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Stuff from last time

• Practical fine-tuning tips?  

• Midterm date? Released Nov 9, you will have 48 hours to 
complete it


• Will release previous years’ midterms on Piazza soon



Tokenization

• How do we represent an input text?


• So far in this class… we chop it up into words

Input text: students opened their books



Tokenization

• How do we represent an input text?


• So far in this class… we chop it up into words

Input text: students opened their books

11 298 34 567Input token IDs:

This tokenization step requires an external 
tokenizer to detect word boundaries!



Word tokenization

• Not as simple as split on whitespace and punctuation…


• Word tokenizers require lots of specialized rules about 
how to handle specific inputs


• Check out spaCy’s tokenizers! (https://spacy.io/)

Mr. O'Neill thinks that the boys' stories about San Francisco aren't amusing.

https://spacy.io/


Handling unknown words

• What happens when we encounter a word at test time 
that we’ve never seen in our training data?


• With word level tokenization, we have no way of assigning an 
index to an unseen word!


• This means we don’t have a word embedding for that word and 
thus cannot process the input sequence 



Handling unknown words

• What happens when we encounter a word at test time 
that we’ve never seen in our training data?


• With word level tokenization, we have no way of assigning an 
index to an unseen word!


• This means we don’t have a word embedding for that word and 
thus cannot process the input sequence 


• Solution: replace low-frequency words in training data 
with a special <UNK> token, use this token to handle 
unseen words at test time too


• Why use <UNK> tokens during training?



Limitations of <UNK>

• We lose lots of information about texts with a lot of rare 
words / entities 

The chapel is sometimes referred to 
as " Hen <unk> <unk> " (" hen " being 
the Welsh word for " old " and " 
<unk> " meaning " chapel ").

The chapel is sometimes referred to 
as "Hen Gapel Lligwy" ("hen" being 
the Welsh word for "old" and "capel" 
meaning "chapel").



Other limitations

• Word-level tokenization treats different forms of the same 
word (e.g., “open”, “opened”, “opens”, “opening”, etc) as 
separate types —> separate embeddings for each


• This can be problematic especially when training over smaller 
datasets, why?



An alternative: character 
tokenization

• Small vocabulary, just the number of unique characters in 
the training data!


• However, you pay for this with longer input sequences. 
Why is this a problem for the models we’ve discussed?



2016: subword tokenization

• Developed for machine translation by Sennrich et al., ACL 
2016


• Later used in BERT, T5, RoBERTa, GPT, etc. 


• Relies on a simple algorithm called byte pair encoding (Gage, 
1994)

“The main motivation behind this paper is that the translation of some 
words is transparent in that they are translatable by a competent 
translator even if they are novel to him or her, based on a translation of 
known subword units such as morphemes or phonemes.”



Byte pair encoding
• Form base vocabulary (all characters that occur in the 

training data


• Base vocab: b, g, h, n, p, s, u

word frequency

hug 10

pug 5

pun 12

bun 4

hugs 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html


Byte pair encoding
• Now, count up the frequency of each character pair in the 

data, and choose the one that occurs most frequently

word frequency

h+u+g 10

p+u+g 5

p+u+n 12

b+u+n 4

h+u+g+s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

character pair frequency

ug 20

pu 17

un 16

hu 15

gs 5

…

https://huggingface.co/transformers/tokenizer_summary.html


Byte pair encoding
• Now, choose the most common pair (ug) and then merge 

the characters together into one symbol. Then, retokenize 
the data

word frequency

h+ug 10

p+ug 5

p+u+n 12

b+u+n 4

h+ug+s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

character pair frequency

un 16

h+ug 15

pu 12

p+ug 5

ug+s 5

…

https://huggingface.co/transformers/tokenizer_summary.html


Byte pair encoding
• Keep repeating this process! This time we choose un to 

merge, next time we choose h+ug, etc.

word frequency

h+ug 10

p+ug 5

p+u+n 12

b+u+n 4

h+ug+s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

character pair frequency

un 16

h+ug 15

pu 12

p+ug 5

ug+s 5

…

https://huggingface.co/transformers/tokenizer_summary.html


Byte pair encoding
• Eventually, after a fixed number of merge steps, we stop

word frequency

hug 10

p+ug 5

p+un 12

b+un 4

hug + s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

• new vocab: b, g, h, n, p, s, u, ug, un, hug

https://huggingface.co/transformers/tokenizer_summary.html


Byte pair encoding

• To avoid <UNK>, all possible characters / symbols need 
to be included in the base vocab. This can be a lot if 
including all unicode characters! 


• GPT-2 uses bytes as the base vocabulary (size 256) and 
then applies BPE on top of this sequence (with some 
rules to prevent certain types of merges). 


• Commonly have vocabulary sizes of 32K to 64K



Other subword encoding schemes

• WordPiece (Schuster et al., ICASSP 2012): merge by 
likelihood as measured by language model, not by 
frequency


• SentencePiece (Kudo et al., 2018): can do subword 
tokenization without pretokenization (good for languages 
that don’t always separate words w/ spaces), although 
pretokenization usually improves performance



Limitations of subwords
• Hard to apply to languages with agglutinative (e.g., 

Turkish) or non-concatenative (e.g., Arabic) morphology


• Pretokenization rules don’t work on some languages 
(Thai, Chinese don’t use spaces between words; 
Hawaiian uses punctuation as consonants)

Clark et al., 2021, “CANINE”



ByT5: tokenizer free!

Xue et al., 2021, “ByT5”



ByT5: tokenizer free!

Xue et al., 2021, “ByT5”



Way fewer params associated 
with vocabulary!



Impressive gains on tasks w/ 
noisy data



How to deal w/ increased 
sequence length?

• ByT5: just train with shorter sequences (mT5 is trained on 
max length 1024 subword tokens, ByT5 trained on max 
1024 bytes)


• At test-time, ByT5 can be 7X slower than mT5 to generate 
sentences


• Later this semester: use more efficient Transformer 
architectures



Learnable tokenization

Tay et al., 2021, “Charformer”



Consider multiple 
segmentations



Then, for each character, score all 
blocks to which that character belongs


