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Outline
• Briefly: deep learning + NLP basics 

• Factoid QA 

• Reasoning-based QA 

• Visual QA 

• Future directions!
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Neural Networks  
for NLP 
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Let’s start with words
• Represent words by low-dimensional vectors called 

embeddings 

• e.g., president          [0.23, 1.3, -0.3, 0.43]
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Recursive Neural Networks

• g can also 
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Softmax Answer Classification
• Multinomial logistic regression 

• Output is a distribution over a finite set of answers 

• Later on: a max-margin answer ranking approach 
can yield better results

11

ŷp = softmax(Wans · hq)

softmax(q) =
exp q

Pk
j=1 exp qj



How do we train these models?

• Model parameters learned through variants of 
backpropagation (Rumelhart et al., 1986; Goller and Kuchler, 1996) given 
QA pairs as input 

• In theory, use the chain rule to compute partial 
derivatives of the error function with respect to every 
parameter 

• In practice, use Theano (or Torch) and never have to 
compute any derivatives by hand!
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Application 1:  
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Factoid QA
• Given a description of an entity, identify the person, 

place, or thing discussed. 

• Neural nets never previously applied to this task 

• Traditionally approached using information retrieval, 
querying huge knowledge bases for the answer
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Two Neural Models

• Dependency-tree recursive neural network (DT-RNN) 

• Deep averaging network (DAN) 

• Both models are initialized with pretrained word2vec 
embeddings and have the same hidden layer 
dimensionality for fair comparison
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Experimental Datasets

• History: 4,415 QA pairs with 16,895 sentences and 
451 unique answers 

• Literature: 5,685 QA pairs with 21,549 sentences and 
595 unique answers

18



Choosing an Error Function

• Answers can appear as part of question text (e.g., a 
question on World War II might mention the Battle of 
the Bulge and vice versa) 

• Instead of using a softmax output layer, can we take 
advantage of these co-occurrences by modeling 
answers and questions in the same vector space?
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Max-Margin Objective
• Replace softmax output layer with a contrastive max-

margin function 

• Given a question q with correct answer a and an 
incorrect answer b, the loss is 

20

max(0, 1� xa · hq + xb · hq)
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Experiments
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History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

BOW-DT 35.4 57.7 60.2 24.4 51.8 55.7
IR 37.5 65.9 71.4 27.4 54.0 61.9
DAN 46.4 70.8 71.8 35.3 67.9 69.0
DT-RNN 47.1 72.1 73.7 36.4 68.2 69.1

DAN is 20 times faster to train than DT-RNN



Learning a Vector Space
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Exact String Matches
• One current weakness of neural models 

• Practical solution: train language model on original 
source material / Wikipedia and combine with output 
of neural network

24

In this poem, the narrator meets a 
“traveller from an antique land” who 
tells of a statue with a “wrinkled lip, 

and sneer of cold command”.



QA: Man vs. Machine
• Scaled up a DAN to handle ~100k Q/A pairs with 

~5k unique answers! Also added thousands of 
Wikipedia sentence/page-title pairs 

• To play against humans, we need to decide not only 
what answer to give but also when we are confident 
enough to buzz in. 
• Another classifier re-ranks the top 200 guesses of 

the DAN using language model features to decide 
whether to buzz on any of them or wait for more 
clues

25



V1: tied team of ex-Jeopardy 
champions 200-200
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V2: defeated Ken Jennings 
300-160
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Code available!

DT-RNN code: cs.umd.edu/~miyyer/qblearn 
DAN code: github.com/miyyer/dan 
Full quiz bowl system code: github.com/miyyer/qb 
Video of Ken Jennings match: youtu.be/kTXJCEvCDYk 

1. Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III.             
A Neural Network for Factoid Question Answering over Paragraphs. EMNLP 2014. 

2. Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep Unordered 
Composition Rivals Syntactic Methods for Text Classification. ACL 2015.

28

http://cs.umd.edu/~miyyer/qblearn
http://github.com/miyyer/dan
http://github.com/miyyer/qb
http://youtu.be/kTXJCEvCDYk


Application 2:  
Reasoning-based QA
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Naïve Neural Approach
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image: http://smerity.com/articles/2015/keras_qa.html
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Naïve Neural Approach

31

softmax: predict answer

image: http://smerity.com/articles/2015/keras_qa.html

http://smerity.com/articles/2015/keras_qa.html


Problems
• Doesn’t scale to long / complex question types 

• RNNs/LSTMs are very bad at remembering facts 
from the distant past! 

• Solution: add an external memory component that 
learns to store important facts and reason about 
them

32



Dynamic Memory Networks
• Collaboration with Richard Socher and colleagues 

from MetaMind 

• Extends simple RNNs with an iterative attention 
mechanism that focuses on one fact at a time and 
enables transitive reasoning

33

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, 
Ishaan Gulrajani, and Richard Socher. Ask Me Anything: Dynamic 
Memory Networks for Natural Language Processing. NIPS Deep 
Learning Symposium, 2015. 
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1. Compute vector si for every sentence in input and 
vector q for the question using recurrent network A

2. Compute an attention score ai for every sentence

3. Compute an episodic memory mt by weighting each 
si with its corresponding ai and passing them 
through another recurrent network B

4. Repeat until network B outputs a “finished reading” 
signal

5. Feed final episodic memory m to a softmax layer to 
predict the answer

ai = G(si,mt�1, q)
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Evaluation: FB bAbi
• 20 very simple tasks (e.g., counting, basic deduction, 

induction, coreference) 

• DMNs solve 18 out of 20 tasks with over 95% 
accuracy, comparable to other baselines that use 
hand-engineered features (e.g., n-grams, positional 
features) 

• Can also be applied to many other NLP tasks      
(what is the sentiment of this sentence? what is this 
sentence’s translation in French?)

36



Application 3: 
Visual QA
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• Is this truck considered 
“vintage”? 

• Does the road look new? 
• What kind of tree is 

behind the truck?



VisualQA Dataset
• collaboration between Virginia Tech and Microsoft 

Research 

• questions were created and answered by Amazon 
Turkers (800k questions on 250k images)

39

“We have built a smart robot. It understands 
a lot about images. It can recognize and name all 

the objects, it knows where the objects are, it can recognize 
the scene (e.g., kitchen, beach), people’s expressions and 

poses, and properties of objects (e.g., color of objects, their 
texture). Your task is to stump this smart robot!”



Brief Aside: ConvNets

40

Convolutional Layers: 
slide a set of small 

filters over the image

Pooling Layers: 
reduce dimensionality 

of representation

image: https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/
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( )ConvNet =
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( )ConvNet =

softmax: predict ‘truck’



Naïve VisualQA
• i = ConvNet(image) > use an existing network trained 

for image classification and freeze weights 

• q = RNN(question) > learn weights 

• answer = softmax([i;q])

42



Visual Attention
• Use the question representation q to determine 

where in the image to look
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Issues
• Visual attention is more complicated than textual 

attention; requires many more QA pairs than are 
currently available 

• focusing on more than one “box” at a time is difficult 
for the current model; perhaps an iterative attention 
mechanism like the DMN’s can solve this problem 

• Work in progress, full evaluation coming soon!
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Closing Thoughts
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Future Trends
• Neural networks with attention mechanisms are 

cutting-edge models with broad applications! 

• With more data and bigger networks, we can begin 
to answer more complex questions 

• Multi-task learning, such as a single model that learns 
to reason over both text and images 
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A Major Limitation
• All of these networks generalize very poorly to new 

facts or information at test-time, would fail at:
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xxwf moved to the rfecs. 
dawas grabbed the gndsa there. 
gfdg journeyed to the klnmkb. 
gfdg went back to the aqqs. 
dawas moved to the mnsh. 
dawas journeyed to the taaaed.

Where is the gndsa?



Constants vs. Variables
• Currently, every word in a question is represented 

with an embedding. 

• This doesn’t make much sense for numbers, 
proper names, or other entities
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An amusement park sells 2 kinds of tickets. 
Tickets for children cost $1.50. Adult tickets 
cost $4. On a certain day, 278 people entered 
the park. On that same day the admission fees 
collected totaled $792. 

How many children were admitted on that day?



Thanks! Questions?

And thanks to my advisors, Jordan Boyd-Graber at U. 
Colorado and Hal Daumé III at UMD, and to Richard 

Socher and colleagues from MetaMind.
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