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1 Introduction

Distributed vector space models have recently shown success at capturing the semantic
meanings of words [2, 15, 14], phrases and sentences [18, 16, 12], and even full documents [13,
3]. However, there has not been much work in the reverse direction: given a single vector
that represents some meaning, can we generate grammatically correct text that retains that
meaning?

The first work of this kind in a monolingual setting1 successfully generates two and three-
word phrases with predetermined syntactic structures by decoupling the task into three
phases: synthesis, decomposition, and search [4]. During the synthesis phase, a vector is
constructed from some input text. This vector is decomposed into multiple output vectors
that are then matched to words in the vocabulary using a nearest-neighbor search.

We depart from this formulation by learning a joint synthesis-decomposition function that is
capable of generating grammatical sentences with arbitrary syntactic structures. Our model
is an unfolding and untied recursive autoencoder (rae) with connections between sibling
nodes. We show promising qualitative results and conclude with future directions.

2 Unfolding Recursive Autoencoders

The unfolding recursive autoencoder was first introduced in Socher et al. [20] for a para-
phrase detection task. We structure our network around dependency parse trees because
dependency-tree recursive neural networks have been shown to be more invariant to syn-
tactic transformations than their constituency-tree counterparts [19, 10]. As we will show
later, dependency trees are also ideal for generation because the most meaningful words in
a sentence (e.g., verb, subject, object) are close to the root node.

2.1 Model Structure

We start by associating each word w in our vocabulary with a vector representation2 xw ∈
Rd. These vectors are stored as the columns of a d×V dimensional word embedding matrix
L, where V is the vocabulary size.

The input to our model is a collection of dependency parse trees where each node n in the
parse tree for a particular sentence is associated with a word w, a word vector xw, and a
hidden vector hn ∈ Rd of the same dimension as the word vectors. Unlike in constituency

1Recently proposed MT models for rescoring candidate translations [11, 21, 1] can conceivably
also be used to generate language.

2We use GloVe [17] to initialize these vectors.
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Mrs. Dalloway said she would buy the flowers herself
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Figure 1: Dependency parse tree of the opening sentence of Virginia Woolf’s Mrs. Dalloway.

trees where all words reside at the leaf level, internal nodes of dependency trees are associated
with words. Thus, the dt-rae has to combine the current node’s word vector with its
children’s hidden vectors to form hn. This process continues recursively up to the root,
whose hidden vector hroot represents the entire sentence. During the decomposition phase,
we unfold the tree from the root, which gives us a reconstructed version of the sentence. Our
training objective minimizes the error between the original and the reconstructed sentence.

2.2 From Sentence to Vector: the Synthesis Phase

We associate a separate d×d matrix Wr with each dependency relation r in our dataset and
learn these matrices during training. Syntactically untying these matrices allows the model
to take advantage of relation identity as well as tree structure. We include an additional
d× d matrix, Wv, to incorporate the word vector xw at a node n into the hidden vector hn.

Given a parse tree, we first compute all leaf representations. For example, the hidden
representation hmrs. for the parse tree given in Figure 1 is

hmrs. = f(Wv · xmrs. + b1), (1)

where f is a non-linear activation function such as tanh and b1 is a bias term. After finishing
with the leaves, we move to interior nodes whose children have already been processed.
Continuing from mrs. to its parent, dalloway, we compute

hdalloway = f(WNN · hmrs. +Wv · xdalloway + b1). (2)

We repeat this process up to the root, which is

hsaid = f(WNSUBJ · hdalloway +WCCOMP · hbuy +Wv · xsaid + b1). (3)

The composition equation for any node n with children K(n) and word vector xw is hn =

f(Wv · xw + b1 +
∑

k∈K(n)

WR(n,k) · hk), (4)

where R(n, k) is the dependency relation between node n and child node k.

2.3 From Vector to Sentence: the Decomposition Phase

In the traditional rae, the error for each node in the network is computed by reconstructing
the hidden layers of its immediate children and then taking the Euclidean distance between
the original and reconstruction. The objective function of the unfolding rae is more pow-
erful: for every node in a tree, we first unfold that node’s hidden layer down to the leaf
level. In our model, we only unfold the root node (instead of unfolding all internal nodes)
to improve training speed. Given the root representation hroot of a sentence, we compute
a sequence of word embeddings that are then compared to the original sequence through
Euclidean distance.

To be more specific, we associate a d × d decomposition matrix Dr with each dependency
relation r in our dataset. Going back to our example, we unfold from the root representation
to compute reconstructions un for every node n in the tree:

udalloway = f(DNSUBJ · hsaid + b2), umrs. = f(DNN · udalloway + b2). (5)
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Finally, given a reconstructed hidden vector, we apply Dv, the decomposition analogue of
Wv, to extract the reconstructed word embedding x′n:

x′mrs. = f(Dv · umrs. + b2). (6)

The error J for a dataset of sentences s ∈ S where each parse tree contains nodes Ns is

J =
∑
s∈S

1

|Ns|
∑
n∈Ns

‖xn − x′n‖
2
, (7)

The described model is already capable of producing decent reconstructions of full sentences.
However, it suffers from a serious problem: if there exist two sibling nodes c1 and c2 that
share the same dependency relation r to their parent, then their unfolded representations
u1 and u2 will be identical. For example, take the phrase sleepy brown cat, where sleepy
and brown are both adjective modifiers of cat. Then,

usleepy = ubrown = f(DAMOD · ucat + b2). (8)

How do we solve this problem? One simple solution is to untie our composition and de-
composition matrices by position as well as dependency relation. This means that in our
sleepy brown cat example, sleepy is related to cat through the AMOD1 relation, while brown
is connected by the AMOD2 relation. While simple, this approach runs into data sparsity
issues for less common relations and thus requires much more training data to learn good
parameters.

We instead alter the structure of our decomposition model by introducing another d × d
matrix, Wsib, that conditions the reconstructed hidden layer u of a child node on its nearest
left sibling as well as the parent node3. For our sleepy brown cat example, we have

usleepy = f(DAMOD · ucat + b2), ubrown = f(Wsib · usleepy +DAMOD · ucat + b2). (9)

This modification allows information to flow left-to-right as well as top-to-bottom (see Fig-
ure 2) and fixes the issues of identical sibling reconstructions. There are many possible
ways to improve this model’s representational capacity: we could untie sibling connections
based on parts-of-speech, for example, and add some weighting parameter α that controls
how much siblings influence reconstructions. In our current model, every node that has an
identically-related sibling to the left is connected to that sibling by Wsib.

hcat

hsleepy hbrown

WAMOD WAMOD

usleepy ubrown

DAMOD DAMOD

WSIB

Figure 2: Example dt-rae
with sibling relationship

The model parameters (Wr∈R, Dr∈R,Wv, Dv,Wsib, L, b1, b2)
are optimized using AdaGrad [5], and the gradient of the ob-
jective function is computed using backpropagation through
structure [9].

2.4 Generating Sentences

How do we use this model to generate sentences? Given a
sentence, we feed it through the synthesis phase, leaving us
with a sentence-level representation at the root node. During
decomposition, we pass this vector back through the original
tree, which yields a reconstructed vector at every node. By
searching for the closest word vector in L to each of these
reconstructed vectors, where “closest” is defined in terms of
Euclidean distance, we can recreate the original sentence.

Reconstructing a given input sentence is not particularly interesting or useful, although
this is the task optimized by our training objective. If we instead allow our output to be
of arbitrary syntactic structure, our task becomes paraphrase generation, which is much
less trivial. We move in this direction by decomposing the sentence-level representation
computed in the synthesis phase through a tree that is randomly chosen from the training
data.

3The probabilistic version of this technique has been used to improve dependency parsing accu-
racy [6, 7].
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O name this 1922 novel about leopold bloom written by james joyce
R name this 1906 novel about gottlieb flecknoe inspired by james joyce
P what is this william golding novel by its written writer
O ralph waldo emerson dismissed this poet as the jingle man and james russell lowell called him three-

fifths genius and two-fifths sheer fudge
R henry david thoreau rejected this author like the tsar boat and imbalance created known good writing

and his own death
P henry david thoreau rejected him through their stories to go money well inspired stories to write as her

writing
O this is the basis of a comedy of manners first performed in 1892
R another is the subject of this trilogy of romance most performed in 1874
P subject of drama from him about romance
O in a third novel a sailor abandons the patna and meets marlow who in another novel meets kurtz in

the congo
R during the short book the lady seduces the family and meets cousin he in a novel dies sister from the

mr.
P during book of its author young lady seduces the family to marry old suicide while i marries himself in

marriage
O thus she leaves her husband and child for aleksei vronsky but all ends sadly when she leaps in front of

a train
R however she leaves her sister and daughter from former fianc and she ends unfortunately when narrator

drives into life of a house
P leaves the sister of man in this novel

Table 1: Five examples of original sentences from our dataset (O), reconstructed versions
of those sentences with the same tree structure as the original (R), and finally generated
paraphrases with different tree structure (P).

3 Experiments

Table 1 shows examples of both reconstructions as well as generated paraphrases. We train
the model using 100,000 sentences from a combination of Wikipedia and the trivia question
dataset of Iyyer et al. [10]. We chose this dataset because it has a very rich vocabulary
(31,504 words) that includes numerous named entities, dates, and numbers, and we were
curious to see how the model would handle rare words. The output trees during paraphrase
generation are constrained such that the number of words in the output must be less than
or equal to the number of words in the input, and we set d to 100 for training.

4 Discussion & Future Work

The qualitative results show that while our model is able to reconstruct sentences fairly well,
named entities, numbers, and dates are rarely reconstructed correctly (e.g., 1922 becomes
1906 ). One potential solution is to modify generated sentences to include such words, which
is consistent with the interpreting note-taking method used by simultaneous translators to
make sure they do not omit important details during translation [8].

Moving on to generated paraphrases, we see a clear difference in grammaticality as well as
meaning retention compared to reconstructions. However, the model has promise: parts-
of-speech are reasonably ordered, and at least some of the original meanings are retained.
The dependency-tree representation gives us a great starting point since the input verb is
associated with the root of the input tree and thus also with the root of the output tree.
As we get farther and farther from the root, though, the generated words become more
nonsensical (e.g., marry old suicide).

We are currently working to improve the quality of generated paraphrases by increasing
model complexity specifically within the sibling connections. One especially interesting
future direction is to move beyond paraphrases by forcing the model to formulate a response
to the input rather than simply copying its meaning.
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