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Stuff from last time…

• HW0 due today! 
• Form final project groups by Wednesday or 

we’ll do it for you! 
• Can we have a lecture on the intersection of 

reinforcement learning + NLP?
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Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 
sequence of words: 
     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 
      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM

language model review
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p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

n-gram models
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Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812
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Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!



another issue:
• We treat all words / prefixes independently of 

each other!
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students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
…

Shouldn’t we share 
information across these 

semantically-similar prefixes?



one-hot vectors
• n-gram models rely on the “bag-of-words” 

assumption 
• represent each word as a vector of zeros with 

a single 1 identifying the index of the word
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

vocabulary
i

hate
love
the

movie
film

what are the issues 
of representing a 
word this way?



all words are equally (dis)similar!
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movie = <0, 0, 0, 0, 1, 0> 
film     = <0, 0, 0, 0, 0, 1>

What we want is a representation space in which 
words, phrases, sentences etc. that are semantically 

similar also have similar representations!

dot product is zero! 
these vectors are orthogonal



Students opened their

neural language 
model

books

Enter neural networks!



Students opened their

neural language 
model

books

Enter neural networks!

This lecture: the 
forward pass, or how 

we compute a 
prediction of the next 
word given an existing 

neural language 
model



Students opened their

neural language 
model

books

Enter neural networks!

This lecture: the 
forward pass, or how 

we compute a 
prediction of the next 
word given an existing 

neural language 
model

Next lecture: the 
backward pass, or 

how we train a neural 
language model on a 
training dataset using 
the backpropagation 

algorithm



words as basic building blocks
• represent words with low-dimensional vectors called 

embeddings (Mikolov et al., NIPS 2013)

king = 
[0.23, 1.3, -0.3, 0.43]



composing embeddings
• neural networks compose word embeddings into 

vectors for phrases, sentences, and documents

 neural 
network ( ) = 

opened theirstudents



Predict the next word from 
composed prefix representation

 neural 
network ( ) = 

opened theirstudents

predict “books”



How does this happen? Let’s work our 
way backwards, starting with the 

prediction of the next word
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How does this happen? Let’s work our 
way backwards, starting with the 

prediction of the next word
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 neural 
network ( ) = 

opened theirstudents

predict “books”

Softmax layer: 

convert a vector representation 

into a probability distribution 
over the entire vocabulary



A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822
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20

Low-dimensional 
representation of 

“students opened their”

Probability distribution 
over the entire  

vocabulary

P(wi |vector for "students opened their")
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Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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<0.6, 0.2, 0.1, 0.1>
books

houses
lamps

stamps

We want to get a 
probability 

distribution over 
these four words

Let’s say our output vocabulary 
consists of just four words: “books”,  

“houses”, “lamps”, and “stamps”.

Low-dimensional 
representation of 

“students opened their”
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x = Here’s an example 3-d 
prefix vector
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first, we’ll project our 
3-d prefix 

representation to 4-d 
with a matrix-vector 

product

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x = Here’s an example 3-d 
prefix vector
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix
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intuition: each row 
of W contains 

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>
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8.9,  -1.9,  6.5 
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}{W =

x =
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dimension of x 

corresponds to a 
feature of the prefix
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intuition: each row 
of W contains 

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix

books

houses

lamps

stamps
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intuition: each row 
of W contains  

feature weights for a 
corresponding word 

in the vocabulary

<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

CAUTION: we can’t 
easily interpret these 

features! For example, 
the second dimension 

of x likely does not 
correspond to any 
linguistic property

intuition: each 
dimension of x 

corresponds to a 
feature of the prefix

books

houses

lamps

stamps
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

Wx = <1.8, -11.9,  12.9,  -8.9>
How did we compute 
this? It’s just the dot 
product of each row 

of W with x! 
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<-2.3, 0.9, 5.4>

1.2,  -0.3,  0.9 
0.2,  0.4,  -2.2 
8.9,  -1.9,  6.5 
4.5,  2.2,  -0.1

}{W =

x =

Wx = <1.8, -11.9,  12.9,  -8.9>
How did we compute 

this? Just the dot product 
of each row of W with x! 

1.2 * -2.3  
+ -0.3 * 0.9  
+ 0.9 * 5.4
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Wx = <1.8, -11.9,  12.9,  -8.9>

Okay, so how do we go 
from this 4-d vector to a 
probability distribution?
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Wx = <1.8, -1.9,  2.9,  -0.9>

We’ll use the softmax function!

softmax(x) =
ex

∑j exj

• x is a vector 
• xj is dimension j of x 
• each dimension j of the softmaxed 

output represents the probability of 
class j 

softmax(Wx) = <0.24, 0.006,  0.73,  0.02>
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Wx = <1.8, -1.9,  2.9,  -0.9>

We’ll use the softmax function!

softmax(x) =
ex

∑j exj

• x is a vector 
• xj is dimension j of x 
• each dimension j of the softmaxed 

output represents the probability of 
class j 

softmax(Wx) = <0.24, 0.006,  0.73,  0.02>
We’ll see the softmax function over and over again this 

semester, so be sure to understand it!



so to sum up…

• Given a d-dimensional vector 
representation x of a prefix, we do the 
following to predict the next word: 

1. Project it to a V-dimensional vector using a 
matrix-vector product (a.k.a. a “linear layer”, or a 
“feedforward layer”), where V is the size of the 
vocabulary 

2. Apply the softmax function to transform the 
resulting vector into a probability distribution
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Now that we know how to predict “books”, 
let’s focus on how to compute the prefix 

representation x in the first place!

 neural 
network ( ) = 

opened theirstudents

predict “books”

36



Composition functions
input: sequence of word embeddings corresponding to 
the tokens of a given prefix 
output: single vector 

• Element-wise functions  
• e.g., just sum up all of the word embeddings! 

• Concatenation 
• Feed-forward neural networks 
• Convolutional neural networks 
• Recurrent neural networks 
• Transformers (our focus this semester)

37



Let’s look first at concatenation, an easy to 
understand but limited composition function

38
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A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

x = [c1; c2; c3; c4]
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c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1x)

x = [c1; c2; c3; c4]

f is a nonlinearity, or an element-wise nonlinear function. 
The most commonly-used choice today is the rectified 

linear unit (ReLu), which is just ReLu(x) = max(0, x). 
Other choices include tanh and sigmoid.
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W1

W2

c1 c2 c3 c4

how does this compare to a  
normal n-gram model?A	fixed-window	neural	Language	Model

the students opened their

books
laptops

a zoo

Improvements over	n-gram	LM:
• No	sparsity	problem
• Model	size	is	O(n)	not	O(exp(n))

Remaining	problems:
• Fixed	window	is	too	small
• Enlarging	window	enlarges	
• Window	can	never	be	large	

enough!
• Each									uses	different	rows	

of						.	We	don’t	share	weights	
across	the	window.

We	need	a	neural	
architecture	that	can	

process	any	length	input

2/1/1823

ci



Recurrent Neural Networks!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t))

W2

h(t) = f(Whh(t−1) + Wect)
h(0) is initial hidden state!
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c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?



Be on the lookout for…

• Next lecture on backpropagation, which 
allows us to actually train these networks to 
make reasonable predictions 

• Next week, we’ll focus on the Transformer 
architecture, which is the most popular 
composition function used today

54


