Tokenization

CS685 Spring 2023

Advanced Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

Tokenization

- How do we represent an input text?
- So far in this class... we chop it up into words

Input text: students opened their books

Tokenization

- How do we represent an input text?
- So far in this class... we chop it up into words

Input text: students opened their books Input token IDs: $11 \quad 29834567$

This tokenization step requires an external tokenizer to detect word boundaries!

Word tokenization

- Not as simple as split on whitespace and punctuation...

Mr. O'Neill thinks that the boys' stories about San Francisco aren't amusing.

- Word tokenizers require lots of specialized rules about how to handle specific inputs
- Check out spaCy’s tokenizers! (https://spacy.io/)

Handling unknown words

- What happens when we encounter a word at test time that we've never seen in our training data?
- With word level tokenization, we have no way of assigning an index to an unseen word!
- This means we don't have a word embedding for that word and thus cannot process the input sequence

Handling unknown words

- What happens when we encounter a word at test time that we've never seen in our training data?
- With word level tokenization, we have no way of assigning an index to an unseen word!
- This means we don't have a word embedding for that word and thus cannot process the input sequence
- Solution: replace low-frequency words in training data with a special <UNK> token, use this token to handle unseen words at test time too
- Why use <UNK> tokens during training?

Limitations of <UNK>

- We lose lots of information about texts with a lot of rare words / entities The chapel is sometimes referred to as "Hen Gapel Lligwy" ("hen" being the Welsh word for "old" and "capel" meaning "chapel").

The chapel is sometimes referred to
as " Hen <unk> <unk> " (" hen " being the Welsh word for " old " and " <unk> " meaning " chapel ").

Other limitations

- Word-level tokenization treats different forms of the same word (e.g., "open", "opened", "opens", "opening", etc) as separate types $->$ separate embeddings for each

This can be problematic especially when training over smaller datasets, why?

An alternative: character tokenization

- Small vocabulary, just the number of unique characters in the training data!
- However, you pay for this with longer input sequences. Why is this a problem for the models we've discussed?

2016: subword tokenization

- Developed for machine translation by Sennrich et al., ACL 2016
"The main motivation behind this paper is that the translation of some words is transparent in that they are translatable by a competent translator even if they are novel to him or her, based on a translation of known subword units such as morphemes or phonemes."
- Later used in BERT, T5, RoBERTa, GPT, etc.
- Relies on a simple algorithm called byte pair encoding (Gage, 1994)

Byte pair encoding

- Form base vocabulary (all characters that occur in the training data)

word	frequency
hug	10
pug	5
pun	12
bun	4
hugs	5

- Base vocab: b, g, h, n, p, s, u

Byte pair encoding

- Now, count up the frequency of each character pair in the data, and choose the one that occurs most frequently

word	frequency	character pair	frequency
$h+u+g$	10	$u g$	20
$p+u+g$	5	$p u$	17
$p+u+n$	12	$u n$	16
$b+u+n$	4	$h u$	15
$h+u+g+s$	5	$g s$	5

Byte pair encoding

- Now, choose the most common pair (ug) and then merge the characters together into one symbol. Add this new symbol to the vocabulary. Then, retokenize the data

word	frequency	character pair	frequency
$h+u g$	10	$u n$	16
$p+u g$	5	$h+u g$	15
$p+u+n$	12	$p u$	12
$b+u+n$	4	$p+u g$	5

Byte pair encoding

- Keep repeating this process! This time we choose un to merge, next time we choose $h+u g$, etc.

word	frequency	character pair	frequency
$h+u g$	10	$u n$	16
$p+u g$	5	$h+u g$	15
$p+u+n$	12	$p u$	12
$b+u+n$			
$h+u g+s$	4	$p+u g$	5

Byte pair encoding

- Eventually, after a fixed number of merge steps, we stop
word frequency

hug	10
p+ug	5
p+un	12
b+un	4
hug $+s$	5

- new vocab: b, g, h, n, p, s, u, ug, un, hug

Byte pair encoding

- To avoid <UNK>, all possible characters / symbols need to be included in the base vocab. This can be a lot if including all unicode characters (there are $\sim 138 \mathrm{~K}$ unicode symbols)!
- GPT-2 uses bytes as the base vocabulary (size 256) and then applies BPE on top of this sequence (with some rules to prevent certain types of merges).
- Commonly have vocabulary sizes of 32K to 64 K

Other subword encoding schemes

- WordPiece (Schuster et al., ICASSP 2012): merge by likelihood as measured by language model, not by frequency
- SentencePiece (Kudo et al., 2018): can do subword tokenization without pretokenization (good for languages that don't always separate words w/ spaces), although pretokenization usually improves performance

Limitations of subwords

- Hard to apply to languages with agglutinative (e.g., Turkish) or non-concatenative (e.g., Arabic) morphology
- Pretokenization rules don't work on some languages (Thai, Chinese don't use spaces between words; Hawaiian uses punctuation as consonants)

K-t-b	"write" (root form)	
كتَبَبَّبَبَ	kataba	"he wrote"
kattaba	"he made (someone) write"	
إكْتَتَبَ	iktataba	"he signed up"

Table 1: Non-concatenative morphology in Arabic. ${ }^{4}$ The root contains only consonants; when conjugating, vowels, and sometimes consonants, are interleaved with the root. The root is not separable from its inflection via any contiguous split.

ByT5：tokenizer free！

In Japan cloisonné enamels are known as shippō－yaki（七宝焼）．

ByT5：tokenizer free！

In Japan cloisonné enamels are known as shippō－yaki（七宝焼）．

Way fewer params associated with vocabulary!

Size	Params	mT5				ByT5				
		Vocab	$\mathrm{d}_{\text {model }}$	d_{ff}	\# Enc/Dec	Vocab	$\mathrm{d}_{\text {model }}$	d_{ff}	\# Enc	\# Dec
Small	300M	85\%	512	1024	8	0.3\%	1472	3584	12	4
Base	582M	66\%	768	2048	12	0.1\%	1536	3968	18	6
Large	1.23B	42\%	1024	2816	24	0.06\%	1536	3840	36	12
XL	3.74B	27\%	2048	5120	24	0.04\%	2560	6720	36	12
XXL	12.9B	16\%	4096	10240	24	0.02\%	4672	12352	36	12

Impressive gains on tasks w/ noisy data

	Model	Learnable Noise		Unseen Noise
		XNLI (accuracy)	$\begin{aligned} & \text { TyDiQA- } \\ & \text { GoldP (F1) } \end{aligned}$	XNLI (accuracy)
Clean	mT5	81.1	85.3	81.1
	ByT5	79.7	87.7	79.7
Drop	mT5	-10.2	-19.9	-18.3
	ByT5	-8.2	-18.4	-11.4
Add/Drop/Mutate	mT5	-9.2	-28.5	-11.4
	ByT5	-8.0	-24.3	-10.9
Repetitions	mT5	-8.5	-11.0	-12.3
	ByT5	-4.1	-3.1	-5.9
Antspeak	mT5	-32.0	-17.5	-34.4
	ByT5	-8.7	-4.3	-24.4
Uppercase	mT5	-7.0	-7.6	-8.1
	ByT5	-1.5	-1.0	-1.7
Random Case	mT5	-25.7	-13.9	-19.2
	ByT5	-1.5	-1.2	-5.9

How to deal w/ increased sequence length?

- ByT5: just train with shorter sequences (mT5 is trained on max length 1024 subword tokens, ByT5 trained on max 1024 bytes)
- At test-time, ByT5 can be 7X slower than mT5 to generate sentences
- Later this semester: use more efficient Transformer architectures

Learnable tokenization

Updated during training

Subword Model

Updated during training

Charformer

Consider multiple segmentations

1-Blocks			${ }^{3}$	X_{4}	x_{5}	x_{6}	x_{7}	${ }_{8}$	X_{9}	X_{10}	X_{1}	X_{1}
2-Blocks	X	x_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X,	X_{10}	X_{1}	X_{12}
3-Blocks	X	x_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X 9	X_{10}	X	X
4-Blocks	X	x_{2}	X_{3}	X_{4}	X_{5}	X_{6}	x_{7}	X_{8}	X 9	X_{10}	X	X_{12}

Then, for each character, score all blocks to which that character belongs

