Attention mechanisms

CS 685, Fall 2022
Advanced Natural Language Processing

Mohit lyyer
College of Information and Computer Sciences
University of Massachusetts Amherst

stuff from last time...

- HWO grading hopefully done by next week
- All project assignments finalized!
- HW1 will be out within the next 2 weeks
- Compute resources for projects?

A RNN Language Model

output distribution
$\hat{y}=\operatorname{softmax}\left(W_{2} h^{(t)}+b_{2}\right)$
hidden states
$h^{(t)}=f\left(W_{h} h^{(t-1)}+W_{e} c_{t}+b_{1}\right)$
$\mathrm{h}^{(0)}$ is initial hidden state!
word embeddings

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

why is this good?

RNN Advantages:

- Can process any length input
- Model size doesn't increase for longer input
- Computation for step t can (in theory) use information from many steps back
- Weights are shared across timesteps \rightarrow representations are shared

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from __many steps back
$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

Training a RNN Language Model

- Get a big corpus of text which is a sequence of words $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(T)}$
- Feed into RNN-LM; compute output distribution $\hat{\boldsymbol{y}}^{(t)}$ for every step t.
- i.e. predict probability dist of every word, given words so far
- Loss function on step t is usual cross-entropy between our predicted probability distribution $\hat{\boldsymbol{y}}^{(t)}$, and the true next word $\boldsymbol{y}^{(t)}=\boldsymbol{x}^{(t+1)}$:

$$
J^{(t)}(\theta)=C E\left(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}\right)=-\sum_{j=1}^{|V|} y_{j}^{(t)} \log \hat{y}_{j}^{(t)}
$$

- Average this to get overall loss for entire training set:

$$
J(\theta)=\frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)
$$

Training a RNN Language Model

RNNs suffer from a bottleneck problem
The current hidden representation must encode all of the information about the text observed so far

RNNs suffer from a bottleneck problem
The current hidden representation must encode all of the information about the text observed so far

RNNs suffer from a bottleneck problem
The current hidden representation must encode all of the information about the text observed so far

This becomes difficult especially with longer sequences
$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

"you can't cram the meaning

 of a whole \%\&@\#\&ing sentence into a single \$*(\&@ing vector!"- Ray Mooney (NLP professor at UT Austin)

idea: what if we use multiple vectors?

idea: what if we use multiple vectors?

Instead of this, let's try:

The solution: attention

- Attention mechanisms (Bahdanau et al., 2015) allow language models to focus on a particular part of the observed context at each time step
- Originally developed for machine translation, and intuitively similar to word alignments between different languages

How does it work?

- in general, we have a single query vector and multiple key vectors. We want to score each query-key pair
in a neural language model, what are the queries and keys?

Attention mechanisms in neural language models

We use the attention distribution to compute a weighted average of the hidden states.

Intuitively, the resulting attention output contains information from hidden states that received high attention scores

Sequence-to-sequence with attention

Sequence-to-sequence with attention

- Attention solves the bottleneck problem
- Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
- Provides shortcut to faraway states
- Attention provides some interpretability
- By inspecting attention distribution, we can see what the decoder was focusing on
- We get alignment for free!
- This is cool because we never explicitly trained an alignment system
- The network just learned alignment by itself

Many variants of attention

- Original formulation: $a(\mathbf{q}, \mathbf{k})=w_{2}^{T} \tanh \left(W_{1}[\mathbf{q} ; \mathbf{k}]\right)$
- Bilinear product: $a(\mathbf{q}, \mathbf{k})=\mathbf{q}^{T} W \mathbf{k}$

Luong et al., 2015

- Dot product: $a(\mathbf{q}, \mathbf{k})=\mathbf{q}^{T} \mathbf{k}$
- Scaled dot product: $a(\mathbf{q}, \mathbf{k})=\frac{\mathbf{q}^{T} \mathbf{k}}{\sqrt{|\mathbf{k}|}}$
iPad

Self-attention

Nobel committee awards Strickland who advanced optics

Self-attention

Nobel committee awards Strickland who advanced optics

Self-attention

Self-attention

Nobel committee awards Strickland who advanced optics

Self-attention

Nobel committee awards Strickland who advanced optics

Self-attention

Nobel committee awards Strickland who advanced optics

Self-attention

Self-attention

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell!

Multi-head self-attention

 $p+1$

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell!

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Note: the previous example does not describe a language model (the attention looks at both past and future words!)

