
Tokenization
CS685 Fall 2021

Advanced Natural Language Processing

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

Stuff from last time

• Practical fine-tuning tips?

• Midterm date? Released Nov 9, you will have 48 hours to
complete it

• Will release previous years’ midterms on Piazza soon

Tokenization

• How do we represent an input text?

• So far in this class… we chop it up into words

Input text: students opened their books

Tokenization

• How do we represent an input text?

• So far in this class… we chop it up into words

Input text: students opened their books

11 298 34 567Input token IDs:

This tokenization step requires an external
tokenizer to detect word boundaries!

Word tokenization

• Not as simple as split on whitespace and punctuation…

• Word tokenizers require lots of specialized rules about
how to handle specific inputs

• Check out spaCy’s tokenizers! (https://spacy.io/)

Mr. O'Neill thinks that the boys' stories about San Francisco aren't amusing.

https://spacy.io/

Handling unknown words

• What happens when we encounter a word at test time
that we’ve never seen in our training data?

• With word level tokenization, we have no way of assigning an
index to an unseen word!

• This means we don’t have a word embedding for that word and
thus cannot process the input sequence

Handling unknown words

• What happens when we encounter a word at test time
that we’ve never seen in our training data?

• With word level tokenization, we have no way of assigning an
index to an unseen word!

• This means we don’t have a word embedding for that word and
thus cannot process the input sequence

• Solution: replace low-frequency words in training data
with a special <UNK> token, use this token to handle
unseen words at test time too

• Why use <UNK> tokens during training?

Limitations of <UNK>

• We lose lots of information about texts with a lot of rare
words / entities

The chapel is sometimes referred to
as " Hen <unk> <unk> " (" hen " being
the Welsh word for " old " and "
<unk> " meaning " chapel ").

The chapel is sometimes referred to
as "Hen Gapel Lligwy" ("hen" being
the Welsh word for "old" and "capel"
meaning "chapel").

Other limitations

• Word-level tokenization treats different forms of the same
word (e.g., “open”, “opened”, “opens”, “opening”, etc) as
separate types —> separate embeddings for each

• This can be problematic especially when training over smaller
datasets, why?

An alternative: character
tokenization

• Small vocabulary, just the number of unique characters in
the training data!

• However, you pay for this with longer input sequences.
Why is this a problem for the models we’ve discussed?

2016: subword tokenization

• Developed for machine translation by Sennrich et al., ACL
2016

• Later used in BERT, T5, RoBERTa, GPT, etc.

• Relies on a simple algorithm called byte pair encoding (Gage,
1994)

“The main motivation behind this paper is that the translation of some
words is transparent in that they are translatable by a competent
translator even if they are novel to him or her, based on a translation of
known subword units such as morphemes or phonemes.”

Byte pair encoding
• Form base vocabulary (all characters that occur in the

training data

• Base vocab: b, g, h, n, p, s, u

word frequency

hug 10

pug 5

pun 12

bun 4

hugs 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding
• Now, count up the frequency of each character pair in the

data, and choose the one that occurs most frequently

word frequency

h+u+g 10

p+u+g 5

p+u+n 12

b+u+n 4

h+u+g+s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

character pair frequency

ug 20

pu 17

un 16

hu 15

gs 5

…

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding
• Now, choose the most common pair (ug) and then merge

the characters together into one symbol. Then, retokenize
the data

word frequency

h+ug 10

p+ug 5

p+u+n 12

b+u+n 4

h+ug+s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

character pair frequency

un 16

h+ug 15

pu 12

p+ug 5

ug+s 5

…

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding
• Keep repeating this process! This time we choose un to

merge, next time we choose h+ug, etc.

word frequency

h+ug 10

p+ug 5

p+u+n 12

b+u+n 4

h+ug+s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

character pair frequency

un 16

h+ug 15

pu 12

p+ug 5

ug+s 5

…

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding
• Eventually, after a fixed number of merge steps, we stop

word frequency

hug 10

p+ug 5

p+un 12

b+un 4

hug + s 5

Example from https://huggingface.co/transformers/tokenizer_summary.html

• new vocab: b, g, h, n, p, s, u, ug, un, hug

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

• To avoid <UNK>, all possible characters / symbols need
to be included in the base vocab. This can be a lot if
including all unicode characters!

• GPT-2 uses bytes as the base vocabulary (size 256) and
then applies BPE on top of this sequence (with some
rules to prevent certain types of merges).

• Commonly have vocabulary sizes of 32K to 64K

Other subword encoding schemes

• WordPiece (Schuster et al., ICASSP 2012): merge by
likelihood as measured by language model, not by
frequency

• SentencePiece (Kudo et al., 2018): can do subword
tokenization without pretokenization (good for languages
that don’t always separate words w/ spaces), although
pretokenization usually improves performance

Limitations of subwords
• Hard to apply to languages with agglutinative (e.g.,

Turkish) or non-concatenative (e.g., Arabic) morphology

• Pretokenization rules don’t work on some languages
(Thai, Chinese don’t use spaces between words;
Hawaiian uses punctuation as consonants)

Clark et al., 2021, “CANINE”

ByT5: tokenizer free!

Xue et al., 2021, “ByT5”

ByT5: tokenizer free!

Xue et al., 2021, “ByT5”

Way fewer params associated
with vocabulary!

Impressive gains on tasks w/
noisy data

How to deal w/ increased
sequence length?

• ByT5: just train with shorter sequences (mT5 is trained on
max length 1024 subword tokens, ByT5 trained on max
1024 bytes)

• At test-time, ByT5 can be 7X slower than mT5 to generate
sentences

• Later this semester: use more efficient Transformer
architectures

Learnable tokenization

Tay et al., 2021, “Charformer”

Consider multiple
segmentations

Then, for each character, score all
blocks to which that character belongs

