neural semantic parsing

CS685, Spring 2022
Advanced Natural Language Processing

Mohit lyyer
College of Information and Computer Sciences
University of Massachusetts Amherst

Semantic Parsing

Sentence

Semantic Parser

Meaning Representation

Response

Semantic Parsing: QA

How many people live in Seattle?

Semantic Parser

SELECT Population FROM CityData where City=="Seattle";

[Wong \& Mooney 2007],
[Zettlemoyer \& Collins 2005, 2007], [Kwiatkowski et.al 2010,20II], [Liang et.al. 20II],[Berant et.al. 2013,20।4],[Reddy et.al, 2014,2016], [Dong and Lapata, 2016]

Semantic Parsing: Instructions

Go to the third junction and take a left
(do-seq(do-n-times 3
(do-seq(do-n-times 3
(move-to forward-loc
(move-to forward-loc
(do-until
(do-until
(junction current-loc
(junction current-loc
(move-to forward-loc))))
(move-to forward-loc))))
(turn-right))
(turn-right))
[Chen \& Mooney 20II]
[Matuszek et al 2012]
[Artzi \& Zettlemoyer 2013]
[Mei et.al. 2015][Andreas et al, 2015]
[Fried at al, 2018]

Semantic Parsing: Complex Structure

CCG Semantic Parsing

move	to	the	chair
$\begin{gathered} S \\ \text { גa.move (a) } \end{gathered}$	$A P / N P$	$N P / N$	N
	$\begin{gathered} N P \\ \iota x . c h a i r(x) \end{gathered}$		
	$\begin{gathered} A P \\ \lambda a . \operatorname{to}(a, \iota x . c h a i r(x)) \end{gathered}$		
	$\begin{gathered} S \backslash S \\ \lambda f . \lambda a . f(a) \wedge t o(a, \iota x . \operatorname{chair}(x)) \end{gathered}$		
	$\begin{array}{r} S \\ m o v e(a) \wedge t o(\end{array}$	ıx.chair(x)	

[Zettlemoyer \& Collins 2005, 2007]

CCG Semantic Parsing

[Zettlemoyer \& Collins 2005, 2007]

CCG Semantic Parsing

- Complex discrete learning algorithms
- But, grammars hopefully generalize to unseen data well!
- Difficult to engineer: few people can do it and it takes a lot of time

Enter seq2seq... (Dong \& Lapata, 2016)

- Treat meaning as a string...
- Apply NMT
- Close to SOTA performance!!!
- Much easier to build (with toolkits)

Figure 1: Input utterances and their logical forms are encoded and decoded with neural networks. An attention layer is used to learn soft alignments.
issues with vanilla seq2seq?

Example from WikiTableQuestions

Athlete	Nation	Olympics	Medals
Gillis Grafström	Sweden (SWE)	$1920-1932$	4
Evgeni Plushenko	Russia (RUS)	$2002-2014$	4
Karl Schäfer	Austria (AUT)	$1928-1936$	2
Katarina Witt	Germany (GDR)	$1984-1988$	2
Tenley Albright	United States (USA)	$1952-1956$	2
Kim Yu-na	South Korea (KOR)	$2010-2014$	2
Patrick Chan	Canada (CAN)	2014	2

Question:

Which athlete was from South Korea after 2010?
((reverse athlete) (and (nation south_korea) (year ((reverse date) (>= 2010-mm-dd)))

Seq2Seq Output Space

Seq2Seq Output Space

Seq2Seq Output Space

Constrained Decoding

- Constrain the output space to selections that matter
- Inference: Avoid invalid parses
- Training: Do not waste modeling power in distinguishing invalid parses from valid ones!

Token-based Decoding:

The output space is tokens, but they are constrained to be relevant at each time step.

Grammar-based Decoding:

The output space is production rules, and a grammar defines the constraints.

Constrained Decoding

- Constrain the output space to selections that matter
- Inference: Avoid invalid parses
- Training: Do not waste modeling power in distinguishing invalid parses from valid ones!

Token-based Decoding

Dong and Lapata. 2016. Language to Logical Form with Neural Attention. In ACL.

Dong and Lapata. 2018. Coarse-toFine Decoding for Neural Semantic Parsing. In ACL.

Goldman, Latcinnik, Naveh, Globerson and Berant. 2018. Weakly-supervised Semantic Parsing with Abstract Examples. In ACL.

Grammar-based Decoding:

Xiao, Dymetman, and Gardent. 2016. Sequence-based Structured
Prediction for Semantic Parsing. In ACL.

Yin and Neubig. 2017. A Syntactic Neural Model for General Purpose Code Generation. In ACL.

Krishnamurthy, Dasigi, and Gardner. 2017. Neural Semantic Parsing with Type Constraints for Semi-Structured Tables. In EMNLP.

Token-based Constrained Decoding

Constraining output structure: Seq2Tree

Flights from Dallas leaving after 4 in the afternoon
(lambda \$0 e
(and
(> (departure_time \$0) 1600:ti) (from \$0 dallas:ci)))

Constraining output structure: Seq2Tree

Flights from Dallas leaving after 4 in the afternoon

Constraining output structure: Seq2Tree

Flights from Dallas leaving after 4 in the afternoon

Constraining output structure: Seq2Tree

Flights from Dallas leaving after 4 in the afternoon

Constraining output structure: Seq2Tree

Flights from Dallas leaving after 4 in the afternoon

Constraining output structure: Seq2Tree

Flights from Dallas leaving after 4 in the afternoon
(lambda \$0 e (and
(> (departure_time \$0) 1600:ti) (from \$0 dallas:ci)))

How do I train a semantic parser?

Got Supervision?

x_{i} : flights from Dallas leaving after 4 in the afternoon
y_{i} : (lambda \$0 e
(and
(>(departure_time \$0) 1600:ti)
(from \$O dallas:ci)))

$$
D=\left\{x_{i}, y_{i}\right\}_{i=1}^{N}
$$

Task: Given x_{N+k} find y_{N+k}
Fully supervised

Got Supervision?

x_{i} : flights from Dallas leaving after 4 in the afternoon
y_{i} : (lambda $\$ 0 \mathrm{e}$ (and
(>(departure_time \$0) 1600:ti) (from \$0 dallas:ci)))

$$
D=\left\{x_{i}, y_{i}\right\}_{i=1}^{N}
$$

Task: Given x_{N+k} find y_{N+k}
x_{i} : Which athlete was from South Korea after 2010?
$\forall 7$: ((reverse athlete)

- (and
- (nation south_korea)
—— (year $(($ reverse date $)(\geqslant=2010)))$
z_{i} : Kim Yu-Na

$$
D=\left\{x_{i}, w_{i}, z_{i}\right\}_{i=1}^{N}
$$

Task: Given x_{N+k}, w_{N+k} find y_{N+k} such that $\llbracket y_{N+k} \rrbracket^{w_{N+k}}=z_{N+k}$

Weakly supervised

Three common training methods

- Maximum Marginal Likelihood
-Structured Learning Methods
-Reinforcement Learning Methods

And some hybrid approaches..

Maximum Marginal Likelihood

- Given $D=\left\{x_{i}, w_{i}, z_{i}\right\}_{i=1}^{N}$
- We want to optimize $\max _{\theta} \prod_{x_{i}, z_{i} \in D} p\left(z_{i} \mid x_{i} ; \theta\right)$
- But the semantic parser defines a distribution over logical forms.
- So we marginalize over logical forms that yield z_{i}

$$
\max _{\theta} \prod_{x_{i}, w_{i}, z_{i} \in D} \sum_{y_{i} \in Y \mid \llbracket y_{i} \rrbracket^{w_{i}}=z_{i}} p\left(y_{i} \mid x_{i} ; \theta\right)
$$

- Y could be the set of all valid logical forms, if we are using constrained decoding during training
- Even then, the summation could be intractable!

Structured Learning Methods

- More commonly used with traditional semantic parsers
- Eg. Margin based models and Latent variable structured perceptron (Zettlemoyer and Collins 2007)
- Typically involve heuristic search over the state space like MML methods
- Unlike MML, can use arbitrary cost function
- Training typically maximizes margins or minimizes expected risks

MML: Approximating Y

- Perform heuristic search
- Search may be bounded, by length or otherwise
-Y is approximated as a subset of retrieved logical forms
Two options for search:

Online Search

Search for consistent logical forms during training, as per model scores

Candidate set changes as training progresses

Less efficient

Offline Search

Search for consistent logical forms before training

Candidate set is static

More efficient

Reinforcement Learning Methods

- Comparison with MML:
- Like MML Y is approximated
- Unlike MML, the approximation is done using sampling techniques
- Comparison with structured learning methods
- Like structured learning methods, the reward function can be arbitrary
- Unlike structured learning methods, reward is directly maximized
- Training typically uses policy gradient methods

Example from Liang et al., 2017, using REINFORCE

$$
\max _{\theta} \sum_{x} \mathbb{E}_{P_{\theta}\left(a_{0: T} \mid x\right)}\left[R\left(x, a_{0: T}\right)\right]
$$

What you need on top of seq2seq

1. Convert programs to action sequences
2. What actions are valid at every timestep?
3. Convert action sequences back to programs
4. (sometimes) A way to execute programs
5. If you don't have labeled logical forms: a different way to train

let's look at a method for sequential semantic parsing that combines structured learning and RL!

conversational contexts are hard!

How much protein is in an egg? And how many carbohydrates?

Are eggs on my shopping list? What about butter?

Do I need an umbrella today?
Where can I buy one?

What's 42 plus 8 minus 13 ?
the follow-up question can only be answered by resolving either an explicit or implied reference to the previous question Is the answer divisible by 4 ?

FINA Women's Water Polo World Cup			
Rank	Nation	Gold	Silver
1	Netherlands	8	3
2	Australia	3	3
3	USA	2	5
4	Hungary	1	1
5	Canada	0	0

FINA Women's Water Polo World Cup			
Rank	Nation	Gold	Silver
1	Netherlands	8	3
2	Australia	3	3
3	USA	2	5
4	Hungary	1	1
5	Canada	0	0

1. Which nations competed in the FINA women's water polo cup?

FINA Women's Water Polo World Cup

Rank	Nation	Gold	Silver
1	Netherlands	8	3
2	Australia	3	3
3	USA	2	5
4	Hungary	1	1
5	Canada	0	0

1. Which nations competed in the FINA women's water polo cup?
SELECT Nation

semantic parse:
 a logical form
 executed on table to yield answer

FINA Women's Water Polo World Cup

Rank	Nation	Gold	Silver
1	Netherlands	8	3
2	Australia	3	3
3	USA	2	5
4	Hungary	1	1
5	Canada	0	0

1. Which nations competed in the FINA women's water polo cup?

SELECT Nation
2. Of these nations, which ones took home at least one gold medal?

SUBSEQUENT WHERE Gold ! = 0

FINA Women's Water Polo World Cup

Rank	Nation	Gold	Silver
1	Netherlands	8	3
2	Australia	3	3
3	USA	2	5
4	Hungary	1	1
5	Canada	0	0

1. Which nations competed in the FINA women's water polo cup?

SELECT Nation
2. Of these nations, which ones took home at least one gold medal?

FINA Women's Water Polo World Cup

Rank	Nation	Gold	Silver
1	Netherlands	8	3
2	Australia	3	3
3	USA	2	5
4	Hungary	1	1
5	Canada	0	0

1. Which nations competed in the FINA women's water polo cup?

SELECT Nation
2. Of these nations, which ones took home at least one gold medal?

SUBSEQUENT WHERE Gold $!=0$
3. Of those, which ranked in the top 2 positions?

SUBSEQUENT WHERE Rank <= 2

dynamic semantic parsing

- We collect SQA, a dataset of ~ 6000 question/ answer sequences
- Since we only know the answer to a question and not its ground-truth logical form, this problem is only weakly supervised.
- To solve it, we use reward-guided structuredoutput learning

dynamic semantic parsing

Q: which nations won exactly one gold medal? A: Hungary 1. select-column Nation
2. cond-column Gold
3. op-equal

1

dynamic semantic parsing

Q: which nations won exactly one gold medal? A: Hungary

1. select-column Nation
2. cond-column Gold

dynamic semantic parsing

- neural network modules output scalar values which we use in the value function π (current parse, next operation)
- end-to-end training algorithm: approximate a reference parse and train the value function to favor that parse
- discourse-level information incorporated with SUBSEQUENT statements, which have their own action semantics

ex: module implementation

Which nations won one gold medal?

