Prompt-based learning

CS685 Fall 2021

Advanced Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

From last time

- HW1 released, due 11/5
- Proposal feedback released by end of week
- Lecture on evaluation metrics? Coming next week!

ELMo: 93M params, 2-layer biLSTM

BERT-base: 110M params, 12-layer Transformer

BERT-large: 340M params, 24-layer Transformer

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

ELMo: 93M params, 2-layer biLSTM

BERT-base: 110M params, 12-layer Transformer

BERT-large: 340M params, 24-layer Transformer

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
CPT 3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

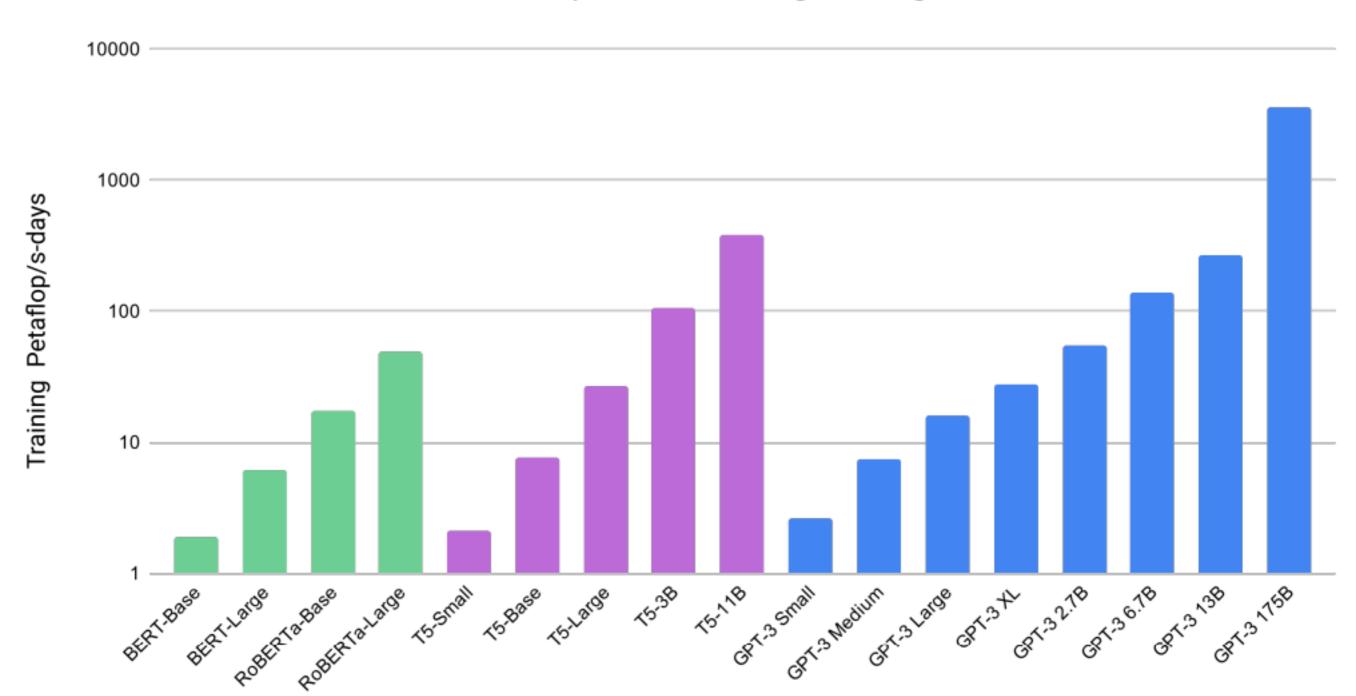
ELMo: 1B training tokens

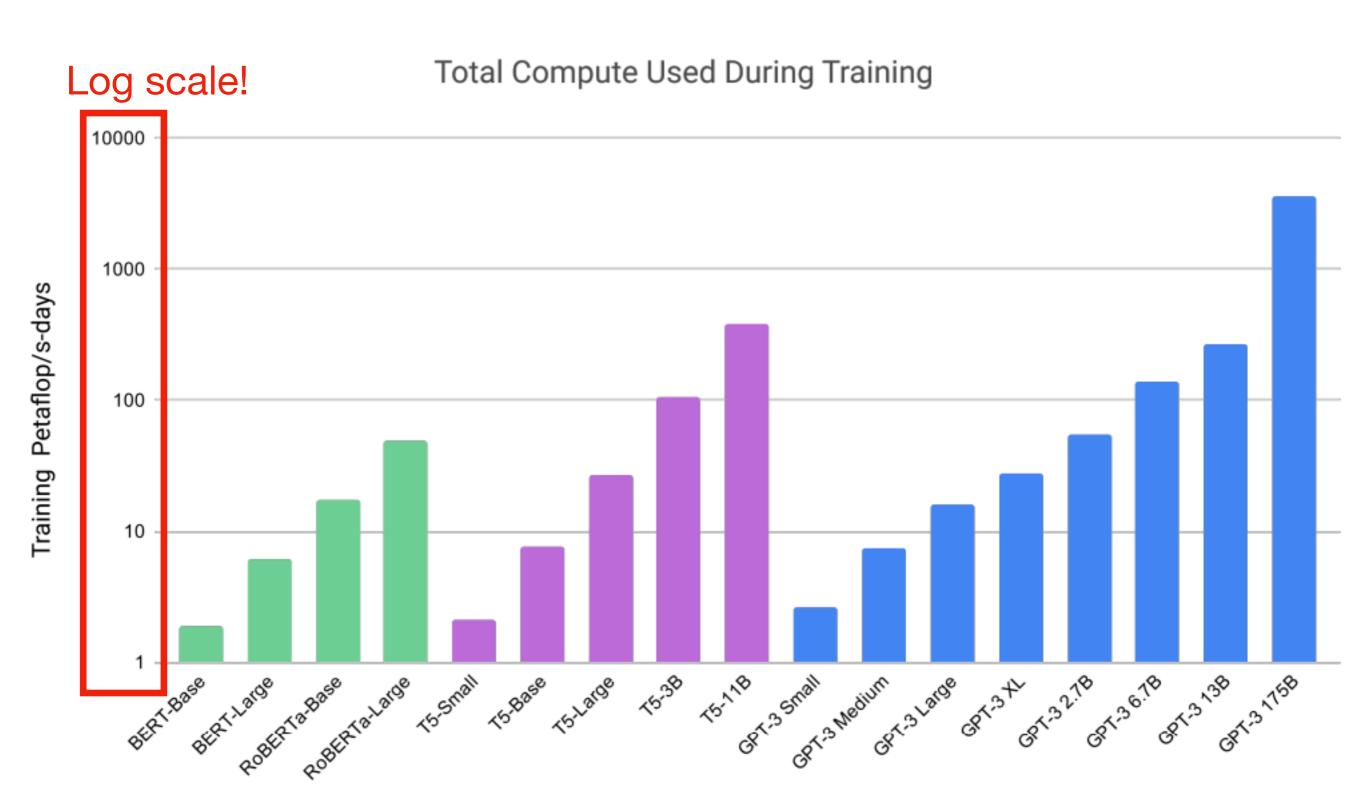
BERT: 3.3B training tokens

RoBERTa: ~30B training tokens

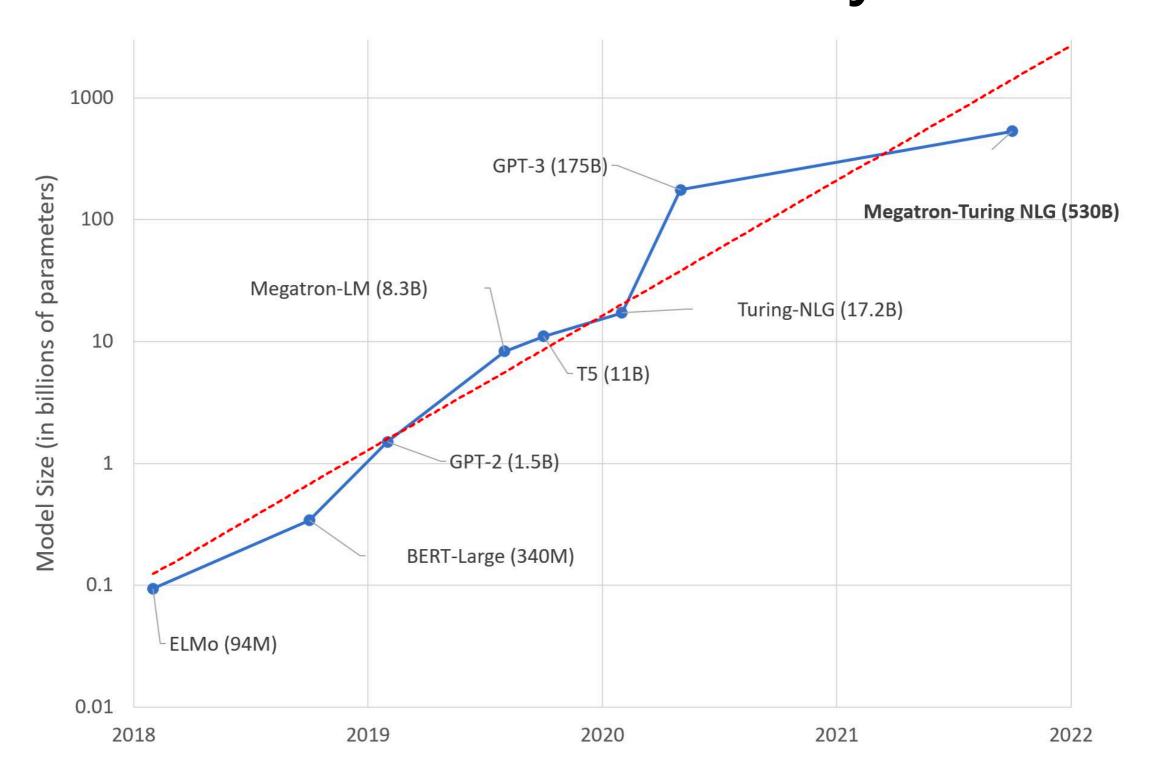
Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Total Compute Used During Training





A new 530B param model was released on Monday...



so... what does all of this scaling buy us?

Traditional fine-tuning (not used for GPT-3)

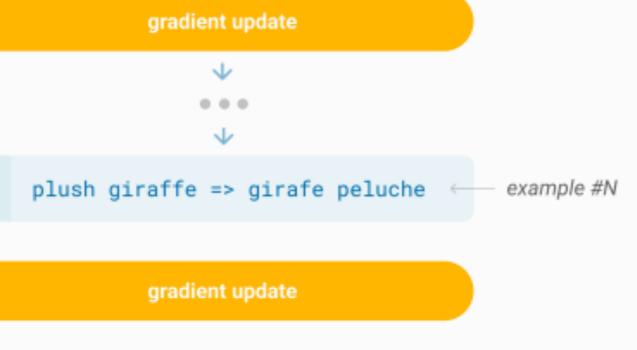
Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

 $\mathbf{\Psi}$

cheese =>

Downstream training data



Downstream test data

prompt

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
1 Translate English to French: 

cheese ⇒ task description

prompt
```

No fine-tuning!!! Literally just take a pretrained LM and give it the following prefix:

"Translate English to French: cheese =>"

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

No fine-tuning!!! Literally just take a pretrained LM and give it the following prefix:

"Translate English to French: sea otter => loutre de mer, cheese =>"

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

No fine-tuning!!! Literally just take a pretrained LM and give it the following prefix:

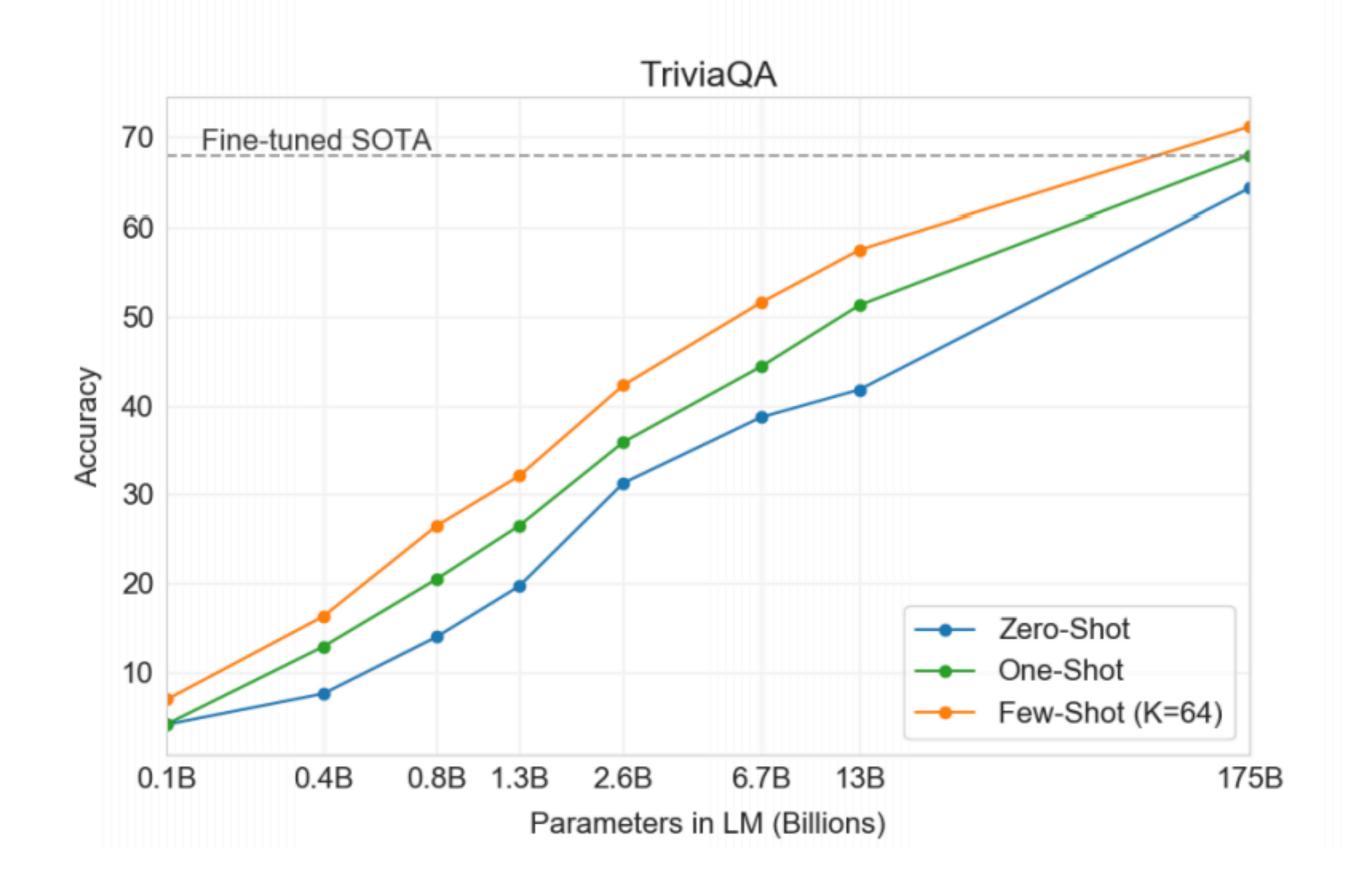
"Translate English to French: sea otter => loutre de mer, peppermint => ... (few more examples), cheese =>"

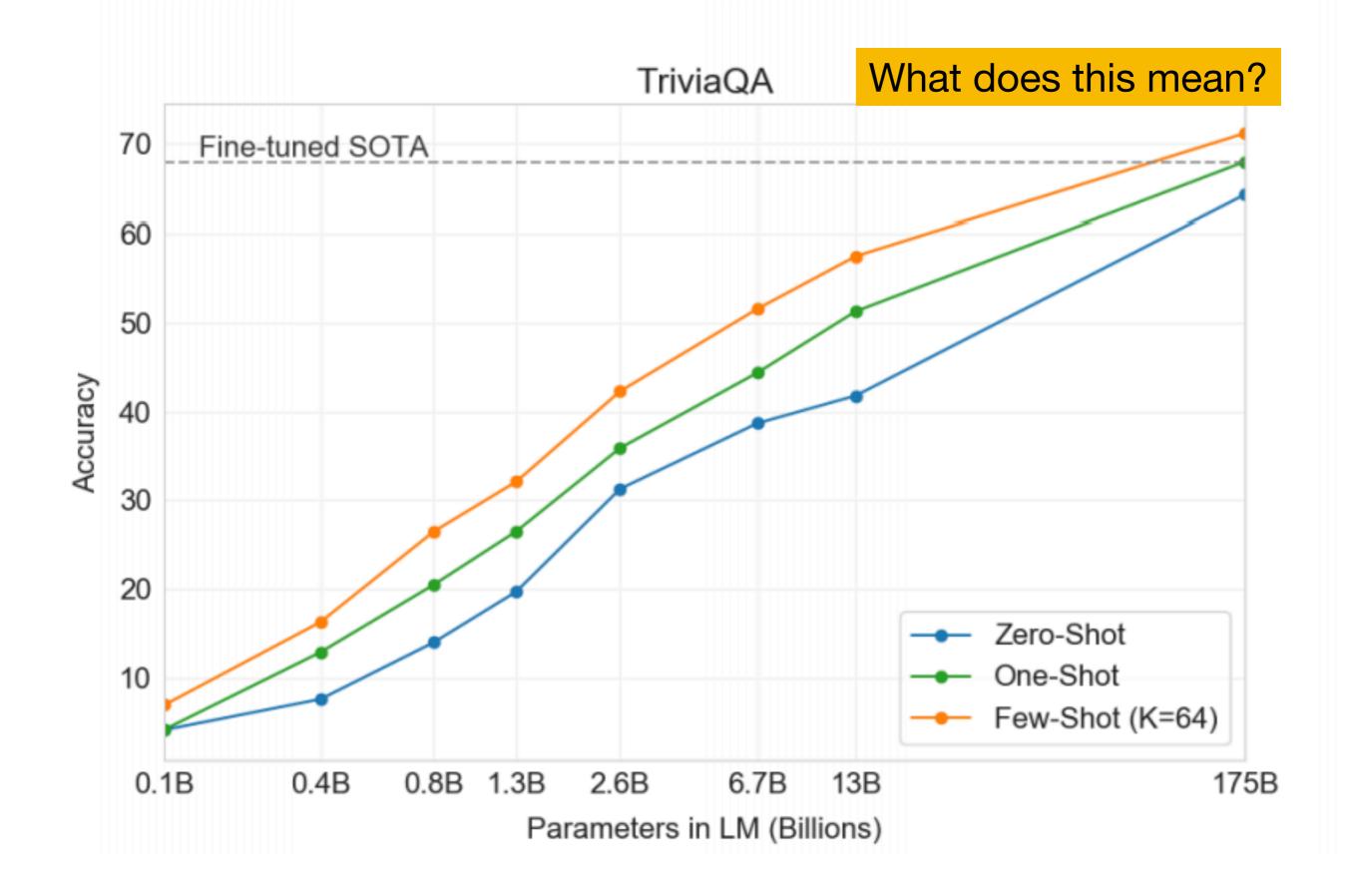
Max of 100 examples fed into the prefix in this way

How does this new paradigm compare to "pretrain + finetune"?

TriviaQA

Question
Miami Beach in Florida borders which ocean?
What was the occupation of Lovely Rita according to the song by the Beatles
Who was Poopdeck Pappys most famous son?
The Nazi regime was Germany's Third Reich; which was the first Reich?
At which English racecourse did two horses collapse and die in the parade ring due to electrocution, in February 2011?
Which type of hat takes its name from an 1894 novel by George Du Maurier where the title character has the surname O'Ferrall?
What was the Elephant Man's real name?

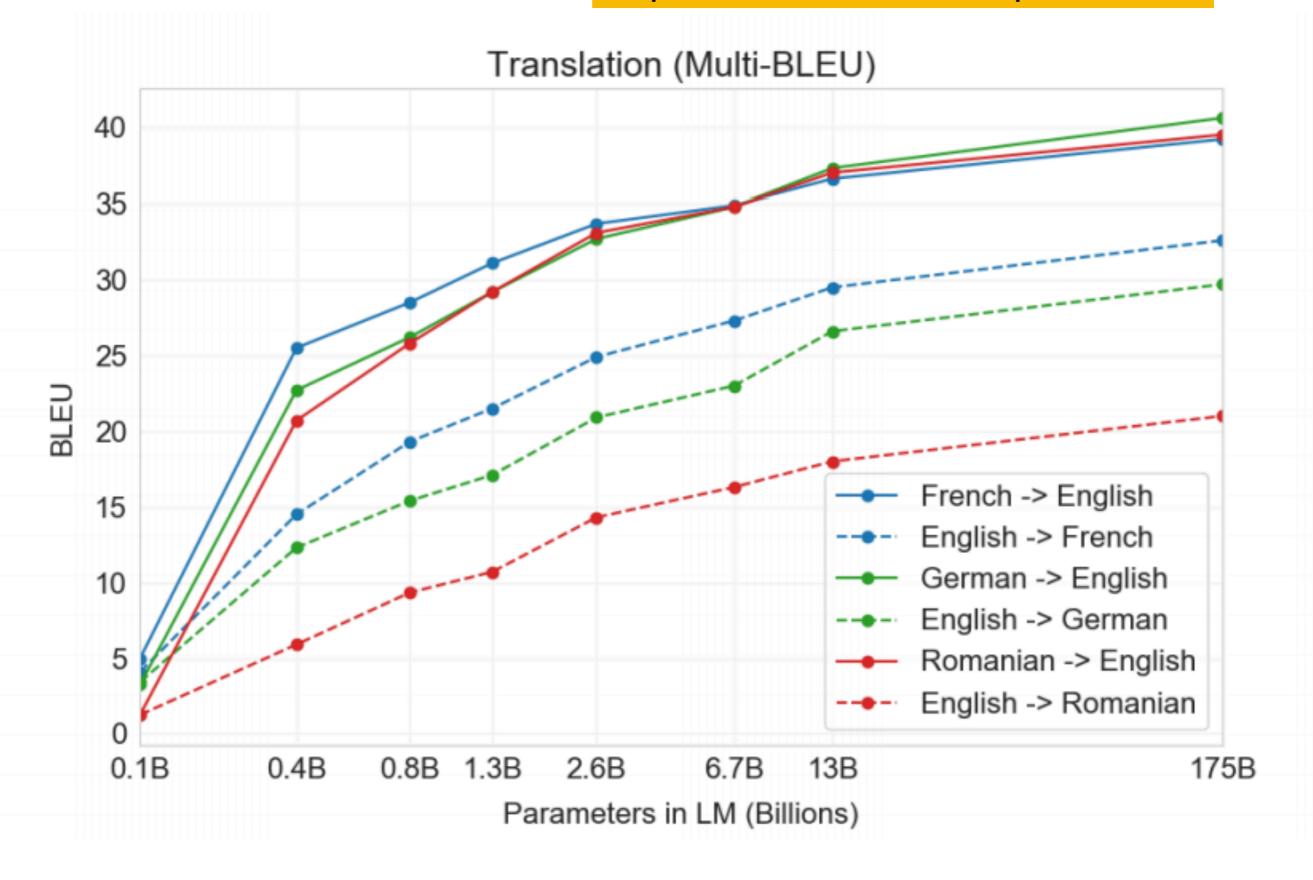




What about translation? (7% of GPT3's training data is in languages other than English)

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2 ^c	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19] MASS [STQ ⁺ 19] mBART [LGG ⁺ 20]	33.4 <u>37.5</u>	33.3 34.9 -	26.4 28.3 <u>29.8</u>	34.3 35.2 34.0	33.3 35.2 35.0	31.8 33.1 30.5
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 <u>39.2</u>	24.6 26.2 29.7	27.2 30.4 <u>40.6</u>	14.1 20.6 21.0	19.9 38.6 <u>39.5</u>

Improvements haven't plateaued!

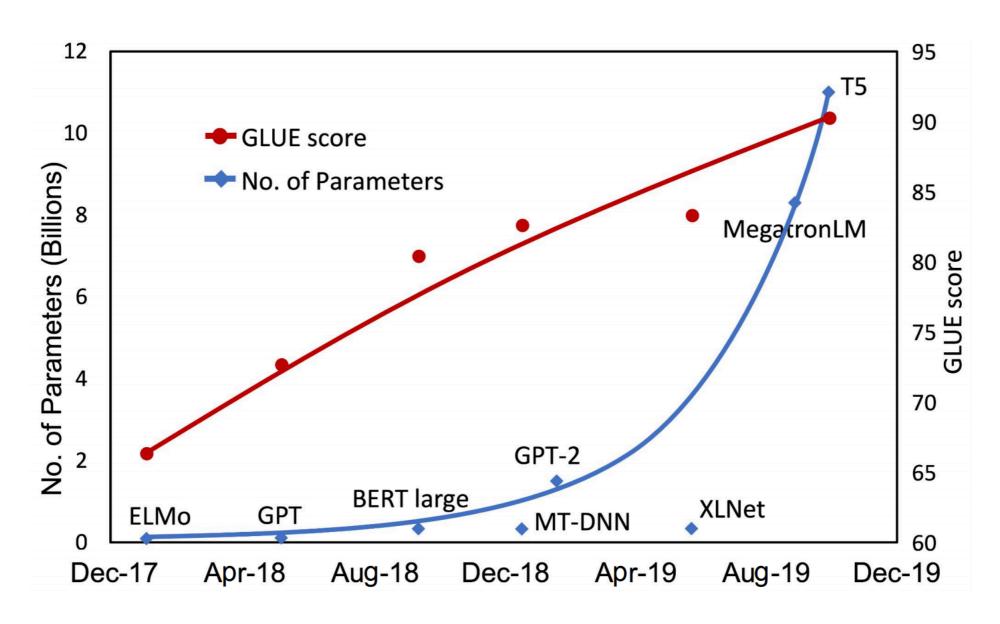


What about reading comprehension QA?

Setting	CoQA	DROP	QuAC	SQuADv2	RACE-h	RACE-m
Fine-tuned SOTA GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	90.7 ^a 81.5 84.0 85.0	89.1 ^b 23.6 34.3 36.5	74.4 ^c 41.5 43.3 44.3	93.0 ^d 59.5 65.4 69.8	90.0 ^e 45.5 45.9 46.8	93.1 ^e 58.4 57.4 58.1

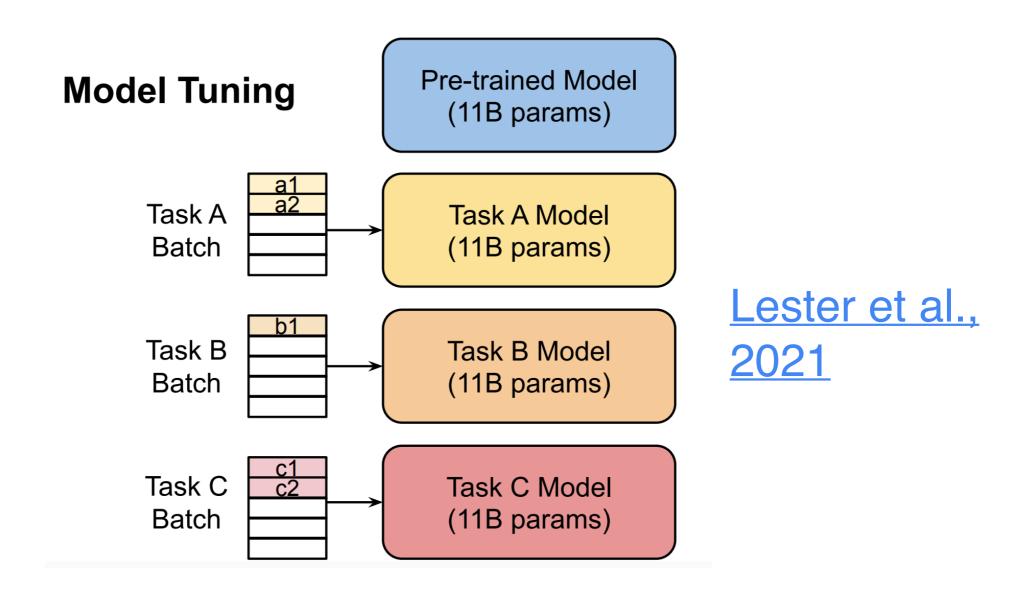
Struggles on "harder" datasets

Scaling up the model size is one of the most important ingredients for achieving the best performance



Ahmet and Abdullah., 2021

Practical challenges: large-scale models are costly to share and serve



Language model prompting to the rescue!

GPT-3 (Brown et al., 2020): In-context learning

 natural language instruction and/or a few task demonstrations — output

<u>"Translate English to German:"</u> That is good → Das is gut

no gradient updates or fine-tuning

Sub-optimal and sensitive discrete/hard prompts

Discrete/hard prompts

natural language instructions/task descriptions

Problems

- requiring domain expertise/understanding of the model's inner workings
- performance still lags far behind SotA model tuning results
- sub-optimal and sensitive
 - prompts that humans consider reasonable is not necessarily effective for language models (<u>Liu et al., 2021</u>)
 - pre-trained language models are sensitive to the choice of prompts (<u>Zhao et al., 2021</u>)

Sub-optimal and sensitive discrete/hard prompts (cont.)

Prompt	P@1
[X] is located in [Y]. (original)	31.29
[X] is located in which country or state? [Y].	19.78
[X] is located in which country? [Y].	31.40
[X] is located in which country? In [Y].	51.08

Table 1. Case study on LAMA-TREx P17 with bert-base-cased. A single-word change in prompts could yield a drastic difference.

Liu et al., 2021

Shifting from discrete/hard to continuous/soft prompts

Progress in prompt-based learning

- manual prompt design (Brown et al., 2020; Schick and Schutze, 2021a,b)
- mining and paraphrasing based methods to automatically augment the prompt sets (<u>Jiang et al., 2020</u>)
- gradient-based search for improved discrete/hard prompts (Shin et al., 2020)
- automatic prompt generation using a separate generative language model (i.e., T5) (<u>Gao et al., 2020</u>)
- learning continuous/soft prompts (<u>Liu et al., 2021</u>; <u>Li and Liang., 2021</u>; <u>Qin and Eisner., 2021</u>; <u>Lester et al., 2021</u>)

Continuous/soft prompts

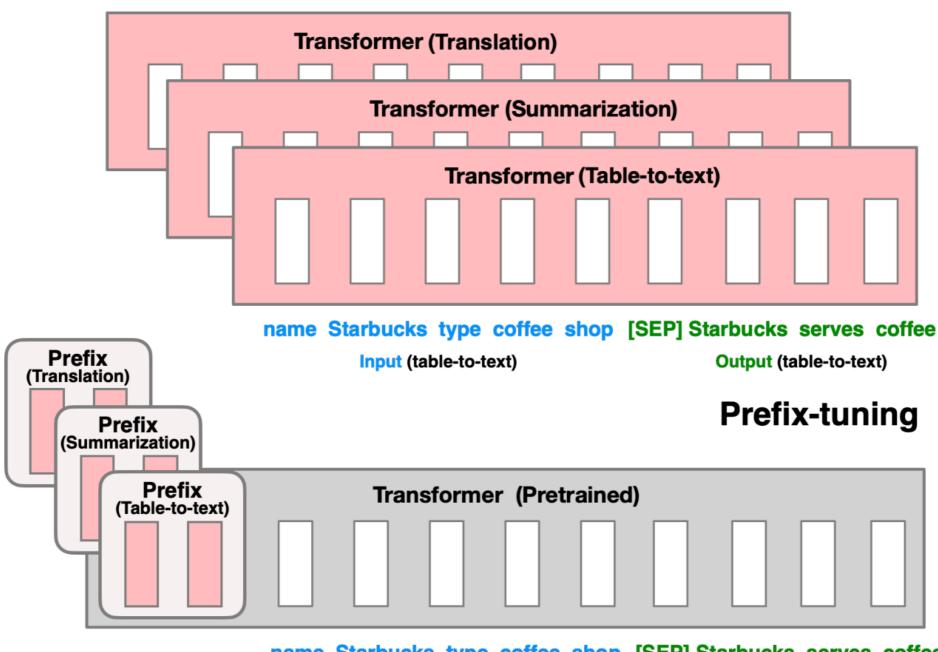
additional learnable parameters injected into the model

It remains unclear how to learn continuous/ soft prompts effectively?

- P-tuning (<u>Liu et al., 2021</u>): encode dependencies between prompt tokens using a BiLSTM network
- P-tuning (<u>Liu et al., 2021</u>), Prefix Tuning (<u>Li and Liang., 2021</u>): inject prompts at different positions of the input / model
- P-tuning (<u>Liu et al., 2021</u>): use mixed prompt initialization strategies
- **Soft Prompts** (Qin and Eisner., 2021): use ensemble methods, e.g., mixture-of-experts

Prefix tuning (Li & Liang, ACL 2021)

Fine-tuning



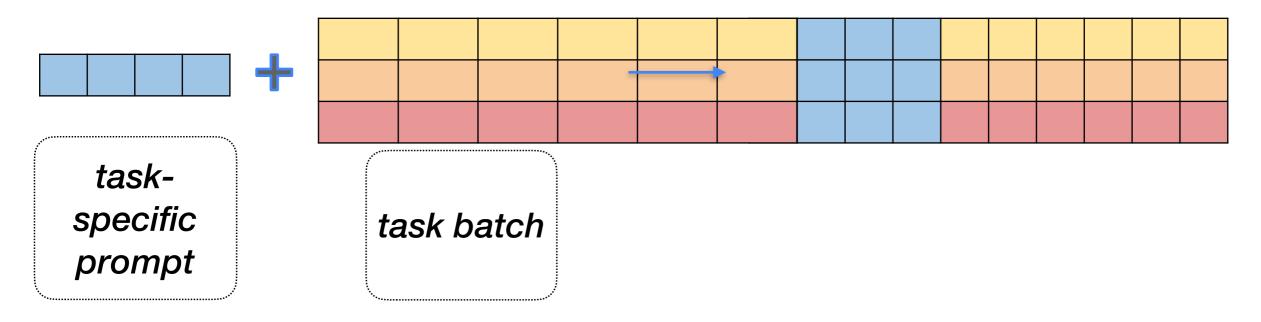
name Starbucks type coffee shop [SEP] Starbucks serves coffee Input (table-to-text)

Output (table-to-text)

Prompt Tuning idea (Lester et al., 2021)

What is a prompt in Prompt Tuning?

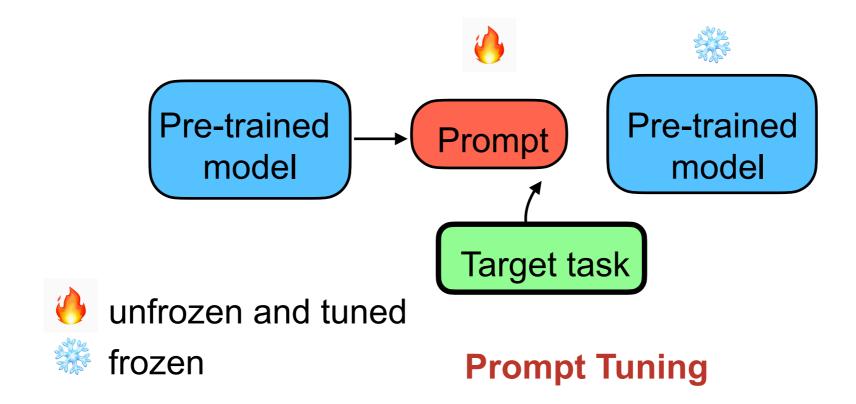
 a sequence of additional task-specific tunable tokens prepended to the input text



Prompt Tuning idea (cont.)

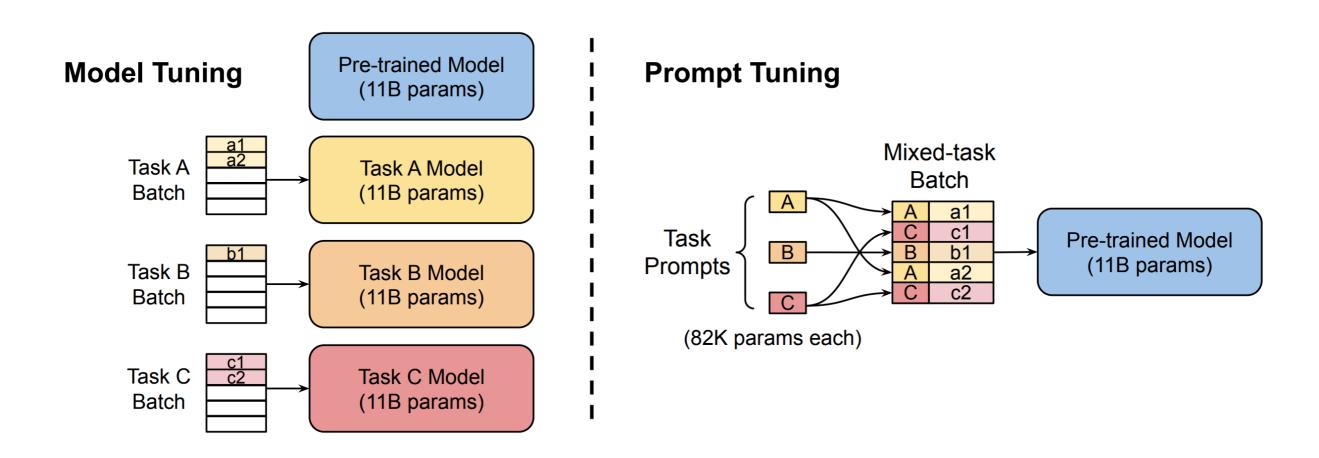
How does Prompt Tuning work?

 it learns "soft prompts" to condition a frozen language model to perform a specific downstream task



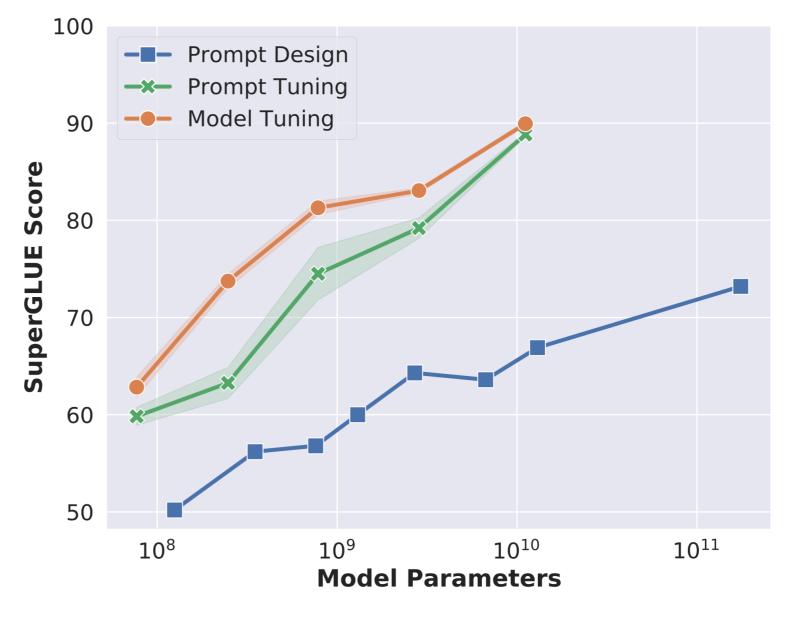
iPad

Parameter-efficient Prompt Tuning

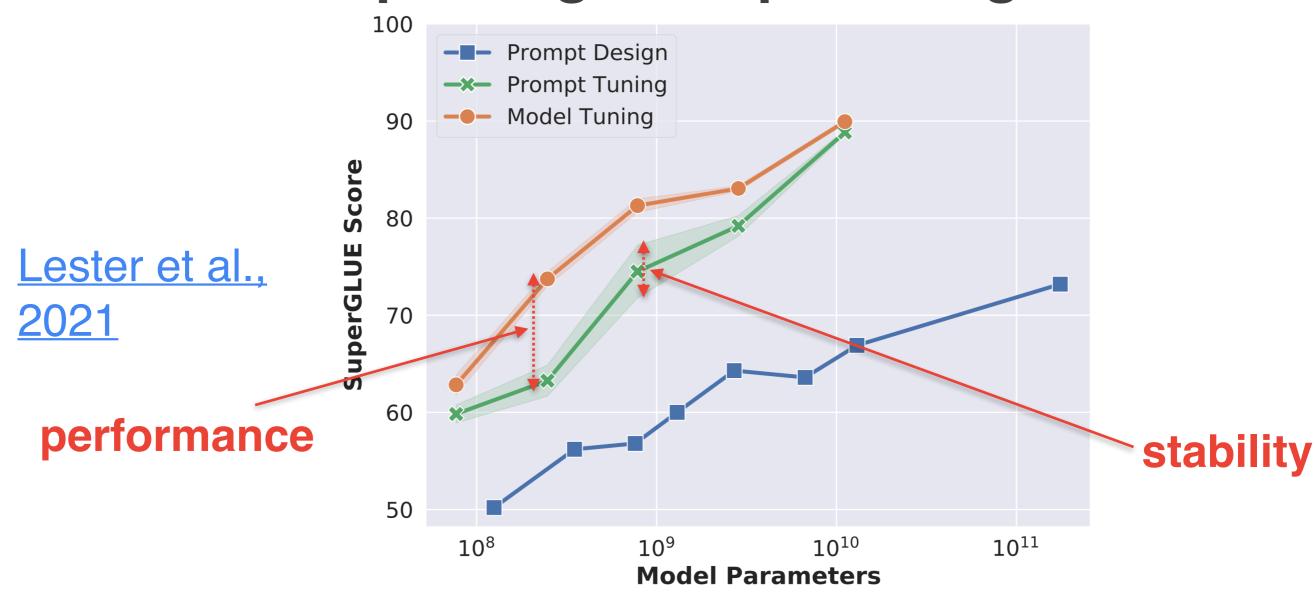


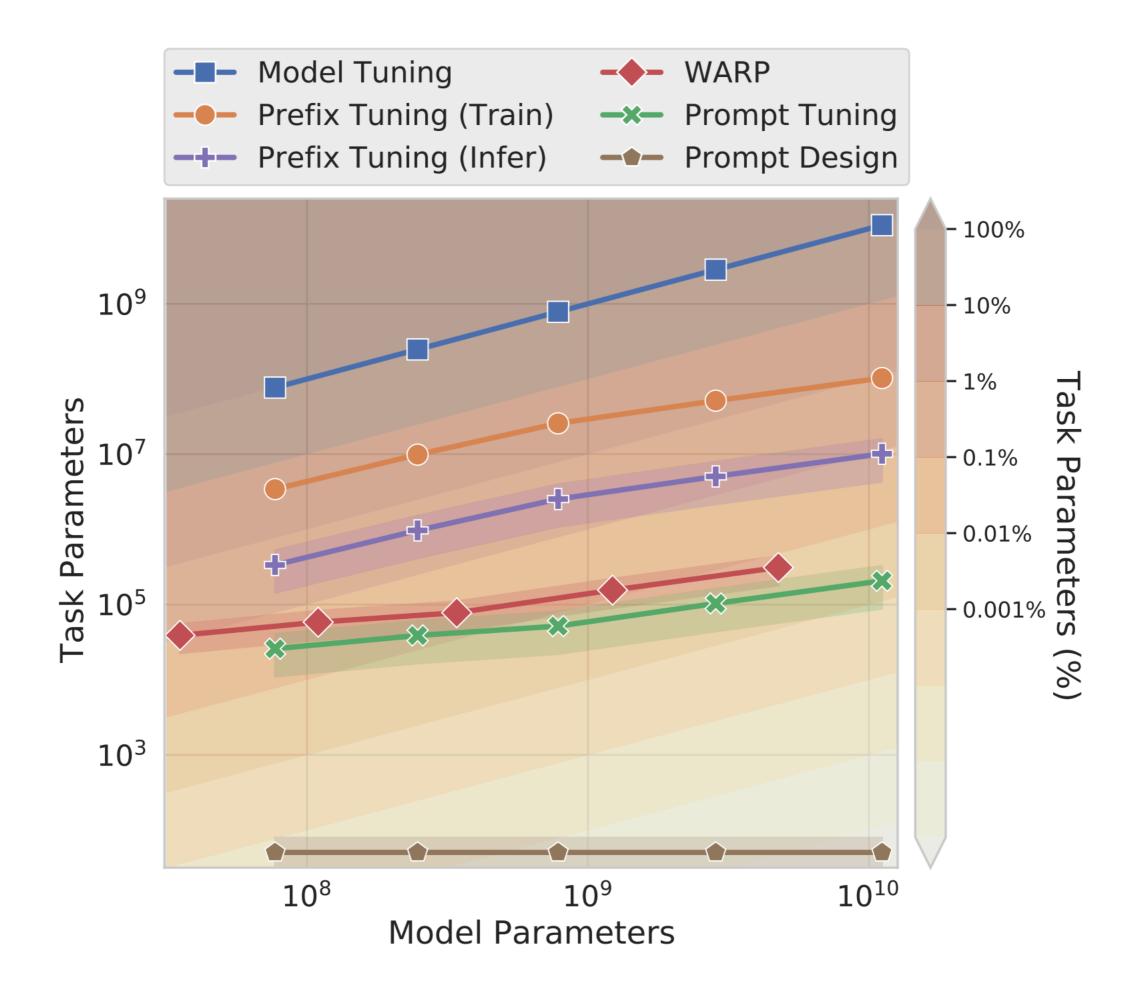
Prompt Tuning becomes more competitive

with scale

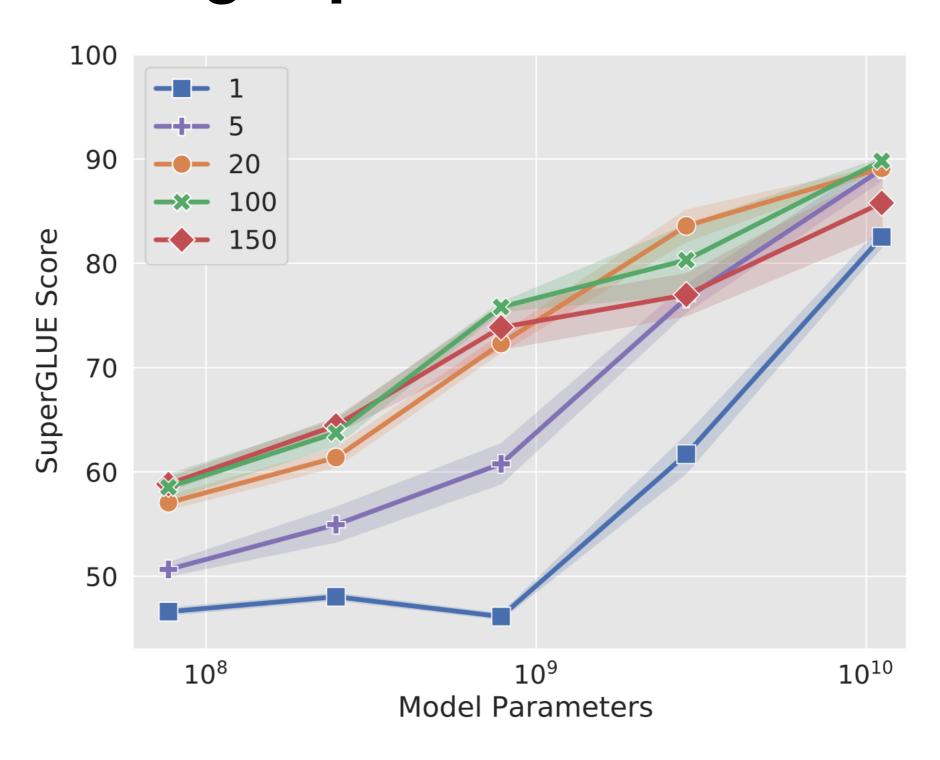


Room for improving Prompt Tuning





Prompt length matters less with larger pretrained LMs



Prompt initialization matters less with larger pretrained LMs

