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How can we describe a fictional 
relationship between two characters?

• what if we treat relationships as sequences (or 
trajectories) of descriptors? (Chaturvedi et al., 2016) 

Tom Sawyer and Becky Thatcher: 
 friends -> foes -> friends 

• limited by fixed descriptor set 

• required expensive annotations 

• limited to plot summaries
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Why is this a worthwhile problem?

• “Distant reading” (Moretti, 2005) can help humanities 
scholars collect examples of specific relationship types
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“Do Jane Austen’s female and male protagonists have a 
pattern in their evolving relationship (e.g., mutual disdain 
followed by romantic love)?”  
(Butler, 1975; Stovel, 1987; Hinant, 2006)

“Do certain authors or novels portray relationships of 
desire more than others?”  
(Polhemus, 1990)

“Can we detect positive or negative subtext underlying 
meals between two characters?”  
(Foster, 2009; Cognard-Black et al., 2014)



Outline
• Dataset: character interactions 

• RMN: relationship modeling network 

• Experiments: coherent descriptors, interpretable 
trajectories 

• Analysis: RMN’s strengths and weaknesses
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"You know I appreciate you, babe," Mrs. Reilly sniffed. "Come on and 
gimme a little goodbye kiss like a good boy.”

t=1

Mrs. Reilly looked at her son slyly and asked, "Ignatius, you sure you 
not a communiss?" "Oh, my God!" Ignatius bellowed. "Every 
day I am subjected to a McCarthyite witchhunt in this crumbling 
building. No!"
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• For each pair of characters in a particular book, we extract 
all spans of text that contain mentions to both characters



A Dataset of Character Interactions

• 1,383 novels from Project Gutenberg and other 
Internet sources 
• Genres represented include romance, mystery, and fantasy 
• Preprocessed with David Bamman’s BookNLP pipeline 
• Each span is a 200-token window centered around a 

character mention 

• 20,013 unique character pairs and 380,408 spans
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• recurrent autoencoder with dictionary learning
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rt = RTdt
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Labeling the Learned Descriptors

• We compute the nearest word embeddings to each 
row of the descriptor matrix R, which humans use to 
provide external labels.

31

violence: grenades, guns, bullets

sadness: regretful, rueful, pity

politics: political, leadership, rule

fantasy: cosmic, realms, universe

suffering: fear, nightmares, suffer



Relationship to Topic Models

• RMN outputs ≈ topic model latent variables: 
• descriptor matrix R ≈ topic-word matrices ϕ 
• descriptor weights dt at each timestep ≈                     

document-topic assignments z 

• Baselines: 
• temporally-oblivious: LDA (Blei et al., 2001), Nubbi (Chang et al., 

2008) 
• temporally-aware: HTMM (Gruber et al., 2007)
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Experiment 1:  
Descriptor Coherence

33



Do the Descriptors Make Sense?

• Goal: compare the descriptors learned by the RMN to 
the topics learned by our topic model baselines 

• Task: word intrusion (Chang et al., 2009) 

• Workers identify an “intruder” word from a set of words that
—other than the intruder—come from the same descriptor

34
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Do the Descriptors Make Sense?
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Coherent Descriptors
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HTMM
crime: blood knife pain legs steal
food: kitchen mouth glass food bread 
violence: sword shot blood shouted swung 
boats: ship boat captain deck crew 
outdoors: stone rock path darkness desert

RMN
outdoors: outdoors trail trails hillside grassy slopes  
sadness: regretful rueful pity pained despondent   
education: teaching graduate year teacher attended 
love: love delightful happiness enjoyed enjoyable 
murder: autopsy arrested homicide murdered
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Experiment 2: 
Trajectory Quality
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Visualizing Trajectories
• for all time steps t, 

compute argmax 
of dt and stack 
vertically
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Visualizing Trajectories
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Do the Trajectories Make Sense?

• We crawl Wikipedia and SparkNotes for summaries 

• Removing uninformative summaries results in 125 character 
pairs to evaluate 

• Workers prefer the RMN to the HTMM for 87 out of the 125 
relationships (69.6%, Fleiss κ=0.32)
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In this task, you will be comparing two timelines 
of how a relationship between a pair of literary 
characters changes over time. We will provide 
you with a summary of the relationship, and your 
job is to select which of the two timelines (A or B) 
better captures the content of the summary. 
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Summary: Govinda is Siddhartha’s best friend and sometimes his follower. Like 
Siddhartha, Govinda devotes his life to the quest for understanding and 
enlightenment. He leaves his village with Siddhartha to join the Samanas, then 
leaves the Samanas to follow Gotama. He searches for enlightenment independently 
of Siddhartha but persists in looking for teachers who can show him the way. In the 
end, he is able to achieve enlightenment only because of Siddhartha’s love for him.



Qualitative Analysis: 
Good and Bad Trajectories
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I love him more 
than ever. We are 
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28 September.

I feel so weak and worn 
out … looked quite grieved 
… I hadn't the spirit

poor girl, there is 
peace for her at 
last. It is the end!

Arthur placed the 
stake over her 
heart … he struck 
with all his might. 
The Thing in the 
coffin writhed …

Arthur and Lucy “ground-truth”: 
marriage -> sickness -> death -> murder
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28 September.

I feel so weak and worn 
out … looked quite grieved 
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poor girl, there is 
peace for her at 
last. It is the end!
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with all his might. 
The Thing in the 
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Arthur and Lucy “ground-truth”: 
marriage -> sickness -> death -> murder

learned trajectories:
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Qualitative Analysis: 
Using Existing Datasets
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What Makes a Good Relationship?
• Dataset of Massey et al. (2015) has affinity 

annotations for relationships in Project Gutenberg 
• 120 non-neutral relationships are also present in our dataset
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positive negative
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…
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…
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love death sadness
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0.7 0.1 0.2
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Why is Politics Negative?
• Both models rank politics as highly negative 
• The affinity data we look at comes primarily from 

Victorian-era authors (e.g., Charles Dickens and 
George Eliot)
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Victorian-era authors are “obsessed with otherness… of 
antiquated social and legal institutions, and of autocratic  
and/or dictatorial abusive government” 
(Zarifopol-Johnston,1995)



Areas for Improvement
• Difficult to evaluate unsupervised relationship 

modeling, requires considerable human effort 

• Our data processing leaves out a lot of information 
• e.g., spans of text in which one but not both characters in a 

relationship are mentioned 
• only considers undirected relationships between pairs 

• Model performance is directly tied to the quality of 
character disambiguation and coreference resolution 
•  e.g., first person pronouns
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Recap
• Introduced the task of unsupervised relationship 

modeling as well as an interpretable neural network 
architecture, the RMN, for this task 

• Found that the RMN generates higher quality 
descriptors and more interpretable trajectories than 
topic model baselines 

• Future work: collaborate with humanities researchers 
to help answer literary questions with the RMN
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Thanks! Questions? 
code/data @ github.com/miyyer/rmn
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http://github.com/miyyer/rmn

