}
public void test() {

assert (pow2.power2(5) != 32);
assert (pow2.power2(9) != 512);
}



Other tests

public String row (int n) {

}

public int oddPower (int limit) {

}



Multiple Tests

. We may have a convention that every
TestClass has a test() method

. We can automate by running through a single
driver test methods of all the test classes

. Tests that fail throw an exception
. We note which tests passed and which failed
. ... and aggregate results



Junit test

. JUnit framework provides

— setup / assert / teardown sequence

. junit.framework.assert
Assert.assertEquals(''Message'',
obtainedResults,expectedResults);

. Group tests with same setup in a test methods
. Group tests into suites




Junit Test /Asse”

class TestPowerOf2 extends TestCase {

public TestPowerOf2 (String testMethodname) {
super (testMethodName) ;
}

setUp() { pow2 = new PowerOf2() ;}
tearDown () {}
public void method () {

assertEquals (pow2.power2(5) != 32);
assertEquals (recvd, expect);
}
public static main(String [] args) {
new TestPowerOf2 (method) .run() ; setUp
} — method

} tearDown



TestSuite

TestSuite suite = new TestSuite();

suite.addTest (new TestPowerOf2 (methodl)) ;

suite.addTest (new TestPowerOf2 (method2)) ;
suite.run (new TestResult()):



TestRunner

public class MyTestSuite extends TestCase {

public static TestSuit e suite {
TestSuit s = new TestSuit () ;
s.addTest (new TestPowerOf2 (method)) ;
return s;

}

public static void main(String[] args) {
junit.textui.TestRunner.run (MyTestSuite.class);

}

java -classpath junit.jar junit.swingui.TestRunner
MyTestsuite



Junit Eclipse Integration

. The sooner a bug Is caught, the easier it is to fix it
. Continuous testing, ProjectWithJUnit
. Add Junit. jar to external jars

. Create new JUnit test (expanding Java)
- TestCase, TestSuite

. Run as Junit



DocumentStatistics

. Different inputs
. JUnit setup/tear down to build test files/streams



DocumentStatistics

. Application Testing
. Invoke main with args

. Compare output with expected results



Prioritizer Software

. You are the software designer
. How do you write tests for it?



Mock Objects

. Time Interface

. Real Time implementation
- System.currentTimeMillis()

. Simulated Time

— Allows time to be set arbitrarily
. Use simulated time In testing



	Unit Testing
	Unit Test
	Test
	Functionality
	Power Of 2
	Test PowerOf2
	Other tests
	Multiple Tests
	JUnit test
	Junit Test
	TestSuite
	TestRunner
	JUnit Eclipse Integration
	DocumentStatistics
	DocumentStatistics
	Prioritizer Software
	Mock Objects

