Attention mechanisms

CS 685, Fall 2022

Advanced Natural Language Processing

Mohit Iyyer College of Information and Computer Sciences University of Massachusetts Amherst

some slides from Richard Socher & Emma Strubell

stuff from last time...

- HWO grading hopefully done by next week
- All project assignments finalized!
- HW1 will be out within the next 2 weeks
- Compute resources for projects?

A RNN Language Model

 $oldsymbol{h}^{(0)}$

output distribution

 $\hat{y} = \operatorname{softmax}(W_2 h^{(t)} + b_2)$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t + b_1)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

 c_1, c_2, c_3, c_4

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

why is this good?

RNN Advantages:

 Can process any length input

|V|

- Model size doesn't increase for longer input
- Computation for step t can (in theory) use information from many steps back
- Weights are shared across timesteps → representations are shared

RNN **Disadvantages**:

- Recurrent computation is slow
- In practice, difficult to access information from
- ___many steps back

- Get a big corpus of text which is a sequence of words $x^{(1)}, \dots, x^{(T)}$
- Feed into RNN-LM; compute output distribution ŷ^(t) for every step t.
 i.e. predict probability dist of every word, given words so far
- Loss function on step t is usual cross-entropy between our predicted probability distribution $\hat{y}^{(t)}$, and the true next word $y^{(t)} = x^{(t+1)}$:

$$J^{(t)}(\theta) = CE(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}) = -\sum_{j=1}^{|V|} y_j^{(t)} \log \hat{y}_j^{(t)}$$

• Average this to get overall loss for entire training set:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)$$

...

...

...

RNNs suffer from a **bottleneck** problem

 $oldsymbol{h}^{(0)}$

The current hidden representation must encode all of the information $\hat{y}^{(t)}$ about the text observed so far

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

/ ` != - !

 $oldsymbol{x}^{(1)},\ldots,$; $oldsymbol{x}^{(2)},oldsymbol{x}^{(3)},$

RNNs suffer from a **bottleneck** problem

The current hidden representation must encode all of the information $\hat{y}^{(t)}$ about the text observed so far

 $\hat{y}^{(4)} = P(x^{(5)}|$ the students opened their)

RNNs suffer from a **bottleneck** problem

The current hidden representation must encode all of the information $\hat{y}^{(t)}$ about the text observed so far

This becomes difficult especially with longer sequences

 $\hat{y}^{(4)} = P(x^{(5)}|$ the students opened their)

"you can't cram the meaning of a whole %&@#&ing sentence into a single \$*(&@ing vector!"

- Ray Mooney (NLP professor at UT Austin)

idea: what if we use multiple vectors?

idea: what if we use multiple vectors?

Instead of this, let's try:

the students opened their =

(all 4 hidden states!)

The solution: attention

- Attention mechanisms (Bahdanau et al., 2015) allow language models to focus on a particular part of the observed context at each time step
 - Originally developed for machine translation, and intuitively similar to *word alignments* between different languages

How does it work?

 in general, we have a single *query* vector and multiple *key* vectors. We want to score each query-key pair

in a neural language model, what are the queries and keys?

Query 1: Hidden state at current time step

We use the attention distribution to compute a weighted average of the hidden states.

Intuitively, the resulting attention output contains information from hidden states that received high attention scores

Sequence-to-sequence with attention

Concatenate (or otherwise compose) the attention output with the current hidden state, then pass through a softmax layer to predict the next word

Sequence-to-sequence with attention

- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states

Many variants of attention

- Original formulation: $a(\mathbf{q}, \mathbf{k}) = w_2^T \tanh(W_1[\mathbf{q}; \mathbf{k}])$
- Bilinear product: $a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T W \mathbf{k}$ Luong et al., 2015
- Dot product: $a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T \mathbf{k}$ Luong et al., 2015

• Scaled dot product: $a(\mathbf{q}, \mathbf{k}) = \frac{\mathbf{q}' \mathbf{k}}{\sqrt{|\mathbf{k}|}}$

Vaswani et al., 2017

iPad

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

[Vaswani et al. 2017]

Multi-head self-attention

[Vaswani et al. 2017]

Multi-head self-attention

Slides by Emma Strubell! Multi-head self-attention

Note: the previous example does *not* describe a language model (the attention looks at both past and future words!)